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Preface

This tenth edition is with a new publisher, McGraw-Hill Education. It
represents a complete overhaul of the textbook, which delivers practical
coverage designed to introduce readers to the essential concepts of automatic
control systems. The new edition features significant enhancements of all
chapters, a greater number of solved examples, labs using both LEGO®

MINDSTORMS® and MATLAB®/SIMLab, and a valuable introduction to the
concept of Control Lab. The book gives students a real-world understanding
of the subject and prepares them for the challenges they will one day face.

For this edition, we increased the number of examples, added more
MATLAB toolboxes, and enhanced the MATLAB GUI software, ACSYS, to
allow interface with LEGO MINDSTORMS. We also added more computer-
aided tools for students and teachers. The new edition has been 5 years in the
making, and was reviewed by many professors to better fine-tune the new
concepts. In this edition, Chaps. 1 through 3 are organized to contain all
background material, while Chaps. 4 through 11 contain material directly
related to the subject of control. The Control Lab material is presented in
great detail in App. D.

The following appendices for this book can be found at
www.mhprofessional.com/golnaraghi:

Appendix A: Elementary Matrix Theory and Algebra

Appendix B: Mathematical Foundations

Appendix C: Laplace Transform Table

Appendix D: Control Lab

Appendix E: ACSYS 2013: Description of the Software

Appendix F: Properties and Construction of the Root Loci

Appendix G: General Nyquist Criterion

Appendix H: Discrete-Data Control Systems

http://www.mhprofessional.com/golnaraghi


Appendix I: Difference Equations
Appendix J: z-Transform Table

The following paragraphs are aimed at three groups: professors who have
adopted the book or who we hope will select it as their text; practicing
engineers looking for answers to solve their day-to-day design problems; and,
finally, students who are going to live with the book because it has been
assigned for the control-systems course they are taking.

To Professors
The material assembled in this book is an outgrowth of junior- and senior-

level control-systems courses taught by Professors Golnaraghi and Kuo at
their respective universities throughout their teaching careers. The first nine
editions have been adopted by hundreds of universities in the United States
and around the world and have been translated into at least six languages.

Most undergraduate control courses have labs dealing with time response
and control of dc motors—namely, speed response, speed control, position
response, and position control. In many cases, because of the high cost of
control lab equipment, student exposure to test equipment is limited, and as a
result, many students do not gain a practical insight into the subject. In this
tenth edition, recognizing these limitations, we introduce the concept of
Control Lab, which includes two classes of experiments: SIMLab (model-
based simulation) and LEGOLab (physical experiments). These
experiments are intended to supplement, or replace, the experimental
exposure of the students in a traditional undergraduate control course.

In this edition, we have created a series of inexpensive control experiments
for the LEGO MINDSTORMS NXT dc motor that will allow students to do
their work within the MATLAB and Simulink® environment—even at home.
See App. D for more details. This cost-effective approach may allow
educational institutions to equip their labs with a number of LEGO test beds
and maximize student access to the equipment at a fraction of the cost of
currently available control-systems experiments. Alternatively, as a
supplemental learning tool, students can take the equipment home after
leaving a deposit and learn at their own pace. This concept has proven to be
extremely successful at Simon Fraser University, Professor Golnaraghi’s
home university in Vancouver, Canada.

The labs include experiments on speed and position control of dc motors,



followed by a controller design project involving control of a simple robotic
system conducting a pick-and-place operation and position control of an
elevator system. Two other projects also appear in Chaps. 6 and 7. The
specific goals of these new experiments are

•   To provide an in-depth, practical discussion of the dc motor speed
response, speed control, and position control concepts.
•   To provide examples on how to identify the parameters of a physical
system, experimentally.
•   To give a better feel for controller design through realistic examples.

This text contains not only conventional MATLAB toolboxes, where
students can learn MATLAB and utilize their programing skills, but also a
graphical MATLAB-based software, ACSYS. The ACSYS software added
to this edition is very different from the software accompanying any other
control book. Here, through extensive use of MATLAB GUI programming,
we have created software that is easy to use. As a result, students need only to
focus on learning control problems, not programming!

To Practicing Engineers
This book was written with the readers in mind and is very suitable for

self-study. Our objective was to treat subjects clearly and thoroughly. The
book does not use the theorem–proof–Q.E.D. style and is without heavy
mathematics. We have consulted extensively for wide sectors of the industry
for many years and have participated in solving numerous control-systems
problems, from aerospace systems to industrial controls, automotive controls,
and control of computer peripherals. Although it is difficult to adopt all the
details and realism of practical problems in a textbook at this level, some
examples and problems reflect simplified versions of real-life systems.

To Students
You have had it now that you have signed up for this course and your

professor has assigned this book! You had no say about the choice, though
you can form and express your opinion on the book after reading it. Worse
yet, one of the reasons that your professor made the selection is because he or
she intends to make you work hard. But please don’t misunderstand us: What
we really mean is that, though this is an easy book to study (in our opinion),



it is a no-nonsense book. It doesn’t have cartoons or nice-looking
photographs to amuse you. From here on, it is all business and hard work.
You should have had the prerequisites of subjects found in a typical linear-
systems course, such as how to solve linear ordinary differential equations,
Laplace transforms and applications, and time-response and frequency-
domain analysis of linear systems. In this book, you will not find too much
new mathematics to which you have not been exposed before. What is
interesting and challenging is that you are going to learn how to apply some
of the mathematics that you have acquired during the past 2 or 3 years of
study in college. In case you need to review some of the mathematical
foundations, you can find them in the appendices, at
www.mhprofessional.com/golnaraghi. You will also find the Simulink-based
SIMLab and LEGOLab, which will help you to gain understanding of real-
world control systems.

This book has numerous illustrative examples. Some of these are
deliberately simple for the purpose of showing new ideas and subject matter.
Some examples are more elaborate, in order to bring the practical world
closer to you. Furthermore, the objective of this book is to present a complex
subject in a clear and thorough way. One of the important learning strategies
for you as a student is not to rely strictly on the textbook assigned. When
studying a certain subject, go to the library and check out a few similar texts
to see how other authors treat the same subject. You may gain new
perspectives on the subject and discover that one author treats the material
with more care and thoroughness than the others. Do not be distracted by
written-down coverage with oversimplified examples. The minute you step
into the real world, you will face the design of control systems with
nonlinearities and/or time-varying elements as well as orders that can boggle
your mind. You may find it discouraging to be told now that strictly linear
and first-order systems do not exist in the real world.
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CHAPTER 1



Introduction to Control Systems

The main objectives of this chapter are

1.    To define a control system.
2.    To explain why control systems are important.
3.    To introduce the basic components of a control system.
4.    To give some examples of control-system applications.
5.    To explain why feedback is incorporated into most control systems.
6.    To introduce types of control systems.

Over the past five decades, control systems have assumed an increasingly
important role in the development and advancement of modern civilization
and technology. Practically every aspect of our day-to-day activities is
affected by some type of control system. For instance, in the domestic
domain, we need to regulate the temperature and humidity of homes and
buildings for comfortable living. For transportation, various functionalities of
the modern automobiles and airplanes involve control systems. Industrially,
manufacturing processes contain numerous objectives for products that will
satisfy the precision and cost-effectiveness requirements. A human being is
capable of performing a wide range of tasks, including decision making.
Some of these tasks, such as picking up objects and walking from one point
to another, are commonly carried out in a routine fashion. Under certain
conditions, some of these tasks are to be performed in the best possible way.
For instance, an athlete running a 100-yd dash has the objective of running
that distance in the shortest possible time. A marathon runner, on the other
hand, not only must run the distance as quickly as possible, but, in doing so,
he or she must also control the consumption of energy and devise the best
strategy for the race. The means of achieving these “objectives” usually
involve the use of control systems that implement certain control strategies.

Learning Outcomes



After successful completion of this chapter, you will be able to
1.  Appreciate the role and importance of control systems in our daily
lives.
2.  Understand the basic components of a control system.
3.  Understand the difference between the open-loop and closed-loop
systems, and the role of feedback in a closed-loop control system.
4.  Gain a practical sense of real life control problems, through the use
of LEGO® MINDSTORMS®, MATLAB®, and Simulink®.

Control systems are found in abundance in all sectors of industry, such as
quality control of manufactured products, automatic assembly lines, machine-
tool control, space technology, computer control, transportation systems,
power systems, robotics, microelectromechanical systems (MEMS),
nanotechnology, and many others. Even the control of inventory and social
and economic systems may be approached from the control system theory.
More specifically, applications of control systems benefit many areas,
including

Control systems abound in modern civilization.

•   Process control. Enable automation and mass production in industrial
setting.
•   Machine tools. Improve precision and increase productivity.
•   Robotic systems. Enable motion and speed control.
•   Transportation systems. Various functionalities of the modern
automobiles and airplanes involve control systems.
•   MEMS. Enable the manufacturing of very small electromechanical
devices such as microsensors and microactuators.
•   Lab-on-a-chip. Enable functionality of several laboratory tasks on a
single chip of only millimeters to a few square centimeters in size for
medical diagnostics or environmental monitoring.
•   Biomechanical and biomedical. Artificial muscles, drug delivery
systems, and other assistive technologies.



1-1  BASIC COMPONENTS OF A CONTROL
SYSTEM

The basic ingredients of a control system can be described by

•   Objectives of control.
•   Control-system components.
•   Results or outputs.

The basic relationship among these three components is illustrated in a
block diagram representation, as shown Fig. 1-1. The block diagram
representation, as later discussed in Chap. 4, provides a graphical approach to
describe how components of a control system interact. In this case, the
objectives can be identified with inputs, or actuating signals, u, and the
results are also called outputs, or controlled variables, y. In general, the
objective of the control system is to control the outputs in some prescribed
manner by the inputs through the elements of the control system.

Figure 1-1   Basic components of a control system.

1-2  EXAMPLES OF CONTROL-SYSTEM
APPLICATIONS

Applications of control systems have significantly increased through
advances in computer technology and development of new materials, which
provide unique opportunities for highly efficient actuation and sensing,
thereby reducing energy losses and environmental impacts. State-of-the-art
actuators and sensors may be implemented in virtually any system, including
biological propulsion; locomotion; robotics; material handling; biomedical,
surgical, and endoscopic; aeronautics; marine; and the defense and space
industries.

The following represent some of the applications of control that have
become part of our daily lives.



1-2-1  Intelligent Transportation Systems
The automobile and its evolution in the past two centuries is arguably the

most transformative invention of man. Over the years, many innovations
have made cars faster, stronger, and aesthetically appealing. We have grown
to desire cars that are “intelligent” and provide maximum levels of comfort,
safety, and fuel efficiency. Examples of intelligent systems in cars include
climate control, cruise control, antilock brake systems (ABSs), active
suspensions that reduce vehicle vibration over rough terrain, air springs that
self-level the vehicle in high-G turns (in addition to providing a better ride),
integrated vehicle dynamics that provide yaw control when the vehicle is
either over- or understeering (by selectively activating the brakes to regain
vehicle control), traction control systems to prevent spinning of wheels
during acceleration, and active sway bars to provide “controlled” rolling of
the vehicle. The following are a few examples.

Drive-by-Wire and Driver-Assist Systems
The new generations of intelligent vehicles are able to understand the

driving environment, know their whereabouts, monitor their health,
understand the road signs, and monitor driver performance, even overriding
drivers to avoid catastrophic accidents. These tasks require significant
overhaul of past designs. Drive-by-wire technology is replacing the
traditional mechanical and hydraulic systems with electronics and control
systems, using electromechanical actuators and human–machine interfaces
such as pedal and steering feel emulators—otherwise known as haptic
systems. Hence, the traditional components—such as the steering column,
intermediate shafts, pumps, hoses, fluids, belts, coolers, brake boosters, and
master cylinders—are eliminated from the vehicle. Haptic interfaces can offer
adequate transparency to the driver while maintaining safety and stability of
the system. Removing the bulky mechanical steering wheel column and the
rest of the steering system has clear advantages in terms of mass reduction
and safety in modern vehicles, along with improved ergonomics as a result of
creating more driver space. Replacing the steering wheel with a haptic device
that the driver controls through the sense of touch would be useful in this
regard. The haptic device would produce the same sense to the driver as the
mechanical steering wheel but with improvements in cost, safety, and fuel
consumption as a result of eliminating the bulky mechanical system.

Driver-assist systems help drivers avoid or mitigate an accident by sensing



the nature and significance of the danger. Depending on the significance and
timing of the threat, these on-board safety systems will initially alert the
driver as early as possible to an impending danger. Then, it will actively
assist or, ultimately, intervene in order to avert the accident or mitigate its
consequences. Provisions for automatic override features, when the driver
loses control due to fatigue or lack of attention, will be an important part of
the system. In such systems, the so-called advanced vehicle control system
monitors the longitudinal and lateral control, and by interacting with a central
management unit, it will be ready to take control of the vehicle whenever the
need arises. The system can be readily integrated with sensor networks that
monitor every aspect of the conditions on the road and are prepared to take
appropriate action in a safe manner.

Integration and Utilization of Advanced Hybrid Powertrains
Hybrid technologies offer improved fuel consumption while enhancing

driving experience. Utilizing new energy storage and conversion technologies
and integrating them with powertrains are prime objectives in hybrid
technologies. Such technologies must be compatible with combustion engine
platforms and must enhance, rather than compromise, vehicle function.
Sample applications include plug-in hybrid technology, which would enhance
the vehicle cruising distance based on using battery power alone, and
utilizing fuel cells, energy harvesting (e.g., by converting the vibration
energy in the suspension or the energy in the brakes into electrical energy) or
sustainable energy resources, such as solar and wind power, to charge the
batteries. The smart plug-in vehicle can be a part of an integrated smart home
and grid energy system of the future, which would utilize smart energy
metering devices for optimal use of grid energy by avoiding peak energy
consumption hours.

High-Performance Real-Time Control, Health Monitoring,
and Diagnosis

Modern vehicles utilize an increasing number of sensors, actuators, and
networked embedded computers. The need for high-performance computing
would increase with the introduction of such revolutionary features as drive-
by-wire systems into modern vehicles. The tremendous computational burden
of processing sensory data into appropriate control and monitoring signals
and diagnostic information creates challenges in the design of embedded



computing technology. Toward this end, a related challenge is to incorporate
sophisticated computational techniques that control, monitor, and diagnose
complex automotive systems while meeting requirements such as low power
consumption and cost-effectiveness.

1-2-2  Steering Control of an Automobile
As a simple example of the control system, as shown in Fig. 1-1, consider

the steering control of an automobile. The direction of the two front wheels
can be regarded as the controlled variable, or the output, y; the direction of
the steering wheel is the actuating signal, or the input, u. The control system,
or process in this case, is composed of the steering mechanism and the
dynamics of the entire automobile. However, if the objective is to control the
speed of the automobile, then the amount of pressure exerted on the
accelerator is the actuating signal, and the vehicle speed is the controlled
variable. As a whole, we can regard the simplified automobile control system
as one with two inputs (steering and accelerator) and two outputs (heading
and speed). In this case, the two controls and two outputs are independent of
each other, but there are systems for which the controls are coupled. Systems
with more than one input and one output are called multivariable systems.

1-2-3  Idle-Speed Control of an Automobile
As another example of a control system, we consider the idle-speed control

of an automobile engine. The objective of such a control system is to
maintain the engine idle speed at a relatively low value (for fuel economy)
regardless of the applied engine loads (e.g., transmission, power steering, air
conditioning). Without the idle-speed control, any sudden engine-load
application would cause a drop in engine speed that might cause the engine to
stall. Thus the main objectives of the idle-speed control system are (1) to
eliminate or minimize the speed droop when engine loading is applied and
(2) to maintain the engine idle speed at a desired value. Figure 1-2 shows the
block diagram of the idle-speed control system from the standpoint of inputs–
system–outputs. In this case, the throttle angle α and the load torque TL (due
to the application of air conditioning, power steering, transmission, or power
brakes, etc.) are the inputs, and the engine speed ω is the output. The engine
is the controlled process of the system.



Figure 1-2   Idle-speed control system.

1-2-4  Sun-Tracking Control of Solar Collectors
To achieve the goal of developing economically feasible non-fossil-fuel

electrical power, a great deal of effort has been placed on alternative energy
including research and development of solar power conversion methods,
including the solar-cell conversion techniques. In most of these systems, the
need for high efficiencies dictates the use of devices for sun tracking. Figure
1-3 shows a solar collector field. Figure 1-4 shows a conceptual method of
efficient water extraction using solar power. During the hours of daylight, the
solar collector would produce electricity to pump water from the
underground water table to a reservoir (perhaps on a nearby mountain or hill),
and in the early morning hours, the water would be released into the
irrigation system.



Figure 1-3   Solar collector field.1

Figure 1-4   Conceptual method of efficient water extraction using solar
power.

One of the most important features of the solar collector is that the
collector dish must track the sun accurately. Therefore, the movement of the
collector dish must be controlled by sophisticated control systems. The block



diagram of Fig. 1-5 describes the general philosophy of the sun-tracking
system together with some of the most important components. The controller
ensures that the tracking collector is pointed toward the sun in the morning
and sends a “start track” command. The controller constantly calculates the
sun’s rate for the two axes (azimuth and elevation) of control during the day.
The controller uses the sun rate and sun sensor information as inputs to
generate proper motor commands to slew the collector.

Figure 1-5   Important components of the sun-tracking control system.

1-3  OPEN-LOOP CONTROL SYSTEMS
(NONFEEDBACK SYSTEMS)

The idle-speed control system illustrated in Fig. 1-2, shown previously, is
rather unsophisticated and is called an open-loop control system. It is not
difficult to see that the system as shown would not satisfactorily fulfill critical
performance requirements. For instance, if the throttle angle α is set at a
certain initial value that corresponds to a certain engine speed, then when a
load torque TL is applied, there is no way to prevent a drop in the engine
speed. The only way to make the system work is to have a means of adjusting
α in response to a change in the load torque in order to maintain ω at the



desired level. The conventional electric washing machine is another example
of an open-loop control system because, typically, the amount of machine
wash time is entirely determined by the judgment and estimation of the
human operator.

Open-loop systems are economical but usually inaccurate.

The elements of an open-loop control system can usually be divided into
two parts: the controller and the controlled process, as shown by the block
diagram of Fig. 1-6. An input signal, or command, r, is applied to the
controller, whose output acts as the actuating signal u; the actuating signal
then controls the controlled process so that the controlled variable y will
perform according to some prescribed standards. In simple cases, the
controller can be an amplifier, a mechanical linkage, a filter, or other control
elements, depending on the nature of the system. In more sophisticated cases,
the controller can be a computer such as a microprocessor. Because of the
simplicity and economy of open-loop control systems, we find this type of
system in many noncritical applications.

Figure 1-6   Elements of an open-loop control system.

1-4  CLOSED-LOOP CONTROL SYSTEMS
(FEEDBACK CONTROL SYSTEMS)

What is missing in the open-loop control system for more accurate and
more adaptive control is a link or feedback from the output to the input of the
system. To obtain more accurate control, the controlled signal y should be fed
back and compared with the reference input, and an actuating signal
proportional to the difference of the input and the output must be sent through
the system to correct the error. A system with one or more feedback paths
such as that just described is called a closed-loop system.



Closed-loop systems have many advantages over open-loop systems.

A closed-loop idle-speed control system is shown in Fig. 1-7. The
reference input ωr sets the desired idling speed. The engine speed at idle
should agree with the reference value ωr, and any difference such as the load
torque TL is sensed by the speed transducer and the error detector. The
controller will operate on the difference and provide a signal to adjust the
throttle angle α to correct the error. Figure 1-8 compares the typical
performances of open-loop and closed-loop idle-speed control systems. In
Fig. 1-8a, the idle speed of the open-loop system will drop and settle at a
lower value after a load torque is applied. In Fig. 1-8b, the idle speed of the
closed-loop system is shown to recover quickly to the preset value after the
application of TL.

Figure 1-7   Block diagram of a closed-loop idle-speed control system.

Figure 1-8   (a) Typical response of the open-loop idle-speed control
system. (b) Typical response of the closed-loop idle-speed control system.



The objective of the idle-speed control system illustrated, also known as a
regulator system, is to maintain the system output at a prescribed level.

1-5  WHAT IS FEEDBACK, AND WHAT ARE
ITS EFFECTS?

The motivation for using feedback, as illustrated by the examples in Sec.
1-1, is somewhat oversimplified. In these examples, feedback is used to
reduce the error between the reference input and the system output. However,
the significance of the effects of feedback in control systems is more complex
than is demonstrated by these simple examples. The reduction of system error
is merely one of the many important effects that feedback may have upon a
system. We show in the following sections that feedback also has effects on
such system performance characteristics as stability, bandwidth, overall
gain, impedance, and sensitivity.

Feedback exists whenever there is a closed sequence of cause-and-
effect relationships.

To understand the effects of feedback on a control system, it is essential to
examine this phenomenon in a broad sense. When feedback is deliberately
introduced for the purpose of control, its existence is easily identified.
However, there are numerous situations where a physical system that we
recognize as an inherently nonfeedback system turns out to have feedback
when it is observed in a certain manner. In general, we can state that
whenever a closed sequence of cause-and-effect relationships exists among
the variables of a system, feedback is said to exist. This viewpoint will
inevitably admit feedback in a large number of systems that ordinarily would
be identified as nonfeedback systems. However, control-system theory allows
numerous systems, with or without physical feedback, to be studied in a
systematic way once the existence of feedback in the sense mentioned
previously is established.

We shall now investigate the effects of feedback on the various aspects of
system performance. Without the necessary mathematical foundation of



linear-system theory, at this point we can rely only on simple static-system
notation for our discussion. Let us consider the simple feedback system
configuration shown in Fig. 1-9, where r is the input signal; y, the output
signal; e, the error; and b, the feedback signal. The parameters G and H may
be considered as constant gains. By simple algebraic manipulations, it is
simple to show that the input–output relation of the system is

Figure 1-9   Feedback system.

Using this basic relationship of the feedback system structure, we can
uncover some of the significant effects of feedback.

1-5-1  Effect of Feedback on Overall Gain
As seen from Eq. (1-1), feedback affects the gain G of a nonfeedback

system by a factor of 1 + GH. The system of Fig. 1-9 is said to have negative
feedback because a minus sign is assigned to the feedback signal. The
quantity GH may itself include a minus sign, so the general effect of feedback
is that it may increase or decrease the gain G. In a practical control system,
G and H are functions of frequency, so the magnitude of 1 + GH may be
greater than 1 in one frequency range but less than 1 in another. Therefore,
feedback could increase the gain of system in one frequency range but
decrease it in another.

Feedback may increase the gain of a system in one frequency range
but decrease it in another.



1-5-2  Effect of Feedback on Stability
Stability is a notion that describes whether the system will be able to

follow the input command, that is, be useful in general. In a nonrigorous
manner, a system is said to be unstable if its output is out of control. To
investigate the effect of feedback on stability, we can again refer to the
expression in Eq. (1-1). If GH = –1, the output of the system is infinite for
any finite input, and the system is said to be unstable. Therefore, we may
state that feedback can cause a system that is originally stable to become
unstable. Certainly, feedback is a double-edged sword; when it is improperly
used, it can be harmful. It should be pointed out, however, that we are only
dealing with the static case here, and, in general, GH = –1 is not the only
condition for instability. The subject of system stability will be treated
formally in Chap. 5.

A system is unstable if its output is out of control.

It can be demonstrated that one of the advantages of incorporating
feedback is that it can stabilize an unstable system. Let us assume that the
feedback system in Fig. 1-9 is unstable because GH = –1. If we introduce
another feedback loop through a negative feedback gain of F, as shown in
Fig. 1-10, the input–output relation of the overall system is



Figure 1-10   Feedback system with two feedback loops.

It is apparent that although the properties of G and H are such that the
inner-loop feedback system is unstable because GH = –1, the overall system
can be stable by properly selecting the outer-loop feedback gain F. In
practice, GH is a function of frequency, and the stability condition of the
closed-loop system depends on the magnitude and phase of GH. The bottom
line is that feedback can improve stability or be harmful to stability if it is not
properly applied.

Feedback can improve stability or be harmful to stability.

Sensitivity considerations often are important in the design of control
systems. Because all physical elements have properties that change with
environment and age, we cannot always consider the parameters of a control
system to be completely stationary over the entire operating life of the
system. For instance, the winding resistance of an electric motor changes as
the temperature of the motor rises during operation. Control systems with
electric components may not operate normally when first turned on because
of the still-changing system parameters during warm-up. This phenomenon is
sometimes called morning sickness. Most duplicating machines have a
warm-up period during which time operation is blocked out when first turned
on.

Note: Feedback can increase or decrease the sensitivity of a system.

In general, a good control system should be very insensitive to parameter
variations but sensitive to the input commands. We shall investigate what
effect feedback has on sensitivity to parameter variations. Referring to the
system in Fig. 1-9, we consider G to be a gain parameter that may vary. The
sensitivity of the gain of the overall system M to the variation in G is defined



as

where ∂M denotes the incremental change in M due to the incremental
change in G, or ∂G. By using Eq. (1-1), the sensitivity function is written

This relation shows that if GH is a positive constant, the magnitude of the
sensitivity function can be made arbitrarily small by increasing GH, provided
that the system remains stable. It is apparent that, in an open-loop system, the
gain of the system will respond in a one-to-one fashion to the variation in G
(i.e., ). Again, in practice, GH is a function of frequency; the
magnitude of 1 + GH may be less than unity over some frequency ranges, so
feedback could be harmful to the sensitivity to parameter variations in certain
cases. In general, the sensitivity of the system gain of a feedback system to
parameter variations depends on where the parameter is located. The reader
can derive the sensitivity of the system in Fig. 1-9 due to the variation of H.

1-5-3  Effect of Feedback on External Disturbance or Noise
All physical systems are subject to some types of extraneous signals or

noise during operation. Examples of these signals are thermal-noise voltage
in electronic circuits and brush or commutator noise in electric motors.
External disturbances, such as wind gusts acting on an antenna, are also quite
common in control systems. Therefore, control systems should be designed
so that they are insensitive to noise and disturbances and sensitive to input
commands.

Feedback can reduce the effect of noise.

The effect of feedback on noise and disturbance depends greatly on where
these extraneous signals occur in the system. No general conclusions can be



reached, but in many situations, feedback can reduce the effect of noise and
disturbance on system performance. Let us refer to the system shown in Fig.
1-11, in which r denotes the command signal and n is the noise signal. In the
absence of feedback, that is, H = 0, the output y due to n acting alone is

Figure 1-11   Feedback system with a noise signal.

With the presence of feedback, the system output due to n acting alone is

Comparing Eq. (1-6) with Eq. (1-5) shows that the noise component in the
output of Eq. (1-6) is reduced by the factor 1 + G1G2H if the latter is greater
than unity and the system is kept stable.

In Chap. 11, the feedforward and forward controller configurations are
used along with feedback to reduce the effects of disturbance and noise
inputs. In general, feedback also has effects on such performance
characteristics as bandwidth, impedance, transient response, and frequency
response. These effects will be explained as we continue.

Feedback also can affect bandwidth, impedance, transient responses,
and frequency responses.



1-6  TYPES OF FEEDBACK CONTROL
SYSTEMS

Feedback control systems may be classified in a number of ways,
depending upon the purpose of the classification. For instance, according to
the method of analysis and design, control systems are classified as linear or
nonlinear, and time-varying or time-invariant. According to the types of
signal found in the system, reference is often made to continuous-data or
discrete-data systems, and modulated or unmodulated systems. Control
systems are often classified according to the main purpose of the system. For
instance, a position-control system and a velocity-control system control
the output variables just as the names imply. In Chap. 11, the type of control
system is defined according to the form of the open-loop transfer function. In
general, there are many other ways of identifying control systems according
to some special features of the system. It is important to know some of the
more common ways of classifying control systems before embarking on the
analysis and design of these systems.

Most real-life control systems have nonlinear characteristics to some
extent.

1-7  LINEAR VERSUS NONLINEAR
CONTROL SYSTEMS

This classification is made according to the methods of analysis and
design. Strictly speaking, linear systems do not exist in practice because all
physical systems are nonlinear to some extent. Linear feedback control
systems are idealized models fabricated by the analyst purely for the
simplicity of analysis and design. When the magnitudes of signals in a
control system are limited to ranges in which system components exhibit
linear characteristics (i.e., the principle of superposition applies), the system
is essentially linear. But when the magnitudes of signals are extended beyond
the range of the linear operation, depending on the severity of the



nonlinearity, the system should no longer be considered linear. For instance,
amplifiers used in control systems often exhibit a saturation effect when their
input signals become large; the magnetic field of a motor usually has
saturation properties. Other common nonlinear effects found in control
systems are the backlash or dead play between coupled gear members,
nonlinear spring characteristics, nonlinear friction force or torque between
moving members, and so on. Quite often, nonlinear characteristics are
intentionally introduced in a control system to improve its performance or
provide more effective control. For instance, to achieve minimum-time
control, an on-off–type (bang-bang or relay) controller is used in many
missile or spacecraft control systems. Typically in these systems, jets are
mounted on the sides of the vehicle to provide reaction torque for attitude
control. These jets are often controlled in a full-on or full-off fashion, so a
fixed amount of air is applied from a given jet for a certain time period to
control the attitude of the space vehicle.

There are no general methods for solving a wide class of nonlinear
systems.

For linear systems, a wealth of analytical and graphical techniques is
available for design and analysis purposes. A majority of the material in this
text is devoted to the analysis and design of linear systems. Nonlinear
systems, on the other hand, are usually difficult to treat mathematically, and
there are no general methods available for solving a wide class of nonlinear
systems. It is practical to first design the controller based on the linear-system
model by neglecting the nonlinearities of the system. The designed controller
is then applied to the nonlinear system model for evaluation or redesign by
computer simulation. The Control Lab introduced in Chap. 8 may be used to
model the characteristics of practical systems with realistic physical
components.

1-8  TIME-INVARIANT VERSUS TIME-
VARYING SYSTEMS



When the parameters of a control system are stationary with respect to time
during the operation of the system, the system is called a time-invariant
system. In practice, most physical systems contain elements that drift or vary
with time. For example, the winding resistance of an electric motor will vary
when the motor is first being excited and its temperature is rising. Another
example of a time-varying system is a guided-missile control system in which
the mass of the missile decreases as the fuel on board is being consumed
during flight. Although a time-varying system without nonlinearity is still a
linear system, the analysis and design of this class of systems are usually
much more complex than that of the linear time-invariant systems.

1-9  CONTINUOUS-DATA CONTROL
SYSTEMS

A continuous-data system is one in which the signals at various parts of the
system are all functions of the continuous time variable t. The signals in
continuous-data systems may be further classified as ac or dc. Unlike the
general definitions of ac and dc signals used in electrical engineering, ac and
dc control systems carry special significance in control systems terminology.
When one refers to an ac control system, it usually means that the signals in
the system are modulated by some form of modulation scheme. A dc control
system, on the other hand, simply implies that the signals are unmodulated,
but they are still ac signals according to the conventional definition. The
schematic diagram of a closed-loop dc control system is shown in Fig. 1-12.
Typical waveforms of the signals in response to a step-function input are
shown in the figure. Typical components of a dc control system are
potentiometers, dc amplifiers, dc motors, dc tachometers, and so on.



Figure 1-12   Schematic diagram of a typical dc closed-loop system.

Figure 1-13 shows the schematic diagram of a typical ac control system
that performs essentially the same task as the dc system in Fig. 1-12. In this
case, the signals in the system are modulated; that is, the information is
transmitted by an ac carrier signal. Notice that the output controlled variable
still behaves similarly to that of the dc system. In this case, the modulated
signals are demodulated by the low-pass characteristics of the ac motor. Ac
control systems are used extensively in aircraft and missile control systems in
which noise and disturbance often create problems. By using modulated ac
control systems with carrier frequencies of 400 Hz or higher, the system will
be less susceptible to low-frequency noise. Typical components of an ac
control system are synchros, ac amplifiers, ac motors, gyroscopes,
accelerometers, and so on.



Figure 1-13   Schematic diagram of a typical ac closed-loop control
system.

In practice, not all control systems are strictly of the ac or dc type. A
system may incorporate a mixture of ac and dc components, using
modulators and demodulators to match the signals at various points in the
system.

1-10  DISCRETE-DATA CONTROL SYSTEMS
Discrete-data control systems differ from the continuous-data systems in

that the signals at one or more points of the system are in the form of either a
pulse train or a digital code. Usually, discrete-data control systems are
subdivided into sampled-data and digital control systems. Sampled-data
control systems refer to a more general class of discrete-data systems in
which the signals are in the form of pulse data. A digital control system refers



to the use of a digital computer or controller in the system so that the signals
are digitally coded, such as in binary code.

Digital control systems are usually less susceptible to noise.

In general, a sampled-data system receives data or information only
intermittently at specific instants of time. For example, the error signal in a
control system can be supplied only in the form of pulses, in which case the
control system receives no information about the error signal during the
periods between two consecutive pulses. Strictly, a sampled-data system can
also be classified as an ac system because the signal of the system is pulse
modulated.

Figure 1-14 illustrates how a typical sampled-data system operates. A
continuous-data input signal r(t) is applied to the system. The error signal e(t)
is sampled by a sampling device, the sampler, and the output of the sampler
is a sequence of pulses. The sampling rate of the sampler may or may not be
uniform. There are many advantages to incorporating sampling into a control
system. One important advantage is that expensive equipment used in the
system may be time-shared among several control channels. Another
advantage is that pulse data are usually less susceptible to noise.

Figure 1-14   Block diagram of a sampled-data control system.

Because digital computers provide many advantages in size and flexibility,
computer control has become increasingly popular in recent years. Many
airborne systems contain digital controllers that can pack thousands of
discrete elements into a space no larger than the size of this book. Figure 1-15
shows the basic elements of a digital autopilot for aircraft attitude control.



Figure 1-15   Digital autopilot system for aircraft attitude control.

1-11  CASE STUDY: INTELLIGENT VEHICLE
OBSTACLE AVOIDANCE—LEGO
MINDSTORMS

The goal of this section is to provide you with a better understanding of the
controller design process for a practical system—in this case a LEGO®

MINDSTORMS® NXT programmable robotic system. Note the example
used here may appear too difficult at this stage but it can demonstrate the
steps you need to take for successful implementation of a control system.
You may revisit this example after successful completion of App. D.

Description of the Project2

The system setup, shown in Fig. 1-16, is a LEGO MINDSTORMS car that
is controlled using MATLAB® and Simulink®. The LEGO car, shown in Figs.
1-17 and 1-18, is equipped with an ultrasonic sensor, a light sensor, an
indicating light, an NXT motor gearbox and the NXT brick. An encoder
(sensor) is used to read the angular position of the motor gearbox. The NXT
brick can take input from up to four sensors and control up to three motors,
via RJ12 cables—see Chap. 8 for more details. The ultrasonic sensor is
placed in the front to detect the distance from the obstacle. The light sensor is
facing downward to detect the color of the running surface—in this case
white means go! The system interfaces with the host computer using a USB
connection, while the host computer logs encoder data in real-time using a
Bluetooth connection.



Figure 1-16   Final car product with host computer.



Figure 1-17   Car design—side view.



Figure 1-18   Car design—bottom view.

The Controller Design Procedure
The design of a control system for a practical problem requires a

systematic treatment as follows:

•   Outline the objectives of the control system.
•   Specify the requirements, design criteria, and constraints (Chaps. 7
and 11).
•   Develop a mathematical model of the system, including mechanical,
electrical, sensors, motor, and the gearbox (Chaps. 2, 3, and 6).
•   Establish how the overall system subcomponents interact, utilizing
block diagrams (Chap. 4).
•   Use block diagrams, signal flow graphs, or state diagrams to find the



model of the overall system—transfer function or state space model
(Chap. 4).
•   Study the transfer function of the system in the Laplace domain, or
the state space representation of the system (Chap. 3).
•   Understand the time and frequency response characteristics of the
system and whether it is stable or not (Chaps. 5, 7, and 9 to 11).
•   Design a controller using time response (Chaps. 7 and 11).
•   Design a controller using the root locus technique (in the Laplace
domain) and time response (Chaps. 7, 9, and 11).
•   Design a controller using frequency response techniques (Chaps. 10
and 11).
•   Design a controller using the state space approach (Chap. 8).
•   Optimize the controller if necessary (Chap. 11).
•   Implement the design on the experimental/practical system (Chaps. 7
and 11 and App. D).

Objective
The objective of this project is to have the LEGO car running on a white

surface and stop just before hitting an obstacle—in this case a wall.

Design Criteria and Constraints
The car can only be running at full speed on a white surface. The car must

stop, if the surface color is not white. The car must also stop just before
hitting an obstacle.

Develop a Mathematical Model of the System
The motor drives the rear wheels. The vehicle mass, motor, gearbox, and

wheel friction must be considered in the modeling process. You may use
Chaps. 2 and 6 to arrive at the mathematical model of the system. Also check
Sec. 7-5.

Following the process in Chaps. 6 and 7 and App. D, the block diagram
of the system using position control (using an amplifier with gain K ) and the
encoder sensor position feedback is shown in Fig. 1-19, where system
parameters and variables, in time domain, include



Figure 1-19   Block diagram of a position-control, armature-controlled dc
motor representing the LEGO car.

Ra = armature resistance, Ω
La = armature inductance, H
θm = angular displacement of the motor gearbox shaft, radian
θin = desired angular displacement of the motor gearbox shaft, radian
ωm = angular speed of the motor shaft, rad/s
T = torque developed by the motor, N · m
J = equivalent moment of inertia of the motor and load connected to the
motor shaft, J = JL/n2 + Jm, kg – m2 (refer to Chap. 2 for more details)
n = gear ratio
B = equivalent viscous-friction coefficient of the motor and load referred
to the motor shaft, N · m/rad/s (in the presence of gear ratio, B must be
scaled by n; refer to Chap. 2 for more details)
Ki = torque constant, N · m/A
Kb = back-emf constant, V/rad/s
KS = equivalent encoder sensor gain, V/rad
K = position control gain (amplifier)

The closed-loop transfer function, in Laplace domain, in this case
becomes



where Ks is the sensor gain. The motor electrical time constant τe = La/Ra

may be neglected for small La. As a result the position transfer function is
simplified to

where Eq. (1-8) is a second-order system, and

The transfer function in Eq. (1-8) represents a stable system for all K > 0
and will not exhibit any steady state error—that is, it will reach the desired
destination dictated by the input.

In order to study the time response behavior of the position-control system,
we use Simulink. The Simulink numerical model of the system is shown in
Fig. 1-20, where all system parameters may be obtained experimentally using
the procedure discussed in Chap. 8, as shown in Table 1-1.



Figure 1-20   Car Simulink model.

TABLE 1-1   LEGO Car System Parameters

After running the simulation for the controller gain K = 12.5, we can plot
the car travel as shown in Fig. 1-21. Note encoder output was scaled to arrive
at the results shown. As shown, the car travels at a constant speed from 1 to
approximately 2.7 s before stopping. From the slope of the graph in Fig. 1-21,
we can obtain the maximum speed of the car as 0.4906 m/s. This is also
confirmed using the speed plot in Fig. 1-22. Furthermore, from this graph, we
can find the average acceleration of the car as 2.27 m/s2. The stoppage time is
dictated by the system mechanical time constant where the speed, as shown
in Fig. 1-22, decays exponentially from maximum to zero. This time must be
taken into consideration when the actual system meets an obstacle.



Figure 1-21   Car travel.



Figure 1-22   Car speed graph.

Once a satisfactory response is obtained, the control system can be tested
on the actual system. The LEGO car utilizes Simulink to operate. The
Simulink model in this case is built based on the process indicated in Chap. 8
and is shown in Fig. 1-23. Remember to enter the gain parameter K = 12.5.



Figure 1-23   Simulink model to operate the LEGO car.

After the Simulink model is built, you can pair the host computer with the
NXT brick using Bluetooth—see the instructional video. We must first start
by connecting the car to the host computer using the USB cable and selecting
Run on Target Hardware in the Simulink Tools menu. When the indicating
light illuminates, the car is operational. For the car to run wirelessly, simply
unplug the USB cable at this point.

To start up the car, you can place a strip, which is not white, underneath
the light sensor, as shown in Fig. 1-24. By pulling the strip out, the car will
start its run. When the car reaches an obstacle, the indicating light will turn
off as it comes to a halt, as shown in Fig. 1-25—see the instructional video to
learn more about the ultrasonic sensor shown in the Simulink model in Fig.
1-23. After the car has finished its run, click Stop in the Simulink program to
stop the operation. All data will be stored in the computer. Using MATLAB
you can plot the vehicle time response—as illustrated in Chap. 8. As shown
in Fig. 1-26, the speed of the car is 0.4367 m/s, which is close to the
numerical simulation results. The distance that car traveled to reach the wall
is 0.8063 m. From the speed plot, shown in Fig. 1-27, the average
acceleration is 1.888 m/s2.



Figure 1-24   Starting position.



Figure 1-25   Final position.



Figure 1-26   Car travel from motor encoder.



Figure 1-27   Car speed plot.

1-12  SUMMARY
In this chapter, we introduced some of the basic concepts of what a control

system is and what it is supposed to accomplish. The basic components of a
control system were described. By demonstrating the effects of feedback in a
rudimentary way, the question of why most control systems are closed-loop
systems was also clarified. Most important, it was pointed out that feedback
is a double-edged sword—it can benefit as well as harm the system to be
controlled. This is part of the challenging task of designing a control system,
which involves consideration of such performance criteria as stability,
sensitivity, bandwidth, and accuracy. Finally, various types of control
systems were categorized according to the system signals, linearity, and



control objectives. Several typical control-system examples were given to
illustrate the analysis and design of control systems. Most systems
encountered in real life are nonlinear and time varying to some extent. The
concentration on the studies of linear systems is due primarily to the
availability of unified and simple-to-understand analytical methods in the
analysis and design of linear systems.

1Source: http://stateimpact.npr.org/texas/files/2011/08/Solar-Energy-Power-by-Daniel-Reese-01.jpg.
2Instructional YouTube video: http://youtu.be/gZo7qkWlZhs.

http://http://stateimpact.npr.org/texas/files/2011/08/Solar-Energy-Power-by-Daniel-Reese-01.jpg
http://http://youtu.be/gZo7qkWlZhs


CHAPTER 2



Modeling of Dynamic Systems

As mentioned in Chap. 1, one of the most important tasks in the analysis
and design of control systems is mathematical modeling of system
subcomponents and ultimately the overall system. The models of these
systems are represented by differential equations, which may be linear or
nonlinear. In this textbook, we consider systems that are modeled by ordinary
differential equations—as opposed to partial differential equations.

The analysis and design of control systems for most applications use linear
(or linearized) models and are well established; while the treatment of
nonlinear systems is quite complex. As a result, the control-systems engineer
often has the task of determining not only how to accurately describe a
system mathematically but also, more importantly, how to make proper
assumptions and approximations, whenever necessary, so that the system
may be realistically characterized by a linear mathematical model.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Model the differential equations of basic mechanical systems.
2.  Model the differential equations of basic electrical systems.
3.  Model the differential equations of basic thermal systems.
4.  Model the differential equations of basic fluid systems.
5.  Linearize nonlinear ordinary differential equations.
6.  Discuss analogies and relate mechanical, thermal, and fluid systems
to their electrical equivalents.

In this chapter, we provide a more detailed look at the modeling of
components of various control systems. A control system may be composed
of several components including mechanical, thermal, fluid, pneumatic, and
electrical systems. In this chapter, we review basic properties of some of



these systems, otherwise known as dynamic systems. Using the basic
modeling principles such as Newton’s second law of motion, Kirchoff’s law,
or conservation of mass (incompressible fluids) the model of these dynamic
systems are represented by differential equations.

As mentioned earlier, because in most cases, the controller design process
requires a linear model; in this chapter, we provide a review of linearization
of nonlinear equations. In this chapter, we also demonstrate the similarities
amongst these systems and establish analogies among mechanical, thermal,
and fluid systems with electrical networks.

A control system also includes other components such as amplifiers,
sensors, actuators, and computers. The modeling of these systems is
discussed later in Chap. 6 because of additional theoretical requirements.

Finally, it is important to mention that the modeling materials presented in
this chapter are intended to serve as a review of various second or third year
university level engineering courses including dynamics, fluid mechanics,
heat transfer electrical circuits, electronics, and sensors and actuators. For a
more comprehensive understanding of any of these subjects, the reader is
referred to courses in mentioned areas.

2-1  MODELING OF SIMPLE MECHANICAL
SYSTEMS

Mechanical systems are composed of translational, rotational, or a
combination of both components. The motion of mechanical elements is
often directly or indirectly formulated from Newton’s law of motion.1

Introductory models of these mechanical systems are based on particle
dynamics, where the mass of the system is assumed to be a dimensionless
particle. In order to capture the motion of realistic mechanical systems,
including translation and rotational motions, rigid body dynamics models are
used. Springs are used to describe flexible components and dampers are used
to model friction. In the end, the resulting governing equations of motion are
linear or nonlinear differential equations that can be described by up to six
variables—in 3D, an object is capable of three translational motions and three
rotational motions. In this textbook, we mainly look at linear and planar
particle and rigid body motions.



2-1-1  Translational Motion
Translational motion can take place along a straight or curved path. The

variables that are used to describe translational motion are acceleration,
velocity, and displacement.

Newton’s law of motion states that the algebraic sum of external forces
acting on a rigid body or a particle in a given direction is equal to the product
of the mass of the body and its acceleration in the same direction. The law
can be expressed as

where M denotes the mass, and a is the acceleration in the direction
considered. Figure 2-1 illustrates the situation where a force is acting on a
body with mass M. The force equation is written as

Figure 2-1   Force-mass system.

Or,

where a(t) is the acceleration, v(t) denotes linear velocity, and y(t) is the
displacement of mass M. Note that the first step in modeling is always to
draw the free-body diagram (FBD) of the system by isolating the mass and
representing the effect of all attached components by their corresponding
reaction forces. These forces are external forces that act on the body resulting
it to accelerate. In this case, the only external force is f (t). As a general rule,
find the equations assuming the mass is moving along y(t).



Considering Fig. 2-2, where a force f (t) is applied to a flexible structure, in
this case a cantilever beam, a simple mathematical model may be obtained
after approximating the system by a spring-mass-damper system.

Figure 2-2   Force applied to a cantilever beam, modeled as a spring-mass-
damper system. (a) A cantilever beam. (b) Spring-mass-damper equivalent
model. (c) Free-body diagram.

In this case, in addition to the mass, the following system elements are also
involved.

•   Linear spring. In practice, a linear spring may be a model of an
actual spring or a compliance of a mechanical component such as a
cable or a belt—in this case a beam. In general, an ideal spring is a
massless element that stores potential energy. The spring element in Fig.
2-2 applies a force Fs to mass M. Using Newton’s concept of action and
reaction, the mass also exerts a same force to the spring K, as shown in
Fig. 2-3 and has the following linear model:



Figure 2-3   Force-spring system.

where K is the spring constant, or simply stiffness. Equation (2-4) implies
that the force acting on the spring is linearly proportional to the displacement
(deflection) of the spring. If the spring is preloaded with a preload tension of
T, then Eq. (2-4) is modified to

•   Friction. Whenever there is motion or tendency of motion between
two physical elements, frictional forces exist. Mechanical structures also
exhibit internal friction. In the case of the beam in Fig. 2-2, upon
bending and releasing the structure, the resulting motion will eventually
come to a halt due to this internal friction. The frictional forces
encountered in physical systems are usually of a nonlinear nature. The
characteristics of the frictional forces between two contacting surfaces
often depend on such factors as the composition of the surfaces, the
pressure between the surfaces, and their relative velocity. So an exact
mathematical description of the frictional force is difficult to obtain.
Three different types of friction are commonly used in practical systems:
viscous friction, static friction, and Coulomb friction. In most cases,
and in this book, in order to utilize a linear model, most frictional
components are approximated as viscous friction, also known as viscous
damping. In viscous damping the applied force and velocity are linearly
proportional. The schematic diagram element for viscous damping is
often represented by a dashpot (or damper), such as that shown in Fig. 2-
3. Figure 2-4 shows the isolated dashpot, which has the following
mathematical expression:

In most cases, and in this book, in order to utilize a linear model, most
friction components are approximated as viscous friction, also known as



viscous damping.

Figure 2-4   Dashpot for viscous friction.

where B is the viscous damping coefficient.
The equation of motion of the system shown in Fig. 2-2 is obtained using

the free-body diagram shown in Fig. 2-2c—assuming the mass is pulled
along y(t) direction. Hence, we get

Upon substituting Eqs. (2-4) and (2-5) into (2-6) and rearranging the
equation, we have

where  and  represent velocity and
acceleration, respectively. Dividing the former equation by M, we get

where r(t) has the same units as y(t). In control systems, it is customary to
rewrite Eq. (2-9) as



where ωn and ζ are the natural frequency and the damping ratio of the
system, respectively. Equation (2-10) is also known as the prototype second-
order system. We define y(t) as the output and r(t) as the input of the
system.

EXAMPLE 2-1-1  Consider the two degrees of freedom mechanical system
shown in Fig. 2-5, where a mass M1 slides along a
smooth lubricated surface of mass M2 that is connected
to a wall by a spring K.

Figure 2-5   A two-degree of freedom mechanical system with spring and
damper elements. (a) A two mass spring system. (b) Mass, spring, damper
equivalent system. (c) Free-body diagram.



The displacements of masses M1 and M2 are measured
by y1(t) and y2(t), respectively. The oil film between the
two surfaces is modeled as a viscous damping element B,
as shown in Fig. 2-5b. After drawing the free-body
diagrams of the two masses, as shown in Fig. 2-5c, we
apply Newton’s second law of motion to each mass, we
get

Using Eqs. (2-5) and (2-6), we get

Similarly, using Eqs. (2-5) and (2-6), we get

Thus, the two second-order differential equations of
motion become

EXAMPLE 2-1-2  Consider the two degrees of freedom mechanical system
shown in Fig. 2-6 with two masses M1 and M2

constrained by three springs, while a force f(t) is
applied to mass M2.



Figure 2-6   (a) A two-degree of freedom mechanical system with three
springs. (b) Free-body diagram.

The displacements of masses M1 and M2 are measured
by y1(t) and y2(t), respectively. Assuming masses are
displaced in positive directions and y2(t) > y1(t), we draw
the free-body diagrams of the two masses, as shown in
Fig. 2-6b. This is a good trick to use to get the applied
spring force directions correct. So in this case, springs K1

and K2 are in tension while K3 is in compression.
Applying Newton’s second law of motion to each mass,
we get

Using Eq. (2-5), and noting the deflection of springs K1

and K2 are y1(t) and (y2(t) – y1(t)), respectively, we get



Similarly, using Eq. (2-5), we get

Thus, the two second-order differential equations of
motion become

EXAMPLE 2-1-3  Consider the three-story building shown in Fig. 2-7. Let
us derive the equations of the system describing the
motion of the building after a shock at the base due to
an earthquake. Assuming the masses of the floors are
dominant compared to those of the columns, and the
columns have no internal loss of energy, the system
can be modeled by three masses and three springs, as
shown in Fig. 2-7b. The modeling approach is then
identical to that in Example 2-1-2. We draw the free-
body diagram, assuming y3(t) > y2(t) > y1(t) and obtain
the final equations of the system as



Figure 2-7   (a) A three-story building. (b) Equivalent model as a three-
degree of freedom spring-mass system. (c) Free-body diagram.

2-1-2  Rotational Motion
For most applications encountered in control systems, the rotational

motion of a body can be defined as motion about a fixed axis.2 Newton’s
second law for rotational motion states that the algebraic sum of external
moments applied to a rigid body of inertia J about a fixed axis, produces an
angular acceleration about that axis. Or



where J denotes the inertia and α is the angular acceleration. The other
variables generally used to describe the motion of rotation are torque T
(normally applied from a motor), angular velocity ω, and angular
displacement θ. The rotational equations of motion include the following
terms:

•   Inertia. A three-dimensional rigid body of mass M has three moments
of inertia and three products of inertia. In this textbook, we primarily
look at planar motions, governed by Eq. (2-26). A rigid body of mass M
has inertia, J, about a fixed rotational axis, which is a property related
to kinetic energy of rotational motion. The inertia of a given element
depends on the geometric composition about the axis of rotation and its
density. For instance, the inertia of a circular disk or shaft, of radius r
and mass M, about its geometric axis is given by

When a torque is applied to a body with inertia J, as shown in Fig. 2-
8, the torque equation is written as

Figure 2-8   Torque-inertia system.

where θ(t) is the angular displacement; ω(t), the angular velocity; and
α(t), the angular acceleration.

•   Torsional spring. As with the linear spring for translational motion, a
torsional spring constant K, in torque-per-unit angular displacement,
can be devised to represent the compliance of a rod or a shaft when it is
subject to an applied torque. Figure 2-9 illustrates a simple torque-spring
system that can be represented by the equation



Figure 2-9   (a) A rod under a torsional load. (b) Equivalent torque
torsional spring system. (c) Free-body diagram.

If the torsional spring is preloaded by a preload torque of TP, Eq. (2-
36) is modified to

•   Viscous damping for rotational motion. The friction described for
translational motion can be carried over to the motion of rotation.
Therefore, Eq. (2-6) can be replaced by

In Fig. 2-9b, the internal loss of energy in a rod is represented by
viscous damping B.

Considering the free-body diagram in Fig. 2-9c, we examine the
reactions after application of a torque in positive direction. Note we
normally use the right-hand rule to define the positive direction of
rotation—in this case counterclockwise. Upon substituting Eqs. (2-29)
and (2-31) into Eq. (2-26) and rearranging the equation, we have



where  and  represent angular velocity
and acceleration, respectively. Dividing the former equation by J, we get

where r(t) has the same units as θ(t). In control systems, it is
customary to rewrite Eq. (2-33) as

where ωn and ζ are the natural frequency and the damping ratio of the
system, respectively. Equation (2-34) is also known as the prototype
second-order system. We define θ(t) as the output and r(t) as the input
of the system. Notice that this system is analogous to the translational
system in Fig. 2-2.

EXAMPLE 2-1-4   A nonrigid coupling between two mechanical
components in a control system often causes torsional
resonances that can be transmitted to all parts of the
system. In this case, the rotational system shown in
Fig. 2-10a consists of a motor with a long shaft of
inertia Jm. A disk representing a load with inertia JL is
mounted at the end of the motor shaft. The shaft
flexibility is modeled as a torsional spring K and any
loss of energy within the motor is represented by
viscous damping of coefficient B. For simplicity we
assume the shaft, in this case, has no internal loss of
energy. Because of the flexibility in the shaft, the
angular displacement at the motor end and the load are
not equal—designated as θm and θL, respectively. The
system, therefore, has two degrees of freedom.



Figure 2-10   (a) Motor-load system. (b) Free-body diagram.

The system variables and parameters are defined as
follows:

Tm(t) = motor torque
Bm = motor viscous-friction coefficient
K = spring constant of the shaft
θm (t) = motor displacement
ωm (t) = motor velocity
Jm = motor inertia
θL (t) = load displacement
ωL (t) = load velocity
JL = load inertia

The free-body diagrams of the system are shown in
Fig. 2-17b. The two equations of the system are



Equations (2-35) and (2-36) are rearranged as

Note that if the motor shaft is rigid, θm = θL and all the
motor applied torque is transmitted to the load. So, in this
case the overall equation of the system becomes

Table 2-1 shows the SI and other measurement units
for translational and rotational mechanical system
parameters.

TABLE 2-1   Basic Translational and Rotational Mechanical System
Properties and Their Units





2-1-3  Conversion between Translational and Rotational
Motions

In motion-control systems, it is often necessary to convert rotational
motion into translational motion. For instance, a load may be controlled to
move along a straight line through a rotary-motor-and-lead-screw assembly,
such as that shown in Fig. 2-11. Figure 2-12 shows a similar situation in
which a rack-and-pinion assembly is used as a mechanical linkage. Another



familiar system in motion control is the control of a mass through a pulley by
a rotary motor, as shown in Fig. 2-13. The systems shown in Figs. 2-11 to 2-
13 can all be represented by a simple system with an equivalent inertia
connected directly to the drive motor. For instance, the mass in Fig. 2-13 can
be regarded as a point mass that moves about the pulley, which has a radius r.
By disregarding the inertia of the pulley, the equivalent inertia that the motor
sees is

Figure 2-11   Rotary-to-linear motion control system (lead screw).

Figure 2-12   Rotary-to-linear motion control system (rack and pinion).



Figure 2-13   Rotary-to-linear motion control system (belt and pulley).

If the radius of the pinion in Fig. 2-12 is r, the equivalent inertia that the
motor sees is also given by Eq. (2-40).

Now consider the system of Fig. 2-11. The lead of the screw, L, is defined
as the linear distance that the mass travels per revolution of the screw. In
principle, the two systems in Figs. 2-12 and 2-13 are equivalent. In Fig. 2-12,
the distance traveled by the mass per revolution of the pinion is 2πr. By using
Eq. (2-40) as the equivalent inertia for the system of Fig. 2-11, we have

EXAMPLE 2-1-5  Classically, the quarter-car model is used in the study of
vehicle suspension systems and the resulting dynamic
response due to various road inputs. Typically, the
inertia, stiffness, and damping characteristics of the
system as illustrated in Fig. 2-14a are modeled in a
two-degree of freedom (2-DOF) system, as shown in
Fig. 2-14b. Although a 2-DOF system is a more
accurate model, it is sufficient for the following
analysis to assume a 1-DOF model, as shown in Fig.
2-14c.



Figure 2-14   Quarter-car model realization. (a) Quarter car. (b) Two
degrees of freedom model. (c) One degree of freedom model.

Given the system illustrated in Fig. 2-14c, where
m = effective ¼ car mass
k = effective stiffness
c = effective damping
x(t) = absolute displacement of the mass, m
y(t) = absolute displacement of the base
z(t) = relative displacement of the mass with respect
to the base

The equation of motion of the system is defined as
follows:

or

which can be redefined in terms of the relative
displacement, or bounce, by substituting the relation

Dividing the result by m, Eq. (2-43) is rewritten as

Note that as before ωn and ζ are the natural frequency
and the damping ratio of the system, respectively.
Equation (2-45) reflects how the vehicle chassis bounces
relative to the ground given an input acceleration from
the ground—for example, after the wheels go through a
bump.

In practice, active control of the suspension system
may be achieved using various types of actuators



including hydraulic, pneumatic, or electromechanical
systems such as motors. Let’s use an active suspension
that uses a dc motor in conjunction with a rack as shown
in Fig. 2-15.

Figure 2-15   Active control of the 1-DOF quarter-car model via a dc
motor and rack. (a) Schematics. (b) Free-body diagram.

In Fig. 2-15, T(t) is the torque produced by the motor
with shaft rotation θ, and r is the radius of the motor
drive gear. Hence, the motor torque equation is

Defining the transmitted force from the motor
assembly to the mass as f(t), the mass equation of motion
is

In order to control the vehicle bounce, we use z(t) =
x(t) – y(t) to rewrite the equation as

Using



and noting that z = θr, Eq. (2-48) is rewritten as

or

where J = mr2 + Jm, B = cr2 + Bm, and K = kr2.
So the motor torque and be used to control the vehicle

bounce caused by ground disturbances due to
acceleration a(t). 

2-1-4  Gear Trains
A gear train, lever, or timing belt over a pulley is a mechanical device that

transmits energy from one part of the system to another in such a way that
force, torque, speed, and displacement may be altered. These devices can also
be regarded as matching devices used to attain maximum power transfer.
Two gears are shown coupled together in Fig. 2-16. The inertia and friction
of the gears are neglected in the ideal case considered.

Figure 2-16   Gear train.

The relationships between the torques T1 and T2, angular displacement q1

and q2, and the teeth numbers N1 and N2 of the gear train are derived from the



following facts:

1.    The number of teeth on the surface of the gears is proportional to
the radii r1 and r2 of the gears; that is,

2.    The distance traveled along the surface of each gear is the same.
Thus,

3.    The work done by one gear is equal to that of the other since there
are assumed to be no losses. Thus,

If the angular velocities of the two gears, ω1 and ω2, are brought into the
picture, Eqs. (2-52) through (2-54) lead to

EXAMPLE 2-1-6  Consider motor-load assembly, shown in Fig. 2-10, with
a rigid shaft of inertia Jm. If we use a gear train with

gear ratio  between the motor shaft and the load
of inertia JL, J is the equivalent moment of inertia of
the motor and load, J = JL/n2 + Jm, and as a result Eq.
(2-39) is revised to

In practice, gears do have inertia and friction between
the coupled gear teeth that often cannot be neglected. An
equivalent representation of a gear train with viscous



friction and inertia considered as lumped parameters is
shown in Fig. 2-17, where T denotes the applied torque,
T1 and T2 are the transmitted torque, and B1 and B2 are the
viscous friction coefficients. The torque equation for gear
2 is

Figure 2-17   Gear train with friction and inertia.

The torque equation on the side of gear 1 is

Using Eq. (2-55), Eq. (2-57), after premultiplication by , is converted to

Equation (2-59) indicates that it is possible to reflect inertia, friction,
compliance, torque, speed, and displacement from one side of a gear train to
the other. The following quantities are obtained when reflecting from gear 2
to gear 1:



Similarly, gear parameters and variables can be reflected from gear 1 to
gear 2 by simply interchanging the subscripts in the preceding expressions. If
a torsional spring effect is present, the spring constant is also multiplied by
(N1/N2)2 in reflecting from gear 2 to gear 1. Now substituting Eq. (2-59) into
Eq. (2-58), we get

where

EXAMPLE 2-1-7   Given a load that has inertia of 0.05 oz·in·s2, find the
inertia and frictional torque reflected through a 1:5
gear train (N1/N2 = 1/5, with N2 on the load side). The
reflected inertia on the side of N1 is (1/5)2 × 0.05 =
0.002 oz·in·s2. 



2-1-5  Backlash and Dead Zone (Nonlinear Characteristics)
Backlash and dead zone are commonly found in gear trains and similar

mechanical linkages where the coupling is not perfect. In a majority of
situations, backlash may give rise to undesirable inaccuracy, oscillations, and
instability in control systems. In addition, it has a tendency to wear out the
mechanical elements. Regardless of the actual mechanical elements, a
physical model of backlash or dead zone between an input and an output
member is shown in Fig. 2-18. The model can be used for a rotational system
as well as for a translational system. The amount of backlash is b/2 on either
side of the reference position.

Figure 2-18   Physical model of backlash between two mechanical
elements.

In general, the dynamics of the mechanical linkage with backlash depend
on the relative inertia-to-friction ratio of the output member. If the inertia of
the output member is very small compared with that of the input member, the
motion is controlled predominantly by friction. This means that the output
member will not coast whenever there is no contact between the two
members. When the output is driven by the input, the two members will
travel together until the input member reverses its direction; then the output
member will be at a standstill until the backlash is taken up on the other side,
at which time it is assumed that the output member instantaneously takes on
the velocity of the input member. The transfer characteristic between the
input and output displacements of a system with backlash with negligible
output inertia is shown in Fig. 2-19.



Figure 2-19   Input–output characteristic of backlash.

2-2  INTRODUCTION TO MODELING OF
SIMPLE ELECTRICAL SYSTEMS

In this chapter, we address modeling of electrical networks with simple
passive elements such as resistors, inductors, and capacitors. The
mathematical models of these systems are governed by ordinary differential
equations. Later in Chap. 6, we address operational amplifiers, which are
active electrical elements and their models are more relevant to controller
systems discussions.

2-2-1  Modeling of Passive Electrical Elements
Consider Fig. 2-20, which shows the basic passive electrical elements:

resistors, inductors, and capacitors.



Figure 2-20   Basic passive electrical elements. (a) A resistor. (b) An
inductor. (c) A capacitor.

Resistors. Ohm’s law states that the voltage drop, eR(t), across a resistor R
is proportional to the current i(t) going through the resistor. Or

Inductors. The voltage drop, eL(t), across an inductor L is proportional to
the time rate of change of current i(t) going through the inductor. Thus,

Capacitor. The voltage drop, eC(t), across a capacitor C is proportional to
the integral current i(t) going through the capacitor with respect to time.
Therefore,

2-2-2  Modeling of Electrical Networks
The classical way of writing equations of electric networks is based on the

loop method or the node method, both of which are formulated from the two
laws of Kirchhoff, which state:

Current law or loop method. The algebraic summation of all currents
entering a node is zero.

Voltage law or node method. The algebraic sum of all voltage drops
around a complete closed loop is zero.



EXAMPLE 2-2-1  Let us consider the RLC network shown in Fig. 2-21.
Using the voltage law

Figure 2-21   RLC network. Electrical schematics.

where eR = Voltage across the resistor R
eL = Voltage across the inductor L
ec = Voltage across the capacitor C
Or

Using current in C,

and substituting for i(t) in Eq. (2-68), we get the
equation of the RLC network as

Dividing the former equation by LC and using 

 and , we get



In control systems it is customary to rewrite Eq. (2-70)
as

where ωn and ζ are the natural frequency and the
damping ratio of the system, respectively. As in Eq. (2-
10), Eq. (2-72) is also known as the prototype second-
order system. We define ec(t) as the output and e(t) as
the input of the system, where both terms have same
units. Notice that this system is also analogous to the
translational Mechanical system in Fig. 2-2. 

EXAMPLE 2-2-2  Another example of an electric network is shown in Fig.
2-22. The voltage across the capacitor is ec(t) and the
currents of the inductors are i1(t) and i2(t), respectively.
The equations of the network are

Figure 2-22   Electrical schematic for network of Example 2-2-2.



Differentiating Eqs. (2-73) and (2-74) and substituting
Eq. (2-75), we get

Exploring the similarity of this system with that
represented in Example 2-1-4, we find the two systems
are analogous when R2 = 0—compare Eqs. (2-76) and (2-
77) with Eqs. (2-37) and (2-38). 

EXAMPLE 2-2-3  Consider the RC circuit shown in Fig. 2-23. Find the
differential equation of the system. Using the voltage
law

Figure 2-23   A simple electrical RC circuit.

where

and the voltage across the capacitor ec(t) is



But from Fig. 2-21

If we differentiate Eq. (2-81) with respect to time, we
get

or

This implies that Eq. (2-78) can be written in an input–
output form

where the τ = RC is also known as the time constant
of the system. The significance of this term is discussed
later in Chaps. 3, 6, and 7. Using this term the equation of
the system is rewritten in the form of a standard first-
order prototype system.

Notice that Eq. (2-85) is analogous to Eq. (2-8), when
M = 0. 

EXAMPLE 2-2-4  Consider the RC circuit shown in Fig. 2-24. Find the
differential equation of the system.



Figure 2-24   Simple electrical RC circuit.

As before, we have

or

But eo(t) = iR. So

is the differential equation of the system. To solve Eq.
(2-88), we differentiate once with respect to time

where, again, τ = RC is the time constant of the
system. 

EXAMPLE 2-2-5  Consider the voltage divider of Fig. 2-25. Given an input
voltage e0(t), find the output voltage e1(t) in the circuit
composed of two resistors R1 and R2.



Figure 2-25   A voltage divider.

The currents in the resistors are

Equating Eqs. (2-90) and (2-91), we have

Rearrangement of this equation yields the following
equation for the voltage divider:

The SI and most other measurement units for variables
in electrical systems are the same, as shown in Table 2-2. 

TABLE 2-2   Basic Electrical System Properties and Their Units



2-3  INTRODUCTION TO MODELING OF
THERMAL AND FLUID SYSTEMS

In this section, we review thermal and fluid systems. Knowledge of these
systems is important in many mechanical and chemical engineering control
system applications such as in power plants, fluid power control systems or
temperature control system. Because of the complex mathematics associated
with these nonlinear systems, we only focus on basic and simplified models.

2-3-1  Elementary Heat Transfer Properties3

In a thermal system, we look at transfer of heat among different
components. The two key variables in a thermal process are temperature T
and thermal storage or heat stored Q, which has the same units as energy
(e.g., J or joules in SI units). Also heat transfer systems include thermal
capacitance and resistance properties, which are analogous to same properties
mentioned in electrical systems. Heat transfer is related to the heat flow rate
q, which has the units of power. That is,



As in the electrical systems, the concept of capacitance in a heat transfer
problem is related to storage (or discharge) of heat in a body. The capacitance
C is related to the change of the body temperature T with respect to time and
the rate of heat flow q:

Capacitance in a heat transfer problem is related to storage (or
discharge) of heat in a body.

where the thermal capacitance C can be stated as a product of r material
density, c material specific heat, and volume V:

In a thermal system, there are three different ways that heat is transferred.
That is by conduction, convection, or radiation.

Conduction
Thermal conduction describes how an object conducts heat. In general this

type of heat transfer happens in solid materials due to a temperature
difference between two surfaces. In this case, heat tends to travel from the hot
to the cold region. The transfer of energy in this case takes place by molecule
diffusion and in a direction perpendicular to the object surface. Considering
one-directional steady-state heat conduction along x, as shown in Fig. 2-26,
the rate of heat transfer is given by



Figure 2-26   One-directional heat conduction flow.

where q is the rate of heat transfer (flow), k is the thermal conductivity
related to the material used, A is the area normal to the direction of heat flow
x, and ΔT = T1 – T2 is the difference between the temperatures at x = 0 and x =
l, or T1 and T2. Note in this case, assuming a perfect insulation, the heat
conduction in other directions is zero. Also note that

where R is also known as thermal resistance. So the rate of heat transfer q
may be represented in terms of R as

Thermal resistance is a property of materials to resist the flow of
heat.

Convection
This type of heat transfer occurs between a solid surface and a fluid

exposed to it, as shown in Fig. 2-27. At the boundary where the fluid and the
solid surface meet, the heat transfer process is by conduction. But once the
fluid is exposed to the heat, it can be replaced by new fluid. In thermal
convection, the heat flow is given by



Figure 2-27   Fluid-boundary heat convection.

where q is the rate of heat transfer or heat flow, h is the coefficient of
convective heat transfer, A is the area of heat transfer, and ΔT = Tb – Tf is the
difference between the boundary and fluid temperatures. The term hA may be
denoted by D0, where

Again, the rate of heat transfer q may be represented in terms of thermal
resistance R. Thus,

Radiation
The rate of heat transfer through radiation between two separate objects is

determined by the Stephan-Boltzmann law,

where q is the rate of heat transfer, σ is the Stephan-Boltzmann constant
and is equal to 5.667×10-8 W/m2.K4, A is the area normal to the heat flow, and
T1 and T1 are the absolute temperatures of the two bodies. Note that Eq. (2-
103) applies to directly opposed ideal radiators of equal surface area A that
perfectly absorb all the heat without reflection (Fig. 2-28).



Figure 2-28   A simple heat radiation system with directly opposite ideal
radiators.

The SI and other measurement units for variables in thermal systems are
shown in Table 2-3.

TABLE 2-3   Basic Thermal System Properties and Their Units

EXAMPLE 2-3-1   A rectangular object is composed of a material that is in
contact with fluid on its top side while being perfectly
insulated on three other sides, as shown in Fig. 2-29.
Find the equations of the heat transfer process for the
following:



Figure 2-29   Heat transfer problem between a fluid and an insulated solid
object.

Tl = solid object temperature; assume that the
temperature distribution is uniform
Tf = top fluid temperature
ℓ = length of the object
A = cross-sectional area of the object
p = material density
c = material specific heat
k = material thermal conductivity
h = coefficient of convective heat transfer

SOLUTION   The rate of heat storage in the solid from Eq. (2-95) is

Also, the convection rate of heat transferred from the fluid is

The energy balance equation for the system dictates q to be the same in
Eqs. (2-104) and (2-105). Hence, upon introducing thermal capacitance C
from Eq. (2-95) and the convective thermal resistance R from Eq. (2-99) and
substituting the right-hand sides of Eq. (2-104) into Eq. (2-105), we get



where the RC = τ is also known as the time constant of the system. Notice
that Eq. (2-106) is analogous to the electrical system modeled by Eq. (2-84). 

2-3-2 Elementary Fluid System Properties4

In this section, we derive the equations of fluid systems. The key
application in control systems associated with fluid systems is in the area of
fluid power control. Understanding the behavior of fluid systems will help
appreciating the models of hydraulic actuators. In fluid systems, there are five
parameters of importance—pressure, flow mass (and flow rate), temperature,
density, and flow volume (and volume rate). Our focus will primarily be on
incompressible fluid systems because of their application to elements of
popular industrial control systems such as hydraulic actuators and dampers.
In case of incompressible fluids, the fluid volume remains constant, and just
like electrical systems, they can be modeled by passive components including
resistance, capacitance, and inductance.

For an incompressible fluid, density ρ is constant, and the fluid
capacitance C is the ratio of the volumetric fluid flow rate q to the rate
of pressure P.

To understand these concepts better, we must look at the fluid continuity
equation or the law of conservation of mass. For the control volume shown
in Fig. 2-30 and the net mass flow rate qm = ρq, we have

Figure 2-30   Control volume and the net mass flow rate.



where m is the net mass flow, ρ is fluid density,  is the net
volumetric fluid flow rate (volume flow rate of the ingoing fluid qi minus
volume flow rate of the outgoing fluid qo). The conservation of mass states

where m is the net mass flow rate, Mcv is the mass of the control volume (or
for simplicity “the container” fluid), and V is the container volume. Note

which is also known as the conservation of volume for the fluid. For an
incompressible fluid, ρ is constant. Hence setting ρ = 0 in Eq. (2-109), the
conservation of mass for an incompressible fluid is

Capacitance—Incompressible Fluids
Similar to the electrical capacitance, fluid capacitance relates to how

energy can be stored in a fluid system. The fluid capacitance C is the
change in the fluid volume that is stored over the pressure change.
Alternatively capacitance is defined as the ratio of the volumetric fluid flow
rate q to the rate of pressure P as follows:

or



EXAMPLE 2-3-2  In a one-tank liquid-level system, the fluid pressure in the
tank that is filled to height h (also known as head),
shown in Fig. 2-31, is the weight of the fluid over the
cross-sectional area, or

Figure 2-31   Incompressible fluid flow into an open-top cylindrical
container.

As a result, from Eqs. (2-112) and noting V = Ah, we
get

In general, the fluid density ρ is nonlinear and may depend on
temperature and pressure. This nonlinear dependency ρ(P,T), known as the
equation of state, may be linearized using the first-order Taylor series
relating r to P and T:

where ρref, Pref, and Tref are constant reference values of density, pressure, and
temperature, respectively. In this case,



are the bulk modulus and the thermal expansion coefficient,
respectively. In most cases of interest, however, the temperatures of the fluid
entering and flowing out of the container are almost the same. Hence
recalling the control volume in Fig. 2-30, the conservation of mass Eq. (2-
108) reflects both changes in volume and density as

If the container of volume V is a rigid object, V = 0. Hence,

Substituting the time derivative of Eq. (2-116), assuming no temperature
dependency, into Eq. (2-120) and using Eq. (2-117), the capacitance relation
may be obtained as

In general, density may depend on temperature and pressure. In the
latter case, the fluid is considered to be compressible.

Note that  was used to arrive at Eq. (2-121). As a result in
the case of a compresible fluid inside a rigid object, the capacitance is



EXAMPLE 2-3-3  In practice, accumulators are fluid capacitors, which may
be modeled as a spring-loaded piston systems as
shown in Fig. 2-32. In this case, assuming a spring-
loaded piston of area A traveling inside a rigid
cylindrical container, using the conservation of mass
Eq. (2-119) for compressible fluids, we get

Figure 2-32   A spring-loaded piston system.

Assuming a compressible fluid with no temperature
dependency, taking a time derivative of Eq. (2-116) and
using Eq. (2-117), we have

Combining Eqs. (2-123) and (2-124) and using Eq. (2-
122), the pressure rise rate within the varying control
volume of Fig. 2-42 is shown as

where . This equation reflects that the rate of



change of pressure inside a varying control volume is
related to the entering fluid volumetric flow rate and the
rate of change of chamber volume itself. 

Inductance—Incompressible Fluids
Fluid inductance is also referred to as fluid inertance in relation to the

inertia of a moving fluid inside a passage (line or a pipe). Inertance occurs
mainly in long lines, but it can also occur where an external force (e.g.,
caused by a pump) causes a significant change in the flow rate. In the case
shown in Fig. 2-33, assuming a frictionless pipe with a uniform fluid flow
moving at the speed v, in order to accelerate the fluid, an external force F is
applied. From Newton’s second law,

Inductance (or inertance) occurs mainly in long pipes or where an
external force causes a significant change in the flow rate.

Figure 2-33   A uniform incompressible fluid flow forced through a
frictionless pipe.

But

So

where



is known as the fluid inductance. Note that the concept of inductance is
rarely discussed in the case of compressible fluids and gasses.

Resistance—Incompressible Fluids
As in the electrical systems, fluid resistors dissipate energy. However,

there is no unique definition for this term. In this textbook, we adopt the most
common term, which relates fluid resistance to pressure change. For the
system shown in Fig. 2-34, the force resisting the fluid passing through a
passage like a pipe is

Figure 2-34   Flow of an incompressible fluid through a pipe and a fluid
resistor R.

In this textbook, fluid resistance relates the pressure drop to the
volumetric flow rate q.

where ΔP = P1 – P2 is the pressure drop and A is the cross-sectional area of
the pipe. Depending on the type of flow (i.e., laminar or turbulent) the fluid
resistance relationship can be linear or nonlinear and relates the pressure drop
to the volumetric flow rate q. For a laminar flow, we define

where q is the volume flow rate. Table 2-4 shows resistance R for various



passage cross sections, assuming a laminar flow.

TABLE 2-4   Equations of Resistance R for Laminar Flows





When the flow becomes turbulent, the pressure drop relation Eq. (2-131)
is rewritten as

where RT is the turbulent resistance and n is a power varying depending on
the boundary used—for example, n = 7/4 for a long pipe and, most useful, n
= 2 for a flow through an orifice or a valve.

In order to get a sense of the laminar and turbulent flows and their
corresponding resistance terms, you may wish to conduct a simple
experiment by applying a force on the plunger syringe filled with water. If
you push the plunger with a gentle force, the water is expelled easily from the
other end through the syringe orifice. However, application of a strong force
would cause a strong resistance. In the former case, you encounter a mild
resistance due to the laminar flow, while in the latter case the resistance is
high because of the turbulent flow.

EXAMPLE 2-3-4  For the liquid-level system shown in Fig. 2-35, water or
any incompressible fluid (i.e., fluid density r is
constant) enters the tank from the top and exits
through the valve with resistance R in the bottom. The
fluid height (also known as head) in the tank is h and
is variable. The valve resistance is R. Find the system
equation for the input, qi, and output, h.

A One-Tank Liquid-Level System



Figure 2-35   A single-tank liquid-level system.

SOLUTION  The conservation of mass suggests

where ρqi and ρqo are the mass flow rate in and out of
the valve, respectively. Because the fluid density ρ is a
constant, the conservation of volume also applies, which
suggests the time rate of change of the fluid volume
inside the tank is equal to the difference of incoming and
outgoing flow rates.

Recall from Eq. (2-112) the tank fluid capacitance is

where P is the rate of change of fluid pressure at the
outlet valve. From Eq. (2-132), resistance R at the valve,
assuming a laminar flow, is defined as

where ΔP = Po – Patm is the pressure drop across the
valve. Relating the pressure to fluid height h, which is
variable, we get

where Po is in the pressure at the valve and Patm is the
atmospheric pressure. Hence, from Eq. (2-137), we
obtain



After combining Eqs. (2-134) and (2-139), and using
the relationship for capacitance from Eq. (2-136), we get
the system equation

Or using Eq. (2-139) we can also find the system
equation in terms of the volumetric flow rate

where system time constant is τ = RC. This system is
analogous to the electrical system represented by Eq. (2-
85). 

EXAMPLE 2-3-5  The liquid-level system shown in Fig. 2-36 is the same as
that in Fig. 2-35, except the drainage pipe is long with
the length of ℓ.

Figure 2-36   A single-tank liquid-level system.

In this case the pipe will have the following inductance

As in the previous example, at the valve the resistance



is

And the tank fluid capacitance is the same as Example
2-3-4:

Substituting Eq. (2-143) into Eq. (2-142) and using P1

= Patm + ρgh, we get

But from the conservation of volume we also have

Differentiating Eq. (2-145) we can modify Eq. (2-146)
in terms of input, qi, and output, qo. That is,

Using the capacitance formula in Eq. (2-144), Eq. (2-
147) is modified to

EXAMPLE 2-3-6  Consider a double-tank system, as shown in Fig. 2-37,
with h1 and h1 representing the two tank heights and R1

and R2 representing the two valve resistances,
respectively. We label the pressure in the bottom of
tanks 1 and 2 as P1 and P2, respectively. Further, the



pressure at the outlet of tank 2 is P3 = Patm. Find the
differential equations.

A Two-Tank Liquid-Level System

Figure 2-37   Two-tank liquid-level system.

SOLUTION   Using the same approach as Example 2-
3-4, it is not difficult to see for tank 1:

and for tank 2:

Thus, the equations of the system are



The SI and other measurement units for variables in fluid systems are
tabulated in Table 2-5.

TABLE 2-5   Basic Fluid System Properties and Their Units

2-4  LINEARIZATION OF NONLINEAR
SYSTEMS

From the discussions given in the preceding sections on basic system
modeling, we should realize that most components found in physical systems
have nonlinear characteristics. In practice, we may find that some devices
have moderate nonlinear characteristics, or nonlinear properties that would
occur if they were driven into certain operating regions. For these devices, the
modeling by linear-system models may give quite accurate analytical results
over a relatively wide range of operating conditions. However, there are
numerous physical devices that possess strong nonlinear characteristics. For
these devices, a linearized model is valid only for limited range of operation
and often only at the operating point at which the linearization is carried out.
More importantly, when a nonlinear system is linearized at an operating
point, the linear model may contain time-varying elements.

2-4-1  Linearization Using Taylor Series: Classical
Representation

In general, Taylor series may be used to expand a nonlinear function f



(x(t)) about a reference or operating value x0(t). An operating value could be
the equilibrium position in a spring-mass-damper, a fixed voltage in an
electrical system, steady-state pressure in a fluid system, and so on. A
function f (x(t)) can therefore be represented in a form

where the constant ci represents the derivatives of f (x(t)) with respect to
x(t) and evaluated at the operating point x0(t). That is,

Or

If Δ(x) = x(t) – x0(t) is small, the series Eq. (2-155) converges, and a
linearization scheme may be used by replacing f (x(t)) with the first two terms
in Eq. (2-155). That is,

The following examples serve to illustrate the linearization procedure just
described.

EXAMPLE 2-4-1  Find the equation of motion of a simple (ideal) pendulum
with a mass m and a massless rod of length ℓ, hinged
at point O, as shown in Fig. 2-38.



Figure 2-38   (a) A simple pendulum. (b) Free-body diagram of mass m.

SOLUTION   Assume the mass is moving in the
positive direction as defined by angle θ. Note that θ is
measured from the x axis in the counterclockwise
direction. The first step is to draw the free-body diagram
of the components of the system, that is, mass and the
rod, as shown in Fig. 2-38b. For the mass m, the
equations of motion are

where Fx and Fy are the external forces applied to mass
m, and ax and ay are the components of acceleration of
mass m along x and y, respectively. If the position vector
from point O to mass m is designated by vector R,
acceleration of mass m is the second time derivative of R,
and is a vector a with tangential and centripetal
components. Using the rectangular coordinate frame (x,
y) representation, acceleration vector is



where  and  are the unit vectors along x and y
directions, respectively. As a result,

Considering the external forces applied to mass, we
have

Equations (2-241) and (2-242) may therefore be
rewritten as

Premultiplying Eq. (2-164) by (–sinθ) and Eq. (2-165)
by (cosθ) and adding the two, we get

where

After rearranging, Eq. (2-167) is rewritten as

or



In brief, using static equilibrium position θ = 0 as the
operating point, for small motions the linearization of the
system implies θ ≈ θ as shown in Fig. 2-39.

Figure 2-39   Linearization of θ ≈ θ about θ = 0 operating point.

Hence, the linear representation of the system is 

where  rad/s is the natural frequency of the
linearized model. 

EXAMPLE 2-4-2  For the pendulum shown in Fig. 2-38, rederive the
differential equation using the moment equation.

SOLUTION   The free-body diagram for the moment
equation is shown in Fig. 2-38b. Applying the moment
equation about the fixed point O,



Rearranging the equation in the standard input–output
differential equation form,

or

which is the same result obtained previously. For small
motions, as in the Example 2-4-1,

The linearized differential equations is

where, as before

2-5  ANALOGIES
In this section, we demonstrate the similarities among mechanical, thermal,

and fluid systems with electrical networks. As an example, let us compare
Eqs. (2-10) and (2-71). It is not difficult to see that the mechanical system in
Fig. 2-2 is analogous to a series RLC electric network shown in Fig. 2-21.
These systems are shown in Fig. 2-40. In order to exactly see how
parameters, M, B, and K are related to R, L, and C; or how the variables y(t)
and f (t) are related to i(t) and e(t), we need to compare Eqs. (2-8) and (2-59).



Thus,

Figure 2-40   Analogy of a spring-mass-damper system to a series RLC
network. (a) A spring-mass-damper system. (b) A series RLC equivalent.

Using a force-voltage analogy, the spring-mass-damper system in
Fig. 2-2 is analogous to a series RLC electric network shown in Fig. 2-
19.

This comparison is more properly made upon integrating Eq. (2-177) with
respect to time. That is,

where v(t) represents the velocity of mass m. As a result, with this
comparison, mass M is analogous to inductance L, the spring constant K is
analogous to the inverse of capacitance 1/C, and the viscous-friction
coefficient B is analogous to resistance R. Similarly, v(t) and f (t) are
analogous to i(t) and e(t), respectively. This type of analogy is also known as



force-voltage analogy. Similar assessment can be made by comparing the
rotational system in Eq. (2-32) with the RLC network of Example 2-4-1.

Using a parallel RLC network with current as a source, some literature use
a force-current analogy that is not discussed here.5 Comparing the thermal,
fluid, and electrical systems, similar analogies may be obtained, as shown in
Table 2-6.

TABLE 2-6   Mechanical, Thermal, and Fluid Systems and Their
Electrical Equivalents



EXAMPLE 2-5-1  For the liquid-level system shown in Fig. 2-35,  is

the capacitance and  is the resistance. As a
result, system time constant is τ = RC.

A One-Tank Liquid-Level System



SOLUTION   In order to design a speed, position, or
any type of control system, the first task at hand is to
arrive at a mathematical model of the system. This will
help us to “properly” develop the best controller for the
required task (e.g., proper positioning of the arm in a pick
and place operation).

A general advice is to use the simplest model you can
that is “good enough!” In this case, we can assume the
effective mass of the arm and the mass of payload are
concentrated at the end of a massless rod, as shown in
Fig. 2-41. You can experimentally arrive at what mass m
in your model should be. See App. D for details.

Figure 2-41   One-degree-of-freedom arm with required components.

As in Example 2-2-1, is moving in the positive
direction as defined by angle θ. Note that θ is measured
from the x axis in the counterclockwise direction. For the
mass m, the equations of motion may be obtained by
taking a moment about point O, we get

where T is the external torque applied by the motor to
accelerate the mass.

In Chap. 6, we significantly augment this model by
adding the model of the motor. 



2-6  PROJECT: INTRODUCTION TO LEGO
MINDSTORMS NXT MOTOR—MECHANICAL
MODELING

This section provides a simple, yet practical, project for you to better
appreciate the theoretical concepts that have been discussed so far.

The goal of this project is further to build a one-degree-of-freedom robot
using the LEGO MINDSTORMS NXT motor, shown in Fig. 2-42, and to
arrive at the mathematical model of the mechanical one-degree of freedom
arm. This example is followed through in Chaps. 6, 7, 8, and 11. The detailed
discussion on this topic is provided in App. D, with the objective to provide
you with a series of experiments for measuring a dc motor’s electrical and
mechanical properties, and ultimately, to create a mathematical model for
the motor and the robot arm shown in Fig. 2-42 for controller design
purposes.

The first objective of this project is to help you better understand how
to measure a dc motor’s electrical and mechanical characteristics and
ultimately create a model for the motor.



Figure 2-42   A simplified model of a one-degree-of-freedom robotic arm.

As shown in Fig. 2-42, the components of our robotic system include an
NXT brick, an NXT motor, and several LEGO pieces found in the basic
LEGO MINDSTORMS kit, which are used here to construct a one-degree-of-
freedom arm. The arm is to pick up a payload and drop it into the cup, which
is located at a specified angle while data are sampled in Simulink.
Programming is done on the host computer using Simulink and is uploaded
on to the NXT brick via USB interface. The brick then provides both power



and control to the arm via the NXT cables. Additionally, there is an optical
encoder located behind the motor which measures the rotational position of
the output shaft with one-degree resolution. The host computer samples
encoder data from the NXT brick via a Bluetooth connection. In order for the
host computer to recognize the NXT brick, the host computer must be paired
with the NXT brick when setting up the Bluetooth connection.6

2-7  SUMMARY
This chapter is devoted to the mathematical modeling of basic dynamic

systems, including various examples of mechanical, electrical, thermal, and
fluid systems. Using the basic modeling principles such as Newton’s second
law of motion, Kirchhoff’s law, or conservation of mass the model of these
dynamic systems are represented by differential equations, which may be
linear or nonlinear. However, due to space limitations and the intended scope
of this text, only some of the physical devices used in practice are described.

Because nonlinear systems cannot be ignored in the real world, and this
book is not devoted to the subject, we introduced the linearization of
nonlinear systems at a nominal operating point. Once the linearized model is
determined, the performance of the nonlinear system can be investigated
under the small-signal conditions at the designated operating point.

Finally, in this chapter we establish analogies between mechanical,
thermal, and fluid systems with equivalent electrical networks.
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PROBLEMS
PROBLEMS FOR SEC. 2-1
2-1.    Find the equation of the motion of the mass-spring system shown in

Fig. 2P-1. Also calculate the natural frequency of the system.

Figure 2P-1

2-2.    Find its single spring-mass equivalent in the five-spring one-mass
system shown in Fig. 2P-2. Also calculate the natural frequency of the
system.



Figure 2P-2

2-3.    Find the equation of the motion for a simple model of a vehicle
suspension system hitting a bump. As shown in Fig. 2P-3, the mass of wheel
and its mass moment of inertia are m and J, respectively. Also calculate the
natural frequency of the system.

Figure 2P-3

2-4.    Write the force equations of the linear translational systems shown
in Fig. 2P-4.



Figure 2P-4

2-5.    Write the force equations of the linear translational system shown in
Fig. 2P-5.



Figure 2P-5

2-6.    Consider a train consisting of an engine and a car, as shown in Fig.
2P-6.

Figure 2P-6

A controller is applied to the train so that it has a smooth start and stop,
along with a constant-speed ride. The mass of the engine and the car are M
and m, respectively. The two are held together by a spring with the stiffness
coefficient of K. F represents the force applied by the engine, and m
represents the coefficient of rolling friction. If the train only travels in one
direction:

(a)   Draw the free-body diagram.



(b)   Find the equations of motion.

2-7.    A vehicle towing a trailer through a spring-damper coupling hitch is
shown in Fig. 2P-7. The following parameters and variables are defined: M is
the mass of the trailer; Kh, the spring constant of the hitch; Bh, the viscous-
damping coefficient of the hitch; Bt, the viscous-friction coefficient of the
trailer; y1(t), the displacement of the towing vehicle; y2(t), the displacement of
the trailer; and f (t), the force of the towing vehicle.

Figure 2P-7

Write the differential equation of the system.

2-8.    Assume that the displacement angles of the pendulums shown in
Fig. 2P-8 are small enough that the spring always remains horizontal. If the
rods with the length of L are massless and the spring is attached to the rods ⅞
from the top, find the state equation of the system.

Figure 2P-8



2-9.    (Challenge Problem) Figure 2P-9 shows an inverted pendulum on a
cart.

Figure 2P-9

If the mass of the cart is represented by M and the force f is applied to hold
the bar at the desired position, then

(a)   Draw the free-body diagram.
(b)   Determine the dynamic equation of the motion.

2-10.    (Challenge Problem) A two-stage inverted pendulum on a cart is
shown in Fig. 2P-10.



Figure 2P-10

If the mass of the cart is represented by M and the force f is applied to hold
the bar at the desired position, then

(a)   Draw the free-body diagram of mass M.
(b)   Determine the dynamic equation of the motion.

2-11.    (Challenge Problem) Figure 2P-11 shows a well-known “ball and
beam” system in control systems. A ball is located on a beam to roll along the
length of the beam. A lever arm is attached to the one end of the beam and a
servo gear is attached to the other end of the lever arm. As the servo gear
turns by an angle θ, the lever arm goes up and down, and then the angle of
the beam is changed by α. The change in angle causes the ball to roll along
the beam. A controller is desired to manipulate the ball’s position.



Figure 2P-11

Assuming:
m = mass of the ball
r = radius of the ball
d = lever arm offset
g = gravitational acceleration
L = length of the beam
J = ball’s moment of inertia
p = ball position coordinate
α = beam angle coordinate
θ = servo gear angle

Determine the dynamic equation of the motion.

2-12.    The motion equations of an aircraft are a set of six nonlinear
coupled differential equations. Under certain assumptions, they can be
decoupled and linearized into the longitudinal and lateral equations. Figure
4P-12 shows a simple model of airplane during its flight. Pitch control is a
longitudinal problem, and an autopilot is designed to control the pitch of the
airplane.



Figure 2P-12

Consider that the airplane is in steady-cruise at constant altitude and
velocity, which means the thrust and drag cancel out and the lift and weight
balance out each other. To simplify the problem, assume that change in pitch
angle does not affect the speed of an aircraft under any circumstance.

Determine the longitudinal equations of motion of the aircraft.

2-13.    Write the torque equations of the rotational systems shown in Fig.
2P-13.



Figure 2P-13

2-14.    Write the torque equations of the gear-train system shown in Fig.
2P-14. The moments of inertia of gears are lumped as J1, J2, and J3. Tm(t) is the
applied torque; N1, N2, N3, and N4 are the number of gear teeth. Assume rigid
shafts.

(a)   Assume that J1, J2, and J3 are negligible. Write the torque equations of
the system. Find the total inertia the motor sees.

(b)   Repeat part (a) with the moments of inertia J1, J2, and J3.



Figure 2P-14

2-15.    Figure 2P-15 shows a motor-load system coupled through a gear
train with gear ratio n = N1/N2. The motor torque is Tm(t), and TL(t) represents a
load torque.

(a)   Find the optimum gear ratio n* such that the load acceleration αL =
d2θL/dt2 is maximized.

(b)   Repeat part (a) when the load torque is zero.

Figure 2P-15

2-16.    Figure 2P-16 shows the simplified diagram of the printwheel



control system of a word processor. The printwheel is controlled by a dc
motor through belts and pulleys. Assume that the belts are rigid. The
following parameters and variables are defined: Tm(t) is the motor torque;
θm(t), the motor displacement; y(t), the linear displacement of the printwheel;
Jm, the motor inertia; Bm, the motor viscous-friction coefficient; r, the pulley
radius; M, the mass of the printwheel.

Write the differential equation of the system.

Figure 2P-16

2-17.    Figure 2P-17 shows the diagram of a printwheel system with belts
and pulleys. The belts are modeled as linear springs with spring constants K1

and K2.

Write the differential equations of the system using θm and y as the
dependent variables.

Figure 2P-17

2-18.    Classically, the quarter-car model is used in the study of vehicle
suspension systems and the resulting dynamic response due to various road



inputs. Typically, the inertia, stiffness, and damping characteristics of the
system as illustrated in Fig. 2P-18a are modeled in a two-degree of freedom
(2-DOF) system, as shown in Fig. 2P-18b. Although a 2-DOF system is a
more accurate model, it is sufficient for the following analysis to assume a 1-
DOF model, as shown in 2P-18c.

Find the equations of motion for absolute motion x and the relative motion
(bounce) z = x − y.

Figure 2P-18    Quarter-car model realization. (a) Quarter car. (b) Two
degrees of freedom. (c) One degree of freedom.

2-19.    The schematic diagram of a motor-load system is shown in Fig. 2P-
19. The following parameters and variables are defined: Tm(t), the motor
torque; ωm(t), the motor velocity; θm(t), the motor displacement; ωL(t), the load
velocity; θL(t), the load displacement; K, the torsional spring constant; Jm, the
motor inertia; Bm, the motor viscous-friction coefficient; and BL, the load
viscous-friction coefficient.

Write the torque equations of the system.



Figure 2P-19

2-20.   This problem deals with the attitude control of a guided missile.
When traveling through the atmosphere, a missile encounters aerodynamic
forces that tend to cause instability in the attitude of the missile. The basic
concern from the flight-control standpoint is the lateral force of the air, which
tends to rotate the missile about its center of gravity. If the missile centerline
is not aligned with the direction in which the center of gravity C is traveling,
as shown in Fig. 2P-20, with angle θ, which is also called the angle of attack,
a side force is produced by the drag of the air through which the missile
travels. The total force Fα may be considered to be applied at the center of
pressure P. As shown in Fig. 2P-20, this side force has a tendency to cause
the missile to tumble end over end, especially if the point P is in front of the
center of gravity C. Let the angular acceleration of the missile about the point
C, due to the side force, be denoted by αF. Normally, αF is directly
proportional to the angle of attack θ and is given by

Figure 2P-20



The main objective of the flight-control system is to provide the stabilizing
action to counter the effect of the side force. One of the standard control
means is to use gas injection at the tail of the missile to deflect the direction
of the rocket engine thrust Ts, as shown in Fig. 2P-20.

(a)   Write a torque differential equation to relate among Ts, δ, θ, and the
system parameters given. Assume that δ is very small, so that sin δ(t) is
approximated by δ(t).

(b)   Repeat parts (a) with points C and P interchanged. The d1 in the
expression of αF should be changed to d2.

2-21.    Figure 2P-21a shows a well-known “broom-balancing” system in
control systems. The objective of the control system is to maintain the broom
in the upright position by means of the force u(t) applied to the car as shown.
In practical applications, the system is analogous to a one-dimensional
control problem of the balancing of a unicycle or a missile immediately after
launching. The free-body diagram of the system is shown in Fig. 2P-21b,
where



Figure 2P-21

•   fx = force at broom base in horizontal direction
•   fy = force at broom base in vertical direction
•   Mb = mass of broom
•   g = gravitational acceleration
•   Mc = mass of car
•   Jb = moment of inertia of broom about center of gravity CG = MbL2/3

(a)   Write the force equations in the x and the y directions at the pivot
point of the broom. Write the torque equation about the center of gravity CG
of the broom. Write the force equation of the car in the horizontal direction.

(b)   Compare your results with those in Prob. 2-9.

2-22.    Most machines and devices have rotating parts. Even a small
irregularity in the mass distribution of rotating components can cause
vibration, which is called rotating unbalanced. Figure 2P-22 represents the
schematic of a rotating unbalanced mass of m. Assume that the frequency of
rotation of the machine is ω.

Derive the equations of motion of the system.

Figure 2P-22



2-23.    Vibration absorbers are used to protect machines that work at the
constant speed from steady-state harmonic disturbance. Figure 2P-23 shows a
simple vibration absorber.

Figure 2P-23

Assuming the harmonic force F(t) = Asin(ωt) is the disturbance applied to
the mass M, derive the equations of motion of the system.

2-24.    Figure 2P-24 represents a vibration absorption system.

Assuming the harmonic force F(t) = Asin(ωt) is the disturbance applied to
the mass M, derive the equations of motion of the system.



Figure 2P-24

2-25.    An accelerometer is a transducer as shown in Fig. 2P-25.

Find the dynamic equation of motion.

Figure 2P-25

PROBLEMS FOR SEC. 2-2
2-26.    Consider the electrical circuits shown in Fig. 2P-26a and b.



Figure 2P-26

For each circuit find the dynamic equations.

2-27.   In a strain gauge circuit, the electrical resistance in one or more of
the branches of the bridge circuit, shown in Fig. 2P-27, varies with the strain
of the surface to which it is rigidly attached to. The change in resistance
results in a differential voltage that is related to the strain. The bridge is
composed of two voltage dividers, so the differential voltage Δe can be
expressed as the difference in e1 and e2.



Figure 2P-27

(a)   Find Δe.
(b)   If the resistance R2 is has a fixed value of , plus a small increment in

resistance, δR, then . For equal resistance values (R1 = R3 = R4 =  =
R), rewrite the bridge equation (i.e., for Δe).

2-28.   Figure 2P-28 shows a circuit made up of two RC circuits. Find the
dynamic equations of the system.

Figure 2P-28

2-29.   For the Parallel RLC Circuit, shown in Fig. 2P-29, find the dynamic
equations of the system.

Figure 2P-29

PROBLEMS FOR SEC. 2-3

2-30.   Hot oil forging in quenching vat with its cross-sectional view is
shown in Fig. 2P-30.



Figure 2P-30

The radii shown in Fig. 20-30 are r1, r2, and r3 from inside to outside. The
heat is transferred to the atmosphere from the sides and bottom of the vat and
also the surface of the oil with a convective heat coefficient of ko. Assuming:

kv = thermal conductivity of the vat
ki = thermal conductivity of the insulator
co = specific heat of the oil
do = density of the oil
c = specific heat of the forging
m = mass of the forging
A = surface area of the forging
h = thickness of the bottom of the vat
Ta = ambient temperature

Determine the system model when the temperature of the oil is desired.

2-31.   A power supply within an enclosure is shown in Fig. 2P-31.
Because the power supply generates lots of heat, a heat sink is usually
attached to dissipate the generated heat. Assuming the rate of heat generation
within the power supply is known and constant, Q, the heat transfers from the
power supply to the enclosure by radiation and conduction, the frame is an
ideal insulator, and the heat sink temperature is constant and equal to the
atmospheric temperature, determine the model of the system that can give the
temperature of the power supply during its operation. Assign any needed
parameters.



Figure 2P-31

2-32.   Figure 2P-32 shows a heat exchanger system.

Figure 2P-32

Assuming the simple material transport model represents the rate of heat
energy gain for this system, then

where m represents the mass flow, T1 and T2 are the entering and leaving
fluid temperature, and c shows the specific heat of fluid.

If the length of the heat exchanger cylinder is L, derive a model to give the
temperature of fluid B leaving the heat exchanger. Assign any required
parameters, such as radii, thermal conductivity coefficients, and the



thickness.

2-33.   Vibration can also be exhibited in fluid systems. Figure 2P-33
shows a U-tube manometer.

Figure 2P-33

Assume the length of fluid is L, the weight density is m, and the cross-
section area of the tube is A.

(a)   Write the state equation of the system.
(b)   Calculate the natural frequency of oscillation of the fluid.

2-34.   A long pipeline connects a water reservoir to a hydraulic generator
system as shown in Fig. 2P-34.



Figure 2P-34

At the end of the pipeline, there is a valve controlled by a speed controller.
It may be closed quickly to stop the water flow if the generator loses its load.
Determine the dynamic model for the level of the surge tank. Consider the
turbine-generator is an energy converter. Assign any required parameters.

2-35.   A simplified oil well system is shown in Fig. 2P-35. In this figure,
the drive machinery is replaced by the input torque, Tin(t). Assuming the
pressure in the surrounding rock is fixed at P and the walking beam moves
through small angles, determine a model for this system during the upstroke
of the pumping rod.



Figure 2P-35

2-36.   Figure 2P-36 shows a two-tank liquid-level system. Assume that Q1

and Q2 are the steady-state inflow rates, and H1 and H2 are steady-state heads.
If the other quantities shown in Fig. 2P-36 are supposed to be small, derive
the state-space model of the system when h1 and h2 are outputs of the system
and qi1 and qi2 are the inputs.



Figure 2P-36

PROBLEMS FOR SEC. 2-4

2-37.   Figure 2P-37 shows a typical grain scale.

Assign any required parameters.
(a)   Find the free-body diagram.
(b)   Derive a model for the grain scale that determines the waiting time for

the reading of the weight of grain after placing on the scale platform.
(c)   Develop an analogous electrical circuit for this system.



Figure 2P-37

2-38.   Develop an analogous electrical circuit for the mechanical system
shown in Fig. 2P-38.

Figure 2P-38



2-39.   Develop an analogous electrical circuit for the fluid hydraulic
system shown in Fig. 2P-39.

Figure 2P-39

PROBLEMS FOR SEC. 2-5
See Chap. 3 for more linearization problems.

1In more complex applications, advanced modeling topics such as Lagrange’s approach may be used
as alternatives to Newton’s modeling approach.

2Rotations about an arbitrary axis or an axis passing through the rigid body center of mass are
represented by different equations. The reader should refer to a textbook on dynamics of rigid bodies
for a more detailed exposure to this topic.

3For more in-depth study of this subject, refer to Refs. 1 to 7.
4For a more in-depth study of this subject, refer to Refs. 1 to 7.
5In a force-current analogy, f(t) and v(t) are analogous to i(t) and e(t), respectively, while M, K, and

B are analogous to C, 1/L, and 1/R, respectively.
6For instructions on setting up the Bluetooth connection, visit

http://www.mathworks.com/matlabcentral/fileexchange/35206-simulink-support-package-for-lego-
mindstorms-nxt-hardware/content/lego/legodemos/html/publish_lego_communication.html#4.

http://http://www.mathworks.com/matlabcentral/fileexchange/35206-simulink-support-package-for-lego-mindstorms-nxt-hardware/content/lego/legodemos/html/publish_lego_communication.html#4


CHAPTER 3



Solution of Differential Equations of
Dynamic Systems

Before starting this chapter, the reader is encouraged to refer to App. B to
review the theoretical background related to complex variables.

As mentioned in Chap. 2, the design process of a control system starts with
development of a mathematical model of the system, represented by
differential equations. In this textbook, as in many conventional control
engineering applications, we consider systems that are modeled by ordinary
differential equations—as opposed to partial differential equations.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Convert linear time-invariant ordinary differential equations into the
Laplace domain.
2.  Find the transfer function, poles and zeros of differential equations,
represented in the Laplace domain.
3.  Find the response of linear time-invariant differential equations using
inverse Laplace transforms.
4.  Understand the behavior of first and prototype second-order
differential equations.
5.  Find the state space representation of linear time-invariant
differential equations.
6.  Find the response of state space equations using inverse Laplace
transforms.
7.  Find transfer functions using the state space approach.
8.  Find the state space representation, from the transfer function of the
system.



Once we obtain the equations of the system, we need to develop a set of
analytical and numerical tools that can assist us with a clear understanding of
the performance of the system. This is an important step in advance of
extending the design of a control system to a prototype or the actual system.
Two most common tools for studying the behavior of (i.e., the solution of) a
control system are the transfer function and the state-variable methods.
Transfer functions are based on the Laplace transform technique and are valid
only for linear time-invariant systems, whereas the state equations can be
applied to linear as well as nonlinear systems.

In this chapter, we review ordinary time-invariant differential equations
and how they are treated utilizing the Laplace transforms or the state space
approach. The main objectives of this chapter are

•   To review ordinary time-invariant differential equations.
•   To review the fundamentals of Laplace transforms.
•   To demonstrate the applications of Laplace transforms to solve linear
ordinary differential equations.
•   To introduce the concept of transfer functions and how to apply them
to the modeling of linear time-invariant systems.
•   To introduce state space systems.
•   To provide examples on how Laplace transforms and state space
systems are used to solve differential equations.

Because some of these topics are considered as review material for the
reader, the treatment of these subjects will not be exhaustive. Additional
supplemental material can be found in appendices.

3-1  INTRODUCTION TO DIFFERENTIAL
EQUATIONS

As discussed in Chap. 2, a wide range of systems in engineering are
modeled mathematically by differential equations. These equations generally
involve derivatives (or integrals) of the dependent variables with respect to
the independent variable—usually time. For instance, as shown in Sec. 2-2-2,
a series electric RLC (resistance-inductance-capacitance) network, shown in
Fig. 3-1a, can be represented by the differential equation:



Figure 3-1   (a) A series RLC network. (b) A spring-mass-damper system.

or alternatively,

Similarly from Sec. 2-1-1, a simple mass-spring-dashpot mechanism,
shown in Fig. 3-1b, may be modeled using the Newton’s second law as

Recall from Chap. 2 that these two systems are analogous, and they can
both be represented by a standard prototype second-order system of the
form:

3-1-1  Linear Ordinary Differential Equations
In general, the differential equation of an nth-order system is written as



which is also known as a linear ordinary differential equation if the
coefficients a0,a1,...,an–1 and b0,b1,...,bm are real constants and are not functions
of y(t). In control systems, the terms u(t) and y(t) are known as the input and
the output of the system, respectively, for t ≥ t0. Note that, in general, there
may be more than one input function applied to Eq. (3-5). But since the
system is linear, we can utilize the principle of superposition and study the
effect of each input on the system separately.

A first-order linear ordinary differential equation is therefore in the general
form

and the second-order general form of a linear ordinary differential equation
is

In this text, we primarily study systems represented by ordinary differential
equations. As we saw, in Chap. 2, there are systems—for example, fluid and
heat transfer systems—that are actually modeled by partial differential
equations. In that case, these system equations are modified—under special
circumstances such as restricting the fluid flow in one direction—and are
converted into ordinary differential equations.

3-1-2  Nonlinear Differential Equations
Many physical systems are nonlinear and must be described by nonlinear

differential equations. For instance, the differential equation describing the
motion of a pendulum of mass m and length ℓ, Eq. (2-169), is



Because in Eq. (3-8), sinθ(t) is nonlinear, the system is a nonlinear
system. In order to be able to treat a nonlinear system, in most engineering
practices, the corresponding equations are linearized, about a certain
operating point, and are converted into a linear ordinary differential equation
form. In this case using static equilibrium position θ = 0 as the operating
point, for small motions, the linearization of the system implies θ ≈ θ, or

See Sec. 2-4 for more details on Taylor series linearization technique. Also
you may wish to refer to Sec. 3-9 where this topic is revisited in matrix
format.

3-2  LAPLACE TRANSFORM
Laplace transform technique is one of the mathematical tools used to solve

linear ordinary differential equations. This approach is very popular in the
study of control systems because of the following two features:

Laplace transform is one of the techniques used to solve linear
ordinary differential equations.

1.    The homogeneous and the particular components in the solution of
the differential equation are obtained in one operation.
2.    The Laplace transform converts the differential equation into simple
to manipulate algebraic form—in what is known as the s-domain.

3-2-1  Definition of the Laplace Transform
Given the real function f (t) that satisfies the condition:



for some finite, real σ, the Laplace transform of f (t) is defined as

or

The variable s is referred to as the Laplace operator, which is a complex
variable; that is, s = σ + jω, where σ is the real component,  and ω is
the imaginary component.

The defining equation in Eq. (3-12) is also known as the one-sided
Laplace transform, as the integration is evaluated from t = 0 to ∞. This
simply means that all information contained in f(t) prior to t = 0 is ignored or
considered to be zero. This assumption does not impose any limitation on the
applications of the Laplace transform to linear systems, since in the usual
time-domain studies, time reference is often chosen at t = 0. Furthermore, for
a physical system when an input is applied at t = 0, the response of the system
does not start sooner than t = 0.1 Such a system is also known as being causal
or simply physically realizable.

The following examples illustrate how Eq. (3-12) is used for the evaluation
of the Laplace transform of f(t).

EXAMPLE 3-2-1   Let f(t) be a unit-step function that is defined as

The Laplace transform of f(t) is obtained as

Eq. (3-14) is valid if



which means that the real part of s, σ , must be greater
than zero. Having said that, in practice, we simply refer to the
Laplace transform of the unit-step function as 1/s. 

EXAMPLE 3-2-2  Consider the exponential function

where α is a real constant. The Laplace transform of
f(t) is written

Toolbox 3-2-1
Use the MATLAB symbolic toolbox to find the Laplace transforms.

3-2-2  Important Theorems of the Laplace Transform
The applications of the Laplace transform in many instances are simplified

by utilization of the properties of the transform. These properties are
presented in Table 3-1 for which no proofs are given here.

TABLE 3-1   Theorems of Laplace Transforms





3-2-3  Transfer Function
In classical control, transfer functions are used to represent input-output

relations between variables. Let us consider the following nth-order
differential equation with constant real coefficients:



The transfer function between a pair of input and output variables is
the ratio of the Laplace transform of the output to the Laplace transform
of the input.

The coefficients a0,a1,...,an–1 and b0,b1,...bm are real constants. Once the input
u(t) for t ≥ t0 and the initial conditions of y(t) and the derivatives of y(t) are
specified at the initial time t = t0, the output response y(t) for t ≥ t0 is
determined by solving Eq. (3-18).

The transfer function of Eq. (3-18) is a function G(s), defined as

Taking the Laplace transform on both sides of the equation and assume
zero initial conditions. The result is

The transfer function between u(t) and y(t) is given by

The properties of the transfer function2 are summarized as follows:

•   The transfer function of a linear system of differential equations is the
ratio of the Laplace transform of the output to the Laplace transform of
the input.
•   All initial conditions of the system are set to zero.
•   The transfer function is independent of the input of the system.

3-2-4  Characteristic Equation
The characteristic equation of a linear system is defined as the equation

obtained by setting the denominator polynomial of the transfer function to
zero. Thus, for the system described by differential equation shown in Eq. (3-
18), the characteristic equation of the system is obtained from the
denominator of the transfer function in Eq. (3-21) so that



3-2-5  Analytic Function
A function G(s) of the complex variable s is called an analytic function in

a region of the s-plane if the function and all its derivatives exist in the
region. For instance, the function

is analytic at every point in the s-plane except at the points s = 0 and s = –
1. At these two points, the value of the function is infinite. As another
example, the function G(s) = s + 2 is analytic at every point in the finite s-
plane.

3-2-6  Poles of a Function
A pole, also known as a singularity, plays a very important role in the

studies of classical control theory. Loosely speaking, the poles of a transfer
function in Eq. (3-21) are the points in the Cartesian coordinate frame (aka
the s-plane) at which the function becomes infinite. In other words, the poles
are also the roots of the characteristic Eq. (3-22), which make the
denominator of G(s) to become equal to zero.3

If the denominator of G(s) includes the factor (s – pi)r, for r =1, the pole at s
= pi is called a simple pole; for r = 2, the pole at s = pi is of order two; etc.

As an example, the function

has a pole of order 2 at s = –3 and simple poles at s = 0 and s = –1. It can
also be said that the function G(s) is analytic in the s-plane except at these
poles. See Fig. 3-2 for the graphical representation of the finite poles of the
system in the s-plane.



Figure 3-2   Graphical representation of  in the s-
plane: × poles and O zeros.

3-2-7  Zeros of a Function
The zeros of a transfer function G(s) in Eq. (3-24) are the points in the s-

plane at which the function becomes zero.
If the numerator of G(s) includes the factor (s – zi)r, for r =1, the zero at s =

zi is called a simple zero; for r = 2, the zero at s = zi is of order two; and so
on.

In other words, the zeros of G(s) are also the roots of the numerator
equation in Eq. (3-24).4 For example, the function in Eq. (3-24) has a simple
zero at s = –2.

Mathematically speaking, the total number of poles equals the total
number of zeros, counting the multiple-order poles and zeros and taking into
account the poles and zeros at infinity. The function in Eq. (3-24) has four
finite poles at s = 0, –1, –3, and –3; there is one finite zero at s = –2, but there
are three zeros at infinity, because



Therefore, the function has a total of four poles and four zeros in the entire
s-plane, including infinity. See Fig. 3-2 for the graphical representation of the
finite zeros of the system.

Practically speaking, we only consider the finite poles and zeros of a
function.

Toolbox 3-2-2

3-2-8  Complex Conjugate Poles and Zeros
When dealing with the time response of control systems, see Chap. 7,

complex-conjugate poles (or zeros) play an important role, and as a result,



they deserve special treatment here. Consider the transfer function

Let us assume that the value of ζ is less than 1, so that G(s) has a pair of
simple complex-conjugate poles at

where

and

The poles in Eq. (3-27) are represented in rectangular form, where 
, (–σ,ω), and (–σ,–ω) are real and imaginary coefficients of s1 and s2,

respectively. Focusing on (–σ,ω), it represents a point in the s-plane as shown
in Fig. 3-3. A point in a rectangular coordinate frame may also be defined by
a vector R and an angle ϕ. It is then easy to see that



Figure 3-3   A pair of complex conjugate poles in the s-plane.

where
R = magnitude of s
ϕ = phase of s and is measured from the σ (real) axis. Right-hand rule

convention: positive phase is in counterclockwise direction.
Hence,

Introducing Eq. (3-30) into s1 in Eq. (3-27), we get

Upon comparison of Taylor series of the terms involved, it is easy to
confirm

Equation (3-33) is also known as the Euler formula. As a result, s1 in Eq.
(3-1) may also be represented in polar form as

Note that the conjugate of the complex pole in Eq. (3-34) is

3-2-9  Final-Value Theorem
The final-value theorem is very useful for the analysis and design of

control systems because it gives the final value of a time function by knowing
the behavior of its Laplace transform at s = 0. The theorem states: If the



Laplace transform of f (t) is F(s), and if sF(s) is analytic (see Sec. 3-2-5 on
the definition of an analytic function) on the imaginary axis and in the right
half of the s-plane, then

The final-value theorem is not valid if sF(s) contains any pole whose real
part is zero or positive, which is equivalent to the analytic requirement of
sF(s) in the right-half s-plane, as stated in the theorem. The following
examples illustrate the care that must be taken in applying the theorem.

EXAMPLE 3-2-3  Consider the function

Because sF(s) is analytic on the imaginary axis and in
the right-half s-plane, the final-value theorem may be
applied. Using Eq. (3-36), we have

EXAMPLE 3-2-4  Consider the function

which is the Laplace transform of f(t) = sin ωt.
Because the function sF(s) has two poles on the
imaginary axis of the s-plane, the final-value theorem
cannot be applied in this case. In other words, although
the final-value theorem would yield a value of zero as the
final value of f(t), the result is erroneous. 

3-3  INVERSE LAPLACE TRANSFORM BY



PARTIAL-FRACTION EXPANSION
Given the Laplace transform F(s), the operation of obtaining f(t) is termed

the inverse Laplace transformation and is denoted by

The inverse Laplace transform integral is given as

where c is a real constant that is greater than the real parts of all the
singularities of F(s). Equation (3-41) represents a line integral that is to be
evaluated in the s-plane. In a majority of the problems in control systems, the
evaluation of the inverse Laplace transform does not rely on the use of the
inversion integral of Eq. (3-41). For simple functions, the inverse Laplace
transform operation can be carried out simply by referring to the Laplace
transform table, such as the one given in App. C. For complex functions, the
inverse Laplace transform can be carried out by first performing a partial-
fraction expansion on F(s) and then using the Transform table. You can also
use the MATLAB symbolic tool to find the inverse Laplace transform of a
function.

3-3-1  Partial Fraction Expansion
When the Laplace transform solution of a differential equation is a rational

function in s, it can be written as

where P(s) and Q(s) are polynomials of s. It is assumed that the order of
P(s) in s is greater than that of Q(s). The polynomial P(s) may be written as

where a0,a1,...,an–1 are real coefficients. The methods of partial-fraction



expansion will now be given for the cases of simple poles, multiple-order
poles, and complex-conjugate poles of G(s). The idea here is to simplify G(s)
as much as possible to allow us find its inverse Laplace transform at ease
without referring to tables.

G(s) Has Simple Poles
If all the poles of G(s) are simple and real, Eq. (3-42) can be written as

where s1 ≠ s2 ≠ ... ≠ sn. Applying the partial-fraction expansion, Eq. (3-43) is
written as

or

The coefficient Ksi(i = 1,2,...,n) is determined by multiplying both sides of
Eq. (3-46) by the factor (s + si) and then setting s equal to –si. To find the
coefficient Ks1, for instance, we multiply both sides of Eq. (3-46) by (s + s1)
and let s = –s1. Thus,

or



EXAMPLE 3-3-1  Consider the function

which is written in the partial-fraction expanded form

The coefficients K–1,K–2, and K–3 are determined as
follows:

Thus, Eq. (3-49) becomes

Toolbox 3-3-1
For Example 3-3-1, Eq. (3-49) is a ratio of two polynomials.

You can calculate the partial fraction expansion as



Note r represents the numerators of Eq. (3-54), and p represents the
corresponding pole values. Now, convert the partial fraction expansion
back to polynomial coefficients.

Note b and a represent the coefficients of the numerator and
denominator polynomials in Eq. (3-49), respectively. Note also that the
result is normalized for the leading coefficient in the denominator.

Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get

Toolbox 3-3-2
For Example 3-3-1, Eq. (3-54) is composed of three functions, which

we call f1, f2, and f3. Using the Symbolic functions in MATLAB we
have



Note g is the inverse Laplace transform of G(s) in Eq. (3-54), as
shown in Eq. (3-55). Alternatively you may also directly find the inverse
Laplace transform of Eq. (3-49).

G(s) Has Multiple-Order Poles
If r of the n poles of G(s) are identical—that is the pole at s = –si is of

multiplicity r – G(s) is written as

(i ≠ 1,2,...,n – r), then G(s) can be expanded as



Then (n – r) coefficients, Ks1,Ks2,...,Ks(n–r), which correspond to simple poles,
may be evaluated by the method described in Eq. (3-47). The determination
of the coefficients that correspond to the multiple-order poles is described as
follows:

EXAMPLE 3-3-2  Consider the function

By using the format of Eq. (3-57), G(s) is written as



The coefficients corresponding to the simple poles are

and those of the third-order pole are

The completed partial-fraction expansion is

Toolbox 3-3-3
For Example 3-3-2, Eq. (3-62) is a ratio of two polynomials.



Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get

Toolbox 3-3-4
For Example 3-3-2, Eq. (3-69) is composed of four functions, which

we call f1, f2, f3, and f4. Using the Symbolic functions in MATLAB,
we have



Note g is the inverse Laplace transform of G(s) in Eq. (3-69), as
shown in Eq. (3-70). Alternatively you may also directly find the inverse
Laplace transform of Eq. (3-63).

G(s) Has Simple Complex-Conjugate Poles
The partial-fraction expansion of Eq. (3-42) is valid also for simple

complex-conjugate poles. As discussed in Sec. 3-2-8, complex-conjugate
poles are of special interest in control system studies and as a result require a
more special attention.

Suppose that G(s) of Eq. (3-42) contains a pair of complex poles s = –σ +
jω and s = –σ – jω . The corresponding coefficients of these poles are found
by using Eq. (3-45),



The procedure for finding the coefficients in Eqs. (3-71) and (3-72) is
illustrated through the following example.

EXAMPLE 3-3-3  Consider the second-order prototype function

Let us assume that the value of ζ is less than 1, so that
the poles of G(s) are complex. Then, G(s) is expanded as
follows:

where

The coefficients in Eq. (3-73) are determined as

The complete partial-fraction expansion of Eq. (3-73)
is

Taking the inverse Laplace transform on both sides
of the last equation gives



or

Toolbox 3-3-5
For Example 3-3-3, Eq. (3-73) is composed of two functions, which

we call f1 and f2. Using the Symbolic functions in MATLAB, we have

Note g is the inverse Laplace transform of G(s) in Eq. (3-78), as
shown in Eq. (3-80). We have used the symbolic simplify command to
convert g to trigonometric format. Note also that in MATLAB (i) and (j)
both represent SQRT(-1).

Alternatively you may also directly find the inverse Laplace transform
of Eq. (3-73).



3-4  APPLICATION OF THE LAPLACE
TRANSFORM TO THE SOLUTION OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

As we saw in Chap. 2, mathematical models of most components of
control systems are represented by first- or second-order differential
equations. In this textbook, we primarily study linear ordinary differential
equations with constant coefficients such as the first-order linear system:

or the second-order linear system:

Linear ordinary differential equations can be solved by the Laplace
transform method with the aid of the theorems on Laplace transform given in
Sec. 3-2, the partial-fraction expansion, and the table of Laplace transforms.
The procedure is outlined as follows:

1.    Transform the differential equation to the s-domain by Laplace
transform using the Laplace transform table.
2.    Manipulate the transformed algebraic equation and obtain the output
variable.
3.    Perform partial-fraction expansion to the transformed algebraic
equation.
4.    Obtain the inverse Laplace transform from the Laplace transform



table.

Let us examine two specific cases, first- and second-order prototype
systems. The prototype forms of differential equations provide a common
format of representing various components of a control system. The
significance of this representation became evident in Chap. 2 and becomes
more evident when we study the time response of control systems in Chap.
7.

3-4-1  First-Order Prototype System
In Chap. 2, we demonstrated that fluid, electrical, thermal, and mechanical

systems are modeled by differential equations. Figure 3-4 shows four cases of
mechanical, electrical, fluid, and thermal systems that are modeled by first-
order differential equations, which may ultimately be represented by the
first-order prototype of the form



Figure 3-4   (a) A spring-dashpot mechanism. (b) A series RC network. (c)
A one-tank liquid level system. (d) A heat transfer problem.

The prototype forms of differential equations provide a common
format of representing various components of a control system.

where τ is known as the time constant of the system, which is a measure
of how fast the system responds to initial conditions of external excitations.
Note that the input in Eq. (3-83) is scaled by 1/τ for cosmetic reasons.

In the spring-damper (no mass) system in Fig. 3-4a

where Ku(t) = f(t) is the applied force to the system, and  is the time
constant, which is the ratio of damping constant B and spring stiffness K. In
this case, displacements y(t) and u(t) are the output and input variables,
respectively.

In the RC circuit in Fig. 3-4b, the output voltage eo(t) satisfies the
following differential equation:

where ein(t) is the input voltage and τ = RC is the time constant.
In the one-tank liquid level system in Fig. 3-4c, the system equation is

defined in terms of the output volumetric flow rate qo as



where qi is the input flow rate, RC = τ is the system time constant, R is
fluid resistance, and C is the tank capacitance.

Finally, in the thermal system represented in Fig. 3-4d, C is thermal
capacitance C, R is convective thermal resistance, RC = τ is system time
constant, Tℓ is solid object temperature, and Tf is top fluid temperature. The
equation of the system representing the heat transfer process is

As evident from Eqs. (3-84) through (3-87), they are all represented by the
first-order prototype system Eq. (3-83), and to understand their respective
behaviors, we can solve Eq. (3-83) for a test input—in this case a unit step
input:

The unit step input is basically a constant input applied to the system, and
by solving for the differential equation, we examine how the output responds
to this input. Rewriting Eq. (3-83) as

If  and L(y(t)) = Y(s), we have

Or, as a result, the output in s-domain is

Notice that the system has a pole at zero due to the input and one at s = −1/
τ as shown in Fig. 3-5. For a positive τ, the pole in the left-half s-plane.



Using partial fractions, Eq. (3-91) becomes

Figure 3-5   Pole configuration of the transfer function of a prototype first-
order system.

where K0 = 1 and K–1/τ = –1. Applying the inverse Laplace transform to Eq.
(3-92), we get the time response of Eq. (3-83).

where t is the time for y(t) to reach 63 percent of its final value of 

.
Typical unit-step response of y(t) is shown in Fig. 3-5 for a general value

of t. As the value of time constant τ decreases, the system response
approaches faster to the final value.

Toolbox 3-4-1
The inverse Laplace transform for Eq. (3-91) is obtained using the

MATLAB Symbolic Toolbox by the following sequence of MATLAB
functions.



The result is Eq. (3-93).
Note, the sym command lets you construct symbolic variables and

expressions, and the command

is equivalent to

Time response of Eq. (3-83), shown in Fig. 3-6, for a given value τ =
0.1 s is obtained using

You may wish to confirm that at time t = 0.1 s, y(t) = 0.63.

Figure 3-6   Unit-step response of a first-order prototype differential
equation.

3-4-2  Second-Order Prototype System



Similar to the previous section, various mechanical, electrical, and fluid
systems discussed in Chap. 2 may be modeled as a second-order prototype
system—see, for example, the systems shown in Fig. 3-1, represented by Eqs.
(3-1) and (3-3). The standard second-order prototype system has the form:

Damping ratio ζ plays an important role in the time response of the
prototype second-order system.

where ζ is known as the damping ratio, ωn is the natural frequency of the
system, y(t) is the output variable, and u(t) is the input. As in Sec. 3-4-1, we
can solve Eq. (3-94) for a test input—in this case a unit step input:

If , and L(y(t)) = Y(s), the output
relation in the s-domain is

where the transfer function of the system is

The characteristic equation of the prototype second-order system is
obtained by setting the denominator of Eq. (3-97) to zero:



The two poles of the system are the roots of the characteristic equation,
expressed as

From the poles of the system shown in Eq. (3-99), it is clear that the
solution to Eq. (3-96) has a direct correlation to the value of the damping
ratio ζ. The damping ratio determines if the poles in Eq. (3-99) are real or
complex. In order to get a clear picture of the time behavior of the system, we
first find the inverse Laplace transform of Eq. (3-96) for three important
cases ζ < 1, ζ > 1.

System Is Critically Damped ζ = 1
When the two roots of the characteristic equation are real and equal, we

call the system critically damped. From Eq. (3-99), we see that critical
damping occurs when ζ = 1. In this case, the output relation in the s-domain,
represented by Eq. (3-96), is rewritten as

Further, the transfer function in Eq. (3-98) becomes

where G(s) has two repeated poles at s = –ωn, as shown in Fig. 3-7. In
order to find the solution of the differential equation, in this case, we obtain
the partial fraction representation of Eq. (3-100) following the process
defined in Example 3-3-2. Hence, by using the format of Eq. (3-57), Y(s) is
written as



Figure 3-7   Poles of Y(s) in a critically damped prototype first-order
system with a unit step input.

where

The completed partial-fraction expansion is



Taking the inverse Laplace transform on both sides using the Laplace
table in App. C or using the following MATLAB toolbox, we get

Toolbox 3-4-2
Equation (3-106) is composed of three functions, which we call f1, f2,

and f3. Using the Symbolic functions in MATLAB, we have

Alternatively, we can directly find the inverse Laplace transform of
Eq. (3-100).



Note y is the inverse Laplace transform of Y(s) in Eq. (3-100), as
shown in Eq. (3-107).

System Is Overdamped ζ > 1
When the two roots of the characteristic equation are distinct and real, we

call the system overdamped. From Eq. (3-99), we see that an overdamped
scenario occurs when ζ > 1. In this case the output relation in the s-domain,
represented by Eq. (3-96) is rewritten as

Further, the transfer function in Eq. (3-108) becomes

where G(s) has two poles at

Let’s define

as the damping factor, and

is, for the purpose of reference, loosely called the conditional (or damped)
frequency of the system—note the system will not exhibit oscillations in the
overdamped case, so usage of the term frequency is not an accurate term. We
use the following numerical example for easier understanding of the
approach.



EXAMPLE 3-4-1  Consider Eq. (3-108) with  and 

The transfer function of the system G(s) in Eq. (3-109)
has two poles at s1 = 1 and s2 = 2, as shown in Fig. 3-8. In
order to find the solution of the differential equation, in
this case, we obtain the partial fraction representation of
Eq. (3-113) following the process defined in Example 3-
3-1. Hence, by using the format of Eq. (3-45), Y(s) is
written as

Figure 3-8   Poles of Y(s) in an overdamped prototype first-order system
with a unit-step input.

where



The completed partial-fraction expansion is

Taking the inverse Laplace transform on both sides
using the Laplace table in App. C or using the following
MATLAB toolbox, we get

Toolbox 3-4-3
Equation (3-118) is composed of three functions, which we call f1, f2,

and f3. Using the Symbolic functions in MATLAB, we have



Alternatively we can directly find the inverse Laplace transform of
Eq. (3-113),

which is the same as Eq. (3-119).

EXAMPLE 3-4-2  Consider a modified second-order prototype of the
form:

where A is a constant. The transfer function of this
system is

Assigning the following values to the differential
equation parameters, we get

where us(t) is the unit-step function. The initial

conditions are y(0) = –1 and  To solve
the differential equation, we first take the Laplace
transform on both sides of Eq. (3-122):



Substituting the values of the initial conditions into the
last equation and solving for Y(s), we get

Equation (3-124) is expanded by partial-fraction
expansion to give

Taking the inverse Laplace transform of Eq. (3-125),
we get the complete solution as

The first term in Eq. (3-126) is the steady-state or the
particular solution; the last two terms represent the
transient or homogeneous solution. Unlike the classical
method, which requires separate steps to give the
transient and the steady-state responses or solutions,
the Laplace transform method gives the entire solution in
one operation.

If only the magnitude of the steady-state solution of
y(t) is of interest, the final-value theorem of Eq. (3-36)
may be applied. Thus,

The terms transient and steady-state responses are used to indicate
the homogeneous and particular solutions of differential equations.

where, in order to ensure the validity of the final-value



theorem, we have first checked and found that the poles
of function sY(s) are all in the left-half s-plane. 

From Example 3-4-2, it is important to highlight that in control systems,
the terms transient and steady-state responses are used to indicate the
homogeneous and particular solutions of differential equations. We study
these topics in detail in Chap. 7.

System Is Underdamped ζ < 1
When the two roots of the characteristic equation are complex with equal

negative real parts, we call the system underdamped. From Eq. (3-99), we
see that underdamped scenario occurs when 0 < ζ < 1. In this case, the output
relation in the s-domain, represented by Eq. (3-96), is written as

Further, the transfer function in Eq. (3-128) becomes

where G(s) has two complex-conjugate poles at

where the j term was cosmetically introduced to reflect that the poles are
complex-conjugate. Let’s define

as the damping factor, and

as the conditional (or damped) frequency of the system. Figure 3-9
illustrates the relationships among the location of the characteristic equation
roots and σ,ζ,ωn and ω. For the complex-conjugate roots shown,



Figure 3-9   Relationships among the characteristic-equation roots of the
prototype second-order system and σ, ζ, ωn, and ω.

•   ωn is the radial distance from the roots to the origin of the s-plane, or 

•   σ is the real part of the roots.
•   ω is the imaginary part of the roots.
•   ζ is the cosine of the angle between the radial line to the roots and the
negative axis when the roots are in the left-half s-plane, or ζ = cosθ.

The partial-fraction expansion of Eq. (3-128) is written as



where

The angle ϕ is given by

and is illustrated in Fig. 3-9. The inverse Laplace transform of Eq. (3-128)
is now written as

where Euler’s formula from Eq. (3-33) has been used to convert
exponential terms inside the brackets in Eq. (3-138) to a sine function.
Substituting Eq. (3-137) into Eq. (3-138) for ϕ, we have

EXAMPLE 3-4-3  Consider the linear differential equation

The initial values of y(t) and dy(t)/dt are zero. Taking
the Laplace transform on both sides of Eq. (3-140), and



solving for Y(s), we have

where, using the second-order prototype
representation, ζ = 0.5455 and ωn = 31.6228. The inverse
Laplace transform of Eq. (3-141) can be executed
substituting these values into Eq. (3-139). Or

where

Notice the final value of y(t) = 1 in this case, which
implies the output perfectly follows the input at steady
state. See Fig. 3-10 for the time response plot obtained
from the following MATLAB toolbox.



Figure 3-10   Time response y(t) of the second-order system in Eq. (3-140)
for a unit-step input.

Toolbox 3-4-4
Time response plot of Eq. (3-140) for a unit-step input may be

obtained using



“step” produces the time response of a function for a unit-step input.

3-4-3  Second-Order Prototype System—Final Observations
The effects of the system parameters ζ and ωn on the step response y(t) of

the prototype second-order system can be studied by referring to the roots of
the characteristic equation in Eq. (3-89).

Using the next toolbox, we can plot the unit-step time responses of Eq. (3-
96) for various positive values of ζ and for a fixed natural frequency ωn = 10
rad/s. As seen, the response becomes more oscillatory with larger overshoot
as ζ decreases. When ζ ≥ 1, the step response does not exhibit any overshoot;
that is, y(t) never exceeds its final value.

Toolbox 3-4-5
The corresponding time responses for Fig. 3-11 are obtained by the

following sequence of MATLAB functions:





Figure 3-11   Unit-step responses of the prototype second-order system
with various damping ratios.

The effect of damping of the second-order system on the characteristic
equation roots—that is, poles of the transfer function in Eq. (3-97)—is further
illustrated by Figs. 3-12 and 3-13. In Fig. 3-12, ωn is held constant while the
damping ratio ζ is varied from –∞ to +∞. Based on the values of ζ, the
classification of the system dynamics appears in Table 3-2.



Figure 3-12   Locus of roots of the characteristic equation of the prototype
second-order system.





Figure 3-13   Step-response comparison for various characteristic-
equation-root locations in the s-plane.

TABLE 3-2   Classification of the System Response Based on the
Values of ζ

•   The left-half s-plane corresponds to positive damping; that is, the
damping factor or damping ratio is positive. Positive damping causes the
unit-step response to settle to a constant final value in the steady state
due to the negative exponent of exp(–ζωnt). The system is stable.
•   The right-half s-plane corresponds to negative damping. Negative
damping gives a response that grows in magnitude without bound, and
the system is unstable.
•   The imaginary axis corresponds to zero damping (σ = 0 or ζ = 0).
Zero damping results in a sustained oscillation response, and the system
is marginally stable or marginally unstable.

Figure 3-13 illustrates typical unit-step responses that correspond to the
various root locations already shown.

In this section, we demonstrated that the location of the characteristic
equation roots plays an important role in the time response of a prototype



second-order system—or any control system for that matter. In practical
applications, only stable systems that correspond to ζ > 0 are of interest.

3-5  IMPULSE RESPONSE AND TRANSFER
FUNCTIONS OF LINEAR SYSTEMS

An alternative way to define the transfer function is to use the impulse
response, which is defined in the following sections.

3-5-1  Impulse Response
Consider that a linear time-invariant system has the input u(t) and output

y(t). As shown in Fig. 3-14, a rectangular pulse function u(t) of a very large
magnitude û/2ε becomes an impulse function for very small durations as ε →
0. The equation representing Fig. 3-14 is

Figure 3-14   Graphical representation an impulse function.



For û = 1, u(t) = δ(t), is also known as unit impulse or Dirac delta function
with the following properties:

where f(t) is any function of time. For t = 0 in Eq. (3-146) taking the
Laplace transform, using Eq. (3-11), and noting the actual limits of the
integral are defined from t = 0– to t = ∞, the Laplace transform of ζ (t), using
the third property in Eq. (3-147) is unity, that is, as ε → 0

In the following examples, we obtain the impulse response of a prototype
second-order system.

EXAMPLE 3-5-1  For the following second-order prototype system find the
impulse response:

For zero initial conditions,



is the transfer function of system (3-149). For u(t) = ζ
(t), since L[ζ(t)] = U(s) = 1, using the inverse Laplace
calculations in Example 3-3-3, the impulse response y(t)
= g(t) for 0 < ζ < 1 is

EXAMPLE 3-5-2  Consider the linear differential equation

Following the solution in Eq. (3-151), the impulse
response is

Using Toolbox 3-5-1, the time response plot of Eq. (3-
153) is shown in Fig. 3-15. 



Figure 3-15   Impulse response y(t) of the second-order system in Eq. (3-
153).

Toolbox 3-5-1
The unit impulse response of Eq. (3-152) may also be obtained using

MATLAB.



“impulse” produces the time response of a function for an impulse
input.

3-5-2  Time Response Using the Impulse Response
It is important to point out that the response of any system can be

characterized by its impulse response g(t), which is defined as the output for
a unit-impulse input δ(t). Once the impulse response of a linear system is
known, the output of the system y(t), for any input, u(t), can be found by using
the transfer function. Recall,

The time response of any linear system, for any given input can be
found by using the impulse response.

is the transfer function of the system. For more details see, for example,
Ref. 14. We demonstrate this concept through the following example.

EXAMPLE 3-5-3  For the second-order prototype system in Eq. (3-149) use
the impulse response g(t) from Example 3-5-1 to find
the time response for a unit-step input u(t) = us(t).
The Laplace transform of Eq. (3-149) for zero initial

conditions is



Recall from Eq. (3-139), the time response of this
system was obtained to be

Using Eq. (3-155) and the convolution properties of
Laplace transforms, from Table 3-1, we have

As a result from Eq. (3-157), the output y(t) is
therefore

or, after some manipulations, we get

where θ = cos–1 ζ. Obviously, Eqs. (3-159) and (3-156)
are identical. 

3-5-3  Transfer Function (Single-Input, Single-Output
Systems)

Let G(s) denote the transfer function of a single-input, single-output
(SISO) system, with input u(t), output y(t), and impulse response g(t). We can
formalize the findings in Sec. 3-5-1 and conclude the following.

The transfer function is alternatively defined as the Laplace transform



of the impulse response, with all the initial conditions set to zero.

Hence, the transfer function G(s) is defined as

with all the initial conditions set to zero, and Y(s) and U(s) are the Laplace
transforms of y(t) and u(t), respectively.

3-6  SYSTEMS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS: STATE
EQUATIONS

State equations provide an alternative to the transfer function approach,
discussed earlier, to study differential equations. This technique particularly
provides a powerful means to treat and analyze higher-order differential
equations and is highly utilized in modern control theory and more advanced
topics in control systems, such as optimal control design.

In general, an nth-order differential equation can be decomposed into n
first-order differential equations. Because, in principle, first-order differential
equations are simpler to solve than higher-order ones, first-order differential
equations are used in the analytical studies of control systems. As an
example, for the differential equation in Eq. (3-2), shown here

if we let

and



then Eq. (3-161) is decomposed into the following two first-order
differential equations:

Alternatively, for the differential equation in Eq. (3-3),

if we let

and

then Eq. (3-166) is decomposed into the following two first-order
differential equations:

In a similar manner, for Eq. (3-5), let us define



then the nth-order differential equation is decomposed into n first-order
differential equations:

Notice that the last equation is obtained by equating the highest-ordered
derivative term in Eq. (3-5) to the rest of the terms. In control systems theory,
the set of first-order differential equations in Eq. (3-172) is called the state
equations, and x1,x2,...,xn, are called the state variables. Finally, the minimum
number of state variables needed is usually the same as the order n of the
differential equation of the system.

The minimum number of state variables needed to represent a
differential equation, is usually the same as the order of the differential
equation of the system.

EXAMPLE 3-6-1  Considering the two degrees of freedom mechanical
system shown in Fig. 3-16 with two masses M1 and M2

constrained by three springs, while a fore f(t)is applied



to mass M2.

Figure 3-16   A two degree of freedom mechanical system with three
springs.

The displacements of masses M1 and M2 are measured
by y1(t) and y2(t), respectively. From Example 2-1-2, the
two second-order differential equations of motion are

if we let

and



Then the two second-order differential equations are
decomposed into four first-order differential equations,
that is, the following state equations:

Note that the process of selecting the state variables is
not unique, and we could have used the following
representation:

As a result the state equations become



3-6-1  Definition of State Variables
The state of a system refers to the past, present, and future conditions of

the system. From a mathematical perspective, it is convenient to define a set
of state variables and state equations to model dynamic systems. As stated
earlier, the variables x1(t),x2(t),...,xn(t) defined in Eq. (3-171) are the state
variables of the nth-order system described by Eq. (3-5), and the n first-order
differential equations, in Eq. (3-172), are the state equations. In general,
there are some basic rules regarding the definition of a state variable and
what constitutes a state equation. The state variables must satisfy the
following conditions:

•   At any initial time t = t0, the state variables x1(t0),x2(t0),...,xn(t0) define
the initial states of the system.
•   Once the inputs of the system for t ≥ t0 and the initial states just
defined are specified, the state variables should completely define the
future behavior of the system.

The state variables of a system are defined as a minimal set of variables,
x1(t),x2(t),...,xn(t), such that knowledge of these variables at any time t0 and
information on the applied input at time t0 are sufficient to determine the state
of the system at any time t > t0. Hence, the space state form for n state
variables is

where x(t) is the state vector having n rows,



and u(t) is the input vector with p rows,

The coefficient matrices A and B are defined as

EXAMPLE 3-6-2  For the system described by Eqs. (3-187) through (3-
190),



3-6-2  The Output Equation
One should not confuse the state variables with the outputs of a system. An

output of a system is a variable that can be measured, but a state variable
does not always need to satisfy this requirement. For instance, in an electric
motor, such state variables as the winding current, rotor velocity, and
displacement can be measured physically, and these variables all qualify as
output variables. On the other hand, magnetic flux can also be regarded as a
state variable in an electric motor because it represents the past, present, and
future states of the motor, but it cannot be measured directly during operation
and therefore does not ordinarily qualify as an output variable. In general, an
output variable can be expressed as an algebraic combination of the state
variables. For the system described by Eq. (3-5), if y(t) is designated as the
output, then the output equation is simply y(t) = x1(t). In general,



We will utilize these concepts in the modeling of various dynamical
systems next.

EXAMPLE 3-6-3  Consider the second-order differential equation, which
was also studied in Example 3-4-1.

If we let

and



then Eq. (3-203) is decomposed into the following two
first-order differential equations:

where x1(t), x2(t) are the state variables, and u(t) is the
input, we can—at this point arbitrarily—define y(t) as the
output represented by

In this case, we are simply interested in state variable
x1(t) to be our output. As a result,

EXAMPLE 3-6-4  As another example the state equations in vector-matrix
form:

The output equation may be a more complex



representation of the state variables, for example,

where

EXAMPLE 3-6-5  Consider an accelerometer, which is a sensor used to
measure the acceleration of an object it is attached to,
as shown in Fig. 3-17. If the motion of the object is
u(t), the equation of motion for the accelerometer
seismic mass M shown in the free-body diagram of
Fig. 3-17b may be written as



Figure 3-17   (a) Schematic of an accelerometer mounted on a moving
object. (b) Free-body diagram.

where B and K are the accelerometer internal material
damping constant and stiffness, respectively. If we define
the relative motion of the seismic mass M by z(t)

Then Eq. (3-214) can be rewritten in terms of the
object acceleration which the sensor measures:

The accelerometer output is in terms of voltage, which
is linearly proportional to the seismic mass relative
motion through constant Ka—also known as the sensor
gain. That is

In state space form, if we define the state variables as

and

then Eq. (3-216) is decomposed into the following two
state equations:



where x1(t), x2(t) are the state variables, and ú(t) is the
input. We can define eo(t) as the output.

So

We will revisit this problem later on in this chapter. As
a side note, in order to better understand how an
accelerometer measures acceleration, we need to
understand its frequency response characteristics, which
we will address in Chap. 10. For more appreciation of
this topic, you may wish to refer to Ref. 14. 

EXAMPLE 3-6-6  Consider the differential equation

Rearranging the last equation so that the highest-order
derivative term is set equal to the rest of the terms, we
have

The state variables are defined as



Then the state equations are represented by the vector-
matrix equation

where x(t) is the 2 × 1 state vector, u(t) is the scalar
input. The output equation is arbitrarily selected in this
case to be

Hence,

3-7  SOLUTION OF THE LINEAR
HOMOGENEOUS STATE EQUATION

The linear time-invariant state equation

can be solved using either the classical method of solving linear
differential equations or the Laplace transform method. The Laplace
transform solution is presented in the following equations.

Taking the Laplace transform on both sides of Eq. (3-231), we have



where x(0) denotes the initial-state vector evaluated at t = 0. Solving for
X(s) in Eq. (3-232) yields

where I is the identity matrix, X(s) = L[x(t)] and U(s) = L[u(t)]. The
solution of the state equation of Eq. (3-231) is obtained by taking the inverse
Laplace transform on both sides of Eq. (3-233):

Once the state vector x(t) is found, the output is easy to obtain through

EXAMPLE 3-7-1  Consider the state equations representation of the system
represented by Eq. (3-203) in Example 3-6-3

The problem is to determine the solution for the state
vector x(t) for t ≥ 0 when the input is a unit step, that is,
u(t) = 1 for t ≥ 0. This system is the same as the second-
order overdamped system in Example 3-4-1. The
coefficient matrices are identified to be

Therefore,

The inverse matrix of (sI – A) is



The solution of the state equation is found using Eq.
(3-234). Thus,

where, the second term of the solution can be obtained
by taking the inverse Laplace transform of (sI − A)
−1BU(s). Thus, we have

Note that in the current example, the overall solution in Eq. (3-239) is a
superposition of the response due to the initial conditions and the input u(t).
For zero initial conditions, the response in this case is identical to the solution
in Eq. (3-119) obtained earlier for the overdamped system in Example 3-4-1.
The solution of the state equations, however, is more powerful because it
shows both states x1(t) and x2(t). Finally, having found the states, we can now
find the output y(t) from Eq. (3-235). 

3-7-1  Transfer Functions (Multivariable Systems)
The definition of a transfer function is easily extended to a system with

multiple inputs and outputs. A system of this type is often referred to as a
multivariable system. In a multivariable system, a differential equation of the
form of Eq. (3-5) may be used to describe the relationship between a pair of
input and output variables, when all other inputs are set to zero. This equation
is restated as



The coefficients a0,a1,...,an–1 and b0,b1,...,bm are real constants. Using the state
space representation of Eq. (3-242), we have

Taking the Laplace transform on both sides of Eq. (3-242) and solving for
X(s), we have

The Laplace transform of Eq. (3-244) is

Substituting Eq. (3-245) into Eq. (3-246), we have

Because the definition of a transfer function requires that the initial
conditions be set to zero, x(0) = 0; thus, Eq. (3-247) becomes

We define the transfer-function matrix between u(t) and y(t), as

where G(s) is a q × p. Then, Eq. (3-248) becomes



In general, if a linear system has p inputs and q outputs, the transfer
function between the jth input and the ith output is defined as

with Uk(s) = 0, k = 1,2,..., p, k ≠ j. Note that Eq. (3-251) is defined with
only the jth input in effect, whereas the other inputs are set to zero. Because
the principle of superposition is valid for linear systems, the total effect on
any output due to all the inputs acting simultaneously is obtained by adding
up the outputs due to each input acting alone. When all the p inputs are in
action, the ith output transform is written as

where

is the q × p transfer-function matrix.
Later in Chaps. 4 and 8 we will provide more details on treatment of

differential equations using the state-space approach.

EXAMPLE 3-7-2  Consider a multivariable system, described by the
following differential equations

Using the following choice of state variables:



where, these state variables are defined by mere
inspection of the two differential equations because no
particular reasons for the definitions are given other than
that these are the most convenient. Now equating the first
term of each of the equations of Eqs. (3-254) and (3-255)
to the rest of the terms and using the state-variable
relations of Eq. (3-256), we arrive at state equations and
output equations in vector-matrix form as represented by
Eqs. (3-243) and (3-244). Or,

where the output choice has been set arbitrarily. In
order to determine the transfer-function matrix of the
system using the state-variable formulation, we substitute
the A, B, and C matrices into Eq. (3-249). First, we form
the matrix (sI – A):

The determinant of (sI – A) is



Thus,

The transfer-function matrix between u(t) and y(t) is

Alternatively, using the conventional approach, we
take the Laplace transform on both sides of Eqs. (3-257)
and (3-258) and assume zero initial conditions. The
resulting transformed equations are written in vector-
matrix form as

Solving for Y(s) from Eq. (3-263), we obtain

where

which will give the same results as in Eq. (3-262). 



EXAMPLE 3-7-3  For the state equation represented in Example 3-7-1, if we
define the output as

That is y(t) = x1(t). For zero initial conditions, the
transfer-function matrix between u(t) and y(t) is

or,

which is identical to the second-order transfer function
for the overdamped system in Example 3-4-1. 

3-7-2  Characteristic Equation from State Equations
From the transfer function discussions in the previous section, we can

write Eq. (3-249) as

Setting the denominator of the transfer-function matrix G(s) to zero, we get
the characteristic equation:

which is an alternative form of the characteristic equation but should lead
to the same equation as in Eq. (3-22). An important property of the
characteristic equation is that, if the coefficients of A are real, then the
coefficients of |sI – A| are also real. The roots of the characteristic equation



are also referred to as the eigenvalues of the matrix A.

EXAMPLE 3-7-4  The matrix A for the state equations of the differential
equation in Eq. (3-225) is given in Eq. (3-230). The
characteristic equation of A is

Note that the characteristic equation is a polynomial of
third order while A is a 3 × 3 matrix. 

EXAMPLE 3-7-5  The matrix A for the state equations of Example 3-7-1 is
given in Eq. (3-237). The characteristic equation of A
is

Note in this case the order of the characteristic
equation and the A matrix dimension are the same. 

EXAMPLE 3-7-6  The characteristic equation in Example 3-7-2 is

Again A is a 3 × 3 matrix, and the characteristic
equation is a third-order polynomial. 

3-7-3  State Equations from the Transfer Function
Based on the previous discussions, transfer function of the system can be

obtained from the state space equations. However, obtaining the state space
equations from the transfer function without a clear knowledge of the
physical system model and its properties is not a unique process—
particularly because of variety of potential choices for the state and the output
variables. The process of going from the transfer function to the state diagram



is called decomposition. In general, there are three basic ways to decompose
transfer functions. These are direct decomposition, cascade decomposition,
and parallel decomposition. Each of these three schemes of decomposition
has its own merits and is best suited for a particular purpose. This topic will
be further discussed in more detail in Chap. 8.

In this section, we demonstrate how to get state equations from the transfer
function using the direct decomposition technique. Let us consider the
transfer function between u(t) and y(t) is given by

where, the coefficients a0,a1,...,an–1, and b0,b1,...,bm are real constants, U(s) =
L[u(u(t)], and Y(s) = L[y(t)]. As we shall see later it is necessary to have m ≤
n – 1. Premultiplying both sides of Eq. (3-274) by the denominator, we get

Obtaining the state space equations from the transfer function without
a clear knowledge of the physical system model and its properties is not
a unique process.

Taking the inverse Laplace transform of Eq. (3-275), while recalling that
the transfer function is independent of initial conditions of the system, we get
the following nth-order differential equation with constant real coefficients:

In this decomposition approach, our goal is to convert the transfer function
in Eq. (3-274) into the state space form:



Note y(t) and u(t) are not vectors and are scalar functions. From the
denominator of Eq. (3-274) the characteristic equation is an nth-order
polynomial,

which implies A to be a n × n matrix. As a result the system is expected to
have n states. Hence,

We assume the following form for the coefficient matrix B:

Hence, for Eqs. (3-277), (3-278), and (3-279), respectively, we must have



and

This implies, in the output Eq. (3-278), D = 0 and C has one row and n
columns. That is,

where this requires m not to exceed n – 1 in Eq. (3-274)—that is, m ≤ n –
1.

Finally, as a result of the direct decomposition technique, the coefficient
matrices A, B, C, and D are

Again, please note that this topic will be further discussed in more detail in
Chap. 8.

EXAMPLE 3-7-7  Consider the following input-output transfer function:



The dynamic equations of the system using direct
decomposition method are

EXAMPLE 3-7-8  Consider the accelerometer in Example 3-6-4, as shown
in Fig. 3-17. If the motion of the object is u(t), the
equation of motion for the accelerometer seismic mass
M shown in the free-body diagram of Fig. 3-17b may
be written as

where B and K are the accelerometer internal material
damping constant and stiffness, respectively. Rearranging
Eq. (3-288), we have

In this case, we use the accelerometer absolute
displacement y(t) as our output variable. The transfer
function in this case represents a displacement input-
output relation



then using direct decomposition, Eq. (3-290) is
decomposed into the following two state equations:

where x1(t), x2(t) are the state variables, and
displacement u(t) is the input. From Eq. (3-283), the
output is therefore

In order to confirm that Eqs. (3-291) through (3-293)
do indeed represent the transfer function in Eq. (3-290),
let us take the Laplace transform while setting the initial
conditions to zero. Hence,

where X1(s) = L[x1(t)], X2(s) = L[x2(t)], U(s) = L[u(t)]
and Y(s) = L[y(t)]. Using Eq. (3-294) to eliminate X2(s)
from Eqs. (3-295) and (3-296), we have



Solving Eqs. (3-297) and (3-298) in terms of Y(s) and
U(s), we get

which is the same as Eq. (3-290).
In order to reconcile this representation of the

accelerometer with that of Example 3-6-5, let us
introduce a new output variable

Taking the Laplace transform, assuming zero initial
conditions, we have

Using Eq. (3-294) to eliminate X2(s) from Eq. (3-301),
and solving the resulting equation and Eq. (3-297) in
terms of Z(s) and U(s), we get

which is the transfer function of Eq. (3-216). 

3-8  CASE STUDIES WITH MATLAB
In this section, we use state space to find the time response of simple



practical examples.

EXAMPLE 3-8-1   Let us consider the RLC network shown in Fig. 3-18.
Using the voltage law

Figure 3-18   RLC network.

or

Using current in C,

and taking a derivative of Eq. (3-304) with respect to
time, we get the equation of the RLC network as

A practical approach is to assign the current in the
inductor L, i(t), and the voltage across the capacitor C,



ec(t), as the state variables. The reason for this choice is
because the state variables are directly related to the
energy-storage element of a system. The inductor stores
kinetic energy, and the capacitor stores electric potential
energy. By assigning i(t) and ec(t) as state variables, we
have a complete description of the past history (via the
initial states) and the present and future states of the
network. The state equations for the network in Fig. 3-18
are written by first equating the current in C and the
voltage across L in terms of the state variables and the
applied voltage e(t). In vector-matrix form, the equations
of the system are expressed as

This format is also known as the state form if we set

or

Let us define the output as



That is we are interested in measuring both the current
i(t) and the voltage across the capacitor, ec(t).

As a result, the coefficient matrices are

The transfer functions between e(t) and y(t) are
obtained by applying Eq. (3-249), when all the initial
states are set to zero. Hence, from

More specifically, the two transfer functions are

Toolbox 3-8-1
Time-domain step responses for the outputs in Eqs. (3-313) and (3-

314) are shown in Fig. 3-19, using R = 1, L = 1, C = 1:





Figure 3-19   Output voltage and current step responses for Example 3-8-
1.

EXAMPLE 3-8-2   As another example of writing the state equations of an
electric network, consider the network shown in Fig.
3-20. According to the foregoing discussion, the
voltage across the capacitor, ec(t), and the currents of
the inductors, i1(t) and i2(t), are assigned as state
variables, as shown in Fig. 3-20. The state equations
of the network are obtained by writing the voltages
across the inductors and the currents in the capacitor
in terms of the three state variables. The state



equations are

Figure 3-20   Electrical schematic of the network of Example 3-8-2.

In vector-matrix form, the state equations are written
as

where



Similar to the procedure used in the previous example,
the transfer functions between I1(s) and E(s), I2(s) and
E(s), and Ec(s) and E(s), respectively, appear next i2(t)

where

Toolbox 3-8-2
Time-domain step responses for the outputs in Eqs. (3-320) to (3-322)

are shown in Fig. 3-21, using R1 = 1, R2 = 1, L1 = 1, L2 = 1, C = 1:





Figure 3-21   Output voltage and current step responses for Example 3-8-
2.

EXAMPLE 3-8-3   Consider the accelerometer in Examples 3-6-4 and 3-7-8,
as shown in Fig. 3-17. The state equations of the
system using the state variables defined in Example 3-
7-8 are



where x1(t), x2(t) are the state variables, and
displacement u(t) is the input. Here we define the output
equation to reflect both absolute and relative
displacements of the seismic mass as outputs, that is, y(t)
and z(t). From Eq. (3-283), the output is therefore

The two system transfer functions were obtained
earlier as

Toolbox 3-8-3
Time-domain step responses for the outputs in Eqs. (3-327) and (3-

328) are shown in Fig. 3-22, using M = 1, B = 3, and K = 2:





Figure 3-22   Absolute and relative displacement time responses to a step
displacement input for the accelerometer seismic mass in Example 3-8-3.

Considering the time response plots in Fig. 3-22, are as expected. That is,
for a unit step base movement, the absolute displacement follows the base at
steady state, while the mass relative motion with respect to base, after
experiencing initial acceleration, settles to zero.

3-9  LINEARIZATION REVISITED—THE
STATE-SPACE APPROACH



In Sec. 2-4, we introduced the concept of linearization using the Taylor
series technique. Alternatively, let us represent a nonlinear system by the
following vector-matrix state equations:

where x(t) represents the n × 1 state vector; r(t), the p × 1 input vector; and
f[x(t), r(t)], an n × 1 function vector. In general, f is a function of the state
vector and the input vector.

Being able to represent a nonlinear and/or time-varying system by state
equations is a distinct advantage of the state-variable approach over the
transfer-function method, since the latter is strictly defined only for linear
time-invariant systems.

As a simple example, the following nonlinear state equations are given:

Because nonlinear systems are usually difficult to analyze and design, it is
desirable to perform a linearization whenever the situation justifies it.

A linearization process that depends on expanding the nonlinear state
equations into a Taylor series about a nominal operating point or trajectory is
now described. All the terms of the Taylor series of order higher than the first
are discarded, and the linear approximation of the nonlinear state equations at
the nominal point results.

Let the nominal operating trajectory be denoted by x0(t), which
corresponds to the nominal input r0(t) and some fixed initial states.
Expanding the nonlinear state equation of Eq. (3-329) into a Taylor series
about x(t) = x0(t) and neglecting all the higher-order terms yields



where i = 1, 2,…,n. Let

and

Then

Since

Equation (3-332) is written as

Equation (3-337) may be written in vector-matrix form:

where



The following simple example illustrates the linearization procedure just
described.

EXAMPLE 3-9-1  For the pendulum in Fig. 2-38, with a mass m and a
massless rod of length l, if we define x1 = θ and x2 = θ
as state variables, the state space representation of the
system model becomes

Expanding the nonlinear state equation of Eq. (3-341)
into a Taylor series about x(t) = x0(t) = 0 (or θ = 0) and
neglecting all the higher-order terms yields, with r(t) = 0
since there is no input (or external excitations) in this
case, we get



where Δx1 and Δx2(t) denote nominal values of x1(t) and
x2(t), respectively. Notice that the last two equations are
linear and are valid only for small signals. In vector-
matrix form, these linearized state equations are written
as

where

If we let , Eq. (3-344) becomes

Switching back to classical representation, we get the
linear system

EXAMPLE 3-9-2  In Example 3-9-1, the linearized system turns out to be
time-invariant. As mentioned earlier, linearization of a
nonlinear system often results in a linear time-varying
system. Consider the following nonlinear system:

These equations are to be linearized about the nominal
trajectory [x01(t),x02(t)], which is the solution to the
equations with initial conditions x(0) = x2(0) = 1 and input
u(t) = 0.



Integrating both sides of Eq. (3-349) with respect to t,
we have

Then Eq. (3-348) gives

Therefore, the nominal trajectory about which Eqs. (3-
350) and (3-351) are to be linearized is described by

Now evaluating the coefficients of Eq. (3-337), we get

Equation (3-337) gives

By substituting Eqs. (3-353) and (3-354) into Eqs. (3-
348) and (3-349), the linearized equations are

which is a set of linear state equations with time-
varying coefficients. 

EXAMPLE 3-9-3  Figure 3-23 shows the diagram of a magnetic-ball-
suspension system. The objective of the system is to



control the position of the steel ball by adjusting the
current in the electromagnet through the input voltage
e(t). The differential equations of the system are

Magnetic-Ball Suspension System

Figure 3-23   Magnetic-ball-suspension system.

Let us define the state variables as x1(t) = y(t),x2(t) =



dy(t)/dt, and x3(t) = i(t). The state equations of the system
are

Let us linearize the system about the equilibrium point
y0(t) = x01 = constant. Then,

The nominal value of i(t) is determined by substituting
Eq. (3-364) into Eq. (3-359)

Thus,

The linearized state equation is expressed in the state
space form, with the coefficient matrices A* and B*
evaluated as



3-10  SUMMARY
Two most common tools for solving the differential equations representing

dynamic systems are the transfer function and the state-variable methods.
Transfer functions are based on the Laplace transform technique and are valid
only for linear time-invariant systems, whereas the state equations can be
applied to linear as well as nonlinear systems.

In this chapter, we started with differential equations, and how the Laplace
transform is used for the solution of linear ordinary differential equations.
This transform method is characterized by first transforming the real-domain
equations into algebraic equations in the transform domain. The solutions are
first obtained in the transform domain by using the familiar methods of
solving algebraic equations. The final solution in the real domain is obtained
by taking the inverse transform. For engineering problems, the transform
tables and the partial-fraction expansion method are recommended for the
inverse transformation. Throughout, we introduced various MATLAB
toolboxes to find the solution of differential equations and to plot their
corresponding time responses.

This chapter was presented the state space modeling of linear time-
invariant differential equations. We further provided solution to the state
equations using Laplace transform technique. The relationship between the
state equations and transfer functions was also established. We finally



demonstrated that given the transfer function of a linear system, the state
equations of the system can be obtained by decomposition of the transfer
function.

Later in Chaps. 7 to 11 we will provide more examples on modeling of
physical systems that will utilize these subjects. Further in Chaps. 7 and 8, we
will provide more details on solution and time response of differential
equations using the Laplace transform and the state-space approaches,
respectively.
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PROBLEMS
PROBLEMS FOR SEC. 3-2
3-1.   Find the poles and zeros of the following functions (including the

ones at infinity, if any). Mark the finite poles with × and the finite zeros with
o in the s-plane.

(a)   

(b)   

(c)   

(d)   

3-2.   Poles and zeros of a function are given; find the function:
(a)   Simple poles: 0, −2; poles of order 2: −3; zeros: –1, ∞
(b)   Simple poles: −1, −4; zeros: 0
(c)   Simple poles: −3, ∞; poles of order 2: 0, −1; zeros: ±j, ∞

3-3.   Use MATLAB to find the poles and zeros of the functions in Prob. 2-
1.



3-4.   Use MATLAB to obtain L{sin2 2t}. Then, calculate L{cos2 2t} when
you know L{sin2 2t}. Verify your answer by calculating L{cos2 2t} in
MATLAB.

3-5.   Find the Laplace transforms of the following functions. Use the
theorems on Laplace transforms, if applicable.

(a)   
(b)   
(c)   
(d)   

(e)   

3-6.   Use MATLAB to solve Prob. 3-5.

3-7.   Find the Laplace transforms of the functions shown in Fig. 3P-7.
First, write a complete expression for g(t), and then take the Laplace
transform. Let gT(t) be the description of the function over the basic period
and then delay gT(t) appropriately to get g(t). Take the Laplace transform of
g(t) to get the following:

Figure 3P-7

3-8.   Find the Laplace transform of the following function.



3-9.   Find the Laplace transform of the periodic function in Fig. 3P-9.

Figure 3P-9

3-10.   Find the Laplace transform of the function in Fig. 3P-10.

Figure 3P-10

3-11.   The following differential equations represent linear time-invariant
systems, where r(t) denotes the input and y(t) the output. Find the transfer
function Y(s)/R(s) for each of the systems. (Assume zero initial conditions.)

(a)   

(b)   



(c)   

(d)   

(e)   

(f)   

3-12.   Use MATLAB to find Y(s)/R(s) for the differential equations in
Prob. 2-29.

PROBLEMS FOR SEC. 3-3
3-13.   Find the inverse Laplace transforms of the following functions.

First, perform partial-fraction expansion on G(s); then, use the Laplace
transform table.

(a)   

(b)   

(c)   

(d)   

(e)   

(f)   

(g)   

(h)   

(i)   



3-14.   Use MATLAB to find the inverse Laplace transforms of the
functions in Prob. 3-13. First, perform partial-fraction expansion on G(s);
then, use the inverse Laplace transform.

3-15.   Use MATLAB to find the partial-fraction expansion to the
following functions.

(a)   

(b)   

(c)   

(d)   

(e)   

(f)   

(g)   

(h)   

3-16.   Use MATLAB to find the inverse Laplace transforms of the
functions in 3-15.

PROBLEMS FOR SEC. 3-4
3-17.   Solve the following differential equations by means of the Laplace

transform.

(a)    (Assume zero initial conditions.)



(b)   

(c)   

3-18.   Use MATLAB to find the Laplace transform of the functions in
Prob. 3-17.

3-19.   Use MATLAB to solve the following differential equation:

 (Assuming zero initial conditions.)

3-20.   A series of a three-reactor tank is arranged as shown in Fig. 3P-20
for chemical reaction.

Figure 3P-20

The state equation for each reactor is defined as follows:



when Vi and ki represent the volume and the temperature constant of each
tank as shown in the following table:

Use MATLAB to solve the differential equations assuming CA1 = CA2 = CA3 =
0 at t = 0.

PROBLEMS FOR SEC. 3-5
3-21.   Figure 3P-21 shows a simple model of a vehicle suspension system

hitting a bump. If the mass of wheel and its mass moment of inertia are m and
J, respectively, then

(a)   Find the equation of the motion.
(b)   Determine the transfer function of the system.
(c)   Calculate its natural frequency.
(d)   Use MATLAB to plot the step response of the system.



Figure 3P-21

3-22.   An electromechanical system has the following system equations.

For a unit-step applied voltage e(t) and zero initial conditions, find
responses i(t) and ω(t). Assume the following parameter values:

3-23.   Consider the two-degree-of-freedom mechanical system shown in
Fig. 3P-23, subjected to two applied forces, f1(t) and f2(t), and zero initial
conditions. Determine system responses x1(t) and x2(t) when

(a)   f1(t) = 0, f2(t) = us,(t)
(b)   f1(t) = us(t), f2(t) = us,(t).

Use the following parameter values:

.

Figure 3P-23

PROBLEMS FOR SECs. 3-6 AND 3-7

3-24.   Express the following set of first-order differential equations in the



vector-matrix form of 

(a)   

(b)   

3-25.   Given the state equation of the system, convert it to the set of first-
order differential equation.

(a)   

(b)   

3-26.   Consider a train consisting of an engine and a car, as shown in Fig.
3P-26.

Figure 3P-26



A controller is applied to the train so that it has a smooth start and stop,
along with a constant-speed ride. The mass of the engine and the car are M
and m, respectively. The two are held together by a spring with the stiffness
coefficient of K. F represents the force applied by the engine, and μ
represents the coefficient of rolling friction. If the train only travels in one
direction:

(a)   Draw the free-body diagram.
(b)   Find the state variables and output equations.
(c)   Find the transfer function.
(d)   Write the state space of the system.

3-27.   A vehicle towing a trailer through a spring-damper coupling hitch is
shown in Fig. 3P-27. The following parameters and variables are defined: M
is the mass of the trailer; Kh, the spring constant of the hitch; Bh, the viscous-
damping coefficient of the hitch; Bt, the viscous-friction coefficient of the
trailer; y1(t), the displacement of the towing vehicle; y2(t), the displacement of
the trailer; and f(t), the force of the towing vehicle.

Figure 3P-27

(a)   Write the differential equation of the system.
(b)   Write the state equations by defining the following state variables:

x1(t) = y1(t) – y2(t) and x2(t) = dy2(t)dt.

3-28.   Figure 3P-28 shows a well-known “ball and beam” system in
control systems. A ball is located on a beam to roll along the length of the
beam. A lever arm is attached to the one end of the beam and a servo gear is
attached to the other end of the lever arm. As the servo gear turns by an angle
θ, the lever arm goes up and down, and then the angle of the beam is changed



by α. The change in angle causes the ball to roll along the beam. A controller
is desired to manipulate the ball’s position.

Figure 3P-28

Assuming:

(a)   Determine the dynamic equation of the motion.
(b)   Find the transfer function.
(c)   Write the state space of the system.
(d)   Find the step response of the system by using MATLAB.

3-29.   Find the transfer function and state-space variables in Prob. 2-12.



3-30.   Find the transfer function Y(s)/Tm(s) in Prob. 2-16.

3-31.   The schematic diagram of a motor-load system is shown in Fig. 3P-
31. The following parameters and variables are defined: Tm(t) is the motor
torque; ωm(t), the motor velocity; θm(t), the motor displacement; ωL(t), the load
velocity; θL(t), the load displacement; K, the torsional spring constant; Jm, the
motor inertia; Bm, the motor viscous-friction coefficient; and BL, the load
viscous-friction coefficient.

(a)   Write the torque equations of the system.
(b)   Find the transfer functions ΘL(s)/Tm(s) and Θm(s)/Tm(s).
(c)   Find the characteristic equation of the system.
(d)   Let Tm(t) = Tm be a constant applied torque; show that ωm = ωL =

constant in the steady state. Find the steady-state speeds ωm and ωL.
(e)   Repeat part (d) when the value of JL is doubled, but Jm stays the same.

Figure 3P-31

3-32.   In Prob. 2-20,
(a)   Assume that Ts is a constant torque. Find the transfer function Θ(s)/

Δ(s), where Θ(s) and Δ(s) are the Laplace transforms of θ(t) and ζ (t),
respectively. Assume that ζ (t) is very small.

(b)   Repeat part (a) with points C and P interchanged. The d1 in the
expression of αF should be changed to d2.

3-33.   In Prob. 2-21,
(a)   Express the equations obtained in earlier as state equations by

assigning the state variables as x1 = θ, x2 = dθ/dt,x3 = x and x4 = dx/dt. Simplify
these equations for small θ by making the approximations sin θ ≅ θ and cosθ
≅ 1.



(b)   Obtain a small-signal linearized state-equation model for the system
in the form of

at the equilibrium point 

3-34.   Vibration absorbers are used to protect machines that work at the
constant speed from steady-state harmonic disturbance. Figure 3P-34 shows a
simple vibration absorber.

Figure 3P-34

Assuming the harmonic force F(t) = Asin(ωt) is the disturbance applied to
the mass M:

(a)   Derive the state space of the system.
(b)   Determine the transfer function of the system.

3-35.   Figure 3P-35 represents a damping in the vibration absorption.

Assuming the harmonic force F(t) = Asin(ωt) is the disturbance
applied to the mass M:

(a)   Derive the state space of the system.
(b)   Determine the transfer function of the system.



Figure 3P-35

3-36.   Consider the electrical circuits shown in Fig. 3P-36a and b.

Figure 3P-36

For each circuit:
(a)   Find the dynamic equations and state variables.



(b)   Determine the transfer function.
(c)   Use MATALB to plot the step response of the system.

3-37.   The following differential equations represent linear time-invariant
systems. Write the dynamic equations (state equations and output equations)
in vector-matrix form.

(a)   

(b)   

(c)   

(d)   

3-38.   The following transfer functions show linear time-invariant
systems. Write the dynamic equations (state equations and output equations)
in vector-matrix form.

(a)   

(b)   

(c)   

(d)   

3-39.   Repeat Prob. 3-38 by using MATLAB.

3-40.   Find the time response of the following systems:

(a)   

(b)   



4-41.   Given a system described by the dynamic equations:

(a)   

(b)   

(c)   
(1)   Find the eigenvalues of A.
(2)   Find the transfer-function relation between X(s) and U(s).
(3)   Find the transfer function Y(s)/U(s).

3-42.   Given the dynamic equations of a time-invariant system:

where

Find the matrices A1 and B1 so that the state equations are written as

where



3-43.   Figure 3P-43a shows a well-known “broom-balancing” system in
control systems. The objective of the control system is to maintain the broom
in the upright position by means of the force u(t) applied to the car as shown.
In practical applications, the system is analogous to a one-dimensional
control problem of the balancing of a unicycle or a missile immediately after
launching. The free-body diagram of the system is shown in Fig. 3P-43b,
where

Figure 3P-43



(a)   Write the force equations in the x and the y directions at the pivot
point of the broom. Write the torque equation about the center of gravity CG
of the broom. Write the force equation of the car in the horizontal direction.

(b)   Express the equations obtained in part (a) as state equations by
assigning the state variables as x1 = θ, x2 = dθ/dt,x3 = x and x4 = dx/dt. Simplify
these equations for small θ by making the approximations θ ≅ θ and cosθ ≅ 1.

(c)   Obtain a small-signal linearized state-equation model for the system in
the form of

at the equilibrium point x01(t) = 1,x02(t) = 0,x03(t) = 0, and x04(t) = 0.

3-44.   The “broom-balancing” control system described in Prob. 3-43 has
the following parameters:

The small-signal linearized state equation model of the system is

where



Find the characteristic equation of A* and its roots.

3-45.   Figure 3P-45 shows the schematic diagram of a ball-suspension
control system. The steel ball is suspended in the air by the electromagnetic
force generated by the electromagnet. The objective of the control is to keep
the metal ball suspended at the nominal equilibrium position by controlling
the current in the magnet with the voltage e(t). The practical application of
this system is the magnetic levitation of trains or magnetic bearings in high-
precision control systems. The resistance of the coil is R, and the inductance
is L(y) = L/y(t), where L is a constant. The applied voltage e(t) is a constant
with amplitude E.

(a)   Let Eeq be a nominal value of E. Find the nominal values of y(t) and
dy(t)/dt at equilibrium.

(b)   Define the state variables at x1(t) = i(t),x2(t) = y(t), and x3(t) = dy(t)/dt.

Find the nonlinear state equations in the form of 
(c) Linearize the state equations about the equilibrium point and express

the linearized state equations as

The force generated by the electromagnet is Ki2(t)/y(t), where K is a
proportional constant, and the gravitational force on the steel ball is Mg.



Figure 3P-45

3-46.   The linearized state equations of the ball-suspension control system
described in Prob. 3-45 are expressed as

where

Let the control current Δi(t) be derived from the state feedback Δi(t) =
−KΔx(t), where

(a)   Find the elements of K so that the eigenvalues of A* − B*K are at −1
+ j, −1 − j, −10, and −10.

(b)   Plot the responses of Δx1(t) = Δy1(t) (magnet displacement) and Δx3(t)
= Δy2(t) (ball displacement) with the initial condition



(c)   Repeat part (b) with the initial condition

Comment on the responses of the closed-loop system with the two sets of
initial conditions used in (b) and (c).

1Strictly speaking, the one-sided Laplace transform should be defined from t = 0– to t = ∞. The
symbol t = 0– implies the limit of t → 0 is taken from the left side of t = 0. For simplicity, we shall use t
= 0 or t = t0 (≥ 0) as the initial time in all subsequent discussions. A Laplace transform table is given in
App. C.

2The transfer function in Eq. (3-20) is said to be strictly proper if the order of the denominator
polynomial is greater than that of the numerator polynomial (i.e., n > m). If n = m, the transfer function
is called proper. The transfer function is improper if m > n.

3The definition of a pole can be stated as: If a function G(s) is analytic and single-valued in the

neighborhood of point pi, it is said to have a pole of order r at s = pi if the limit  has
a finite, nonzero value. In other words, the denominator of G(s) must include the factor (s – pi)

r, so
when s = pi, the function becomes infinite. If r =1, the pole at s = pi is called a simple pole.

4The definition of a zero of a function can be stated as: If the function G(s) is analytic at s = Zi, it is

said to have a zero of order r at s = Zi if the limit  has a finite, nonzero value. Or,
simply, G(s) has a zero of order r at s = Zi if 1/G(s) has an rth-order pole at s = Zi.



CHAPTER 4



Block Diagrams and Signal-Flow
Graphs

In Chap. 2, we studied the modeling of basic dynamic systems, and later in
Chap. 3 we utilized transfer function and state space methods to convert these
models from differential equation representation into formats more suitable
for control system analysis. In this chapter, we introduce block diagrams as
graphical alternatives for modeling control systems and their underlying
mathematics. Block diagrams are popular in the study of control systems
because they provide better understanding of the composition and
interconnection of the components of a dynamic system. A signal-flow graph
(SFG) may also be used as an alternative graphical representation of a control
system model. SFGs may be regarded as an alternative representation of a
block diagram.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Utilize block diagrams, its components, and their underlying
mathematics to obtain transfer function of a control system.
2.  Establish a parallel between block diagrams and signal-flow graphs.
3.  Utilize signal-flow graphs and Mason’s gain formula to find transfer
function of a control system.
4.  Obtain the state diagrams, an extension of the SFG to portray state
equations and differential equations.

In this chapter, we utilize the block diagrams and SFGs and the Mason’s
gain formula to find the transfer function of the overall control system.
Through case studies at the end of the chapter, we apply these techniques to
the modeling of various dynamic systems that we already studied in Chaps. 2



and 3.

4-1  BLOCK DIAGRAMS
Block diagram modeling together with transfer function models describe

the cause-and-effect (input-output) relationships throughout the system. For
example, consider a simplified block diagram representation of the heating
system in your lecture room, shown in Fig. 4-1, where by setting a desired
temperature, also defined as the input, one can set off the furnace to provide
heat to the room. The process is relatively straightforward. The actual room
temperature is also known as the output and is measured by a sensor within
the thermostat. A simple electronic circuit within the thermostat compares the
actual room temperature to the desired room temperature (comparator). If
the room temperature is below the desired temperature, an error voltage will
be generated. The error voltage acts as a switch to open the gas valve and
turn on the furnace (or the actuator). Opening the windows and the door in
the classroom would cause heat loss and, naturally, would disturb the heating
process (disturbance). The room temperature is constantly monitored by the
output sensor. The process of sensing the output and comparing it with the
input to establish an error signal is known as feedback. Note that the error
voltage here causes the furnace to turn on, and the furnace would finally shut
off when the error reaches zero.

Block diagrams provide better understanding of the composition and
interconnection of the components of a dynamic system.

Figure 4-1   A simplified block diagram representation of a heating



system.

The block diagram in this case simply shows how the system components
are interconnected, and no mathematical details are given. If the
mathematical and functional relationships of all the system elements are
known, the block diagram can be used as a tool for the analytic or computer
solution of the system.

In general, block diagrams can be used to model linear as well as nonlinear
systems. For nonlinear systems, the block diagram variables are in time
domain, and for linear systems, the Laplace transform variables are used.

So in this case, assuming linear models for all system components, the
system dynamics can be represented, in the Laplace domain, by a transfer
function

where Ti(s) is the Laplace representation of the Desired Room
Temperature and To(s) is the Actual Room Temperature, as shown in Fig. 4-
1.

Alternatively, we can use signal flow graphs or state diagrams to provide a
graphical representation of a control system. These topics are discussed later
in this chapter.

4-1-1  Modeling of Typical Elements of Block Diagrams in
Control Systems

The common elements in block diagrams of most control systems include

•   Comparators
•   Blocks representing individual component transfer functions,
including
•   Reference sensor (or input sensor)
•   Output sensor
•   Actuator
•   Controller
•   Plant (the component whose variables are to be controlled)



•   Input or reference signals1

•   Output signals
•   Disturbance signal
•   Feedback loops

Figure 4-2 shows one configuration where these elements are
interconnected. You may wish to compare Figs. 4-1 and 4-2 to find the
control terminology for each system. As a rule, each block represents an
element in the control system, and each element can be modeled by one or
more equation. These equations are normally in the Laplace domain (because
of ease in manipulation using transfer functions), but the time representation
may also be used. Once the block diagram of a system is fully constructed,
one can study individual components or the overall system behavior. The key
components of a block diagram are discussed next.

Figure 4-2   Block diagram representation of a general control system.

Comparators
One of the important components of a control system is the sensing and the

electronic device that acts as a junction point for signal comparisons—
otherwise known as a comparator. In general, these devices possess sensors
and perform simple mathematical operations such as addition and subtraction
(such as the thermostat in Fig. 4-1). Three examples of comparators are
illustrated in Fig. 4-3. Note that the addition and subtraction operations in
Fig. 4-3a and b are linear, so the input and output variables of these block
diagram elements can be time-domain variables or Laplace-transform
variables. Thus, in Fig. 4-3a, the block diagram implies



Figure 4-3   Block diagram elements of typical sensing devices of control
systems. (a) Subtraction. (b) Addition. (c) Addition and subtraction.

or

Blocks
As mentioned earlier, blocks represent the equations of the system in time

domain or the transfer function of the system in the Laplace domain, as
demonstrated in Fig. 4-4.



Figure 4-4   Time and Laplace domain block diagrams.

In Laplace domain, the following input-output relationship can be written
for the system in Fig. 4-4:

If signal X(s) is the output and signal U(s) denotes the input, the transfer
function of the block in Fig. 4-4 is

Typical block elements that appear in the block diagram representation of
most control systems include plant, controller, actuator, and sensor.

EXAMPLE 4-1-1  Consider the block diagram of a cascade system with
transfer functions G1(s) and G2(s) that are connected
in series, as shown in Fig. 4-5. The transfer function
G(s) of the overall system can be obtained by
combining individual block equations. Hence, for
variables A(s) and X(s), we have

Figure 4-5   Block diagrams G1(s) and G2(s) connected in series—a
cascade system.



Or,

Using Eq. (4-6), the system in Fig. 4-5 can be
represented by the system in Fig. 4-4. 

EXAMPLE 4-1-2  Consider a more complicated system of two transfer
functions G1(s) and G2(s) that are connected in parallel,
as shown in Fig. 4-6. The transfer function G(s) of the
overall system can be obtained by combining
individual block equations. Note for the two blocks,
G1(s) and G2(s), A1(s) act as the input, and A2(s) and
A3(s) are the outputs, respectively. Further, note that
signal U(s) goes through a branch point P and is
renamed as A1(s). Hence, for the overall system, we
combine the equations as follows:



Figure 4-6   Block diagrams G1(s) and G2(s) connected in parallel.

Or,

Using Eq. (4-7), the system in Fig. 4-6 can be
represented by the system in Fig. 4-4. 

Feedback
For a system to be classified as a feedback control system, it is necessary

that the controlled variable be fed back and compared with the reference
input. After the comparison, an error signal is generated, which is used to
actuate the control system. As a result, the actuator is activated in the
presence of the error to minimize or eliminate that very error. A necessary
component of every feedback control system is an output sensor, which is
used to convert the output signal to a quantity that has the same units as the
reference input. A feedback control system is also known a closed-loop
system. A system may have multiple feedback loops. Figure 4-7 shows the
block diagram of a linear feedback control system with a single-feedback



loop. The following terminology is defined with reference to the diagram:

Figure 4-7   Block diagram of a basic negative feedback control system.

The closed-loop transfer function M(s) can be expressed as a function of
G(s) and H(s). From Fig. 4-7, we write

and

The actuating signal is written as



Substituting Eq. (4-10) into Eq. (4-8) yields

Substituting Eq. (4-9) into Eq. (4-7) and then solving for Y(s)/R(s) gives
the closed-loop transfer function

The feedback system in Fig. 4-7 is said to have a negative feedback loop
because the comparator subtracts. When the comparator adds the feedback,
it is called positive feedback, and the transfer function Eq. (4-12) becomes

If G and H are constants, they are also called gains. If H = 1 in Fig. 4-7,
the system is said to have a unity feedback loop, and if H = 0, the system is
said to be open loop.

4-1-2  Relation between Mathematical Equations and Block
Diagrams

Consider the second-order prototype system that we have studied in Chaps.
2 and 3:

which has Laplace representation (assuming zero initial conditions 
:

Equation (4-15) consists of constant damping ratio ζ, constant natural
frequency ωn, input U(s), and output X(s). If we rearrange Eq. (4-15) to



it can graphically be shown as in Fig. 4-8.

Figure 4-8   Graphical representation of Eq. (4-16) using a comparator.

The signals  and  may be conceived as the signal X(s)
going into blocks with transfer functions 2ζωns and , respectively, and the
signal X(s) may be obtained by integrating s2 X(s) twice or by postmultiplying
by 1/s2, as shown in Fig. 4-9.

Figure 4-9   Addition of blocks 1/s2, 2ζωns, and  to the graphical
representation of Eq. (4-16).

Because the signals X(s) in the right-hand side of Fig. 4-9 are the same,
they can be connected, leading to the block diagram representation of the
system Eq. (4-16), as shown in Fig. 4-10. If you wish, you can further dissect
the block diagram in Fig. 4-10 by factoring out the term 1/s as in Fig. 4-11a
to obtain Fig. 4-11b.



Figure 4-10   Block diagram representation of Eq. (4-16) in Laplace
domain.

Figure 4-11   (a) Factorization of 1/s term in the internal feedback loop of
Fig. 4-10. (b) Final block diagram representation of Eq. (4-16) in Laplace
domain.



From Chap. 2, we know that the second-order prototype system in Eq. (4-
14) can represent various dynamic systems. If the system studied here, for
example, corresponds to the spring-mass-damper seen in Fig. 2-2, then
internal variables A(s) and V(s) representing acceleration and velocity of the
system, respectively, may also be incorporated in the block diagram model.
The best way to see this is by recalling that 1/s is equivalent of integration in
Laplace domain. Hence, if A(s) is integrated once, we get V(s), and after
integrating V(s), we get the X(s) signal, as shown in Fig. 4-11b.

It is evident that there is no unique way of representing a system model
with block diagrams. We may use different block diagram forms for different
purposes. As long as the overall transfer function of the system is not altered.
For example, to obtain the transfer function V(s)/U(s), we may yet rearrange
Fig. 4-11 to get V(s) as the system output, as shown in Fig. 4-12. This enables
us to determine the behavior of velocity signal with input U(s).

Figure 4-12   Block diagram of Eq. (4-16) in Laplace domain with V(s)
represented as the output.

EXAMPLE 4-1-3   Find the transfer function of the system in Fig. 4-11b and
compare that to Eq. (4-15).

SOLUTION   The  block at the input and feedback
signals in Fig. 4-11b may be moved to the right-hand side
of the comparator, as shown in Fig. 4-13a. This is the
same as factorization of  as shown below:



Figure 4-13   (a) Factorization of . (b) Alternative block diagram
representation of Eq. (4-16) in Laplace domain.

The factorization operation on Eq. (4-16) results in a
simpler block diagram representation of the system
shown in Fig. 4-13b. Note that Figs. 4-11b and 4-13b are
equivalent systems. Considering Fig. 4-11b, it is easy to
identify the internal feedback loop, which in turn can be
simplified using Eq. (4-12), or

After pre- and postmultiplication by  and 1/s,
respectively, the block diagram of the system is
simplified to what is shown in Fig. 4-14, which
ultimately results in



Figure 4-14   A block diagram representation of 

Equation (4-19) is the transfer function of system Eq.
(4-15). 

EXAMPLE 4-1-4   Find the velocity transfer function using Fig. 4-12 and
compare that to the derivative of Eq. (4-19).

SOLUTION   Simplification of the two feedback
loops in Fig. 4-12, starting with the internal loop first, we
have

Equation (4-20) is the same as the derivative of Eq. (4-



19), which is nothing but multiplying Eq. (4-19) by an s
term. Try to find the A(s)/U(s) transfer function.
Obviously you must get s2X(s)/U(s). 

4-1-3  Block Diagram Reduction
As you might have noticed from the examples in the previous section, the

transfer function of a control system may be obtained by manipulation of its
block diagram and by its ultimate reduction into one block. For complicated
block diagrams, it is often necessary to move a comparator or a branch
point to make the block diagram reduction process simpler. The two key
operations in this case are

1.    Moving a branch point from P to Q, as shown in Figs. 4-15a and
b. This operation must be done such that the signals Y(s) and B(s) are
unaltered. In Fig. 4-15a, we have the following relations:

Figure 4-15   (a) Branch point relocation from point P to (b) point Q.

In Fig. 4-15b, we have the following relations:



But

2.    Moving a comparator, as shown in Figs. 4-16a and b, should also
be done such that the output Y(s) is unaltered. In Fig. 4-16a, we have the
following relations:

Figure 4-16   (a) Comparator relocation from the right-hand side of block
G2(s) to (b) the left-hand side of block G2(s).

In Fig. 4-16b, we have the following relations:



So

EXAMPLE 4-1-5   Find the input-output transfer function of the system
shown in Fig. 4-17a.





Figure 4-17   (a) Original block diagram. (b) Moving the branch point at
Y1 to the left of block G2. (c) Combining the blocks G1, G2, and G3. (d)
Eliminating the inner feedback loop.

SOLUTION   To perform the block diagram
reduction, one approach is to move the branch point at Y1

to the left of block G2, as shown in Fig. 4-17b. After that,
the reduction becomes trivial, first by combining the
blocks G2, G3, and G4 as shown in Fig. 4-17c, and then by
eliminating the two feedback loops. As a result, the
transfer function of the final system after the reduction in
Fig. 4-17d becomes

4-1-4  Block Diagrams of Multi-Input Systems: Special Case
—Systems with a Disturbance

An important case in the study of control systems is when a disturbance
signal is present. Disturbance (such as heat loss in the example in Fig. 4-1)
usually adversely affects the performance of the control system by placing a
burden on the controller/actuator components. A simple block diagram with
two inputs is shown in Fig. 4-18. In this case, one of the inputs, D(s), is
known as disturbance, while R(s) is the input. Before designing a proper
controller for the system, it is always important to learn the effects of D(s) on
the system.



Figure 4-18   Block diagram of a system undergoing disturbance.

We use the method of superposition in modeling a multi-input system.

Super Position
For linear systems, the overall response of the system under multi-inputs is

the summation of the responses due to the individual inputs, that is, in this
case,

When D(s) = 0, the block diagram is simplified (Fig. 4-19) to give the
transfer function:

Figure 4-19   Block diagram of the system in Fig. 4-18, when D(s) = 0.

When R(s) = 0, the block diagram is rearranged to give (Fig. 4-20):



Figure 4-20   Block diagram of the system in Fig. 4-18, when R(s) = 0.

As a result, from Eq. (4-28) to Eq. (4-32), we ultimately get

Observations

 and  have the same denominators if the disturbance signal goes



to the forward path. The negative sign in the numerator of  shows that
the disturbance signal interferes with the controller signal, and, as a result, it
adversely affects the performance of the system. Naturally, to compensate,
there will be a higher burden on the controller.

4-1-5  Block Diagrams and Transfer Functions of
Multivariable Systems

In this section, we illustrate the block diagram and matrix representations
(see App. A) of multivariable systems. Two block diagram representations of
a multivariable system with p inputs and q outputs are shown in Figs. 4-21a
and b. In Fig. 4-21a, the individual input and output signals are designated,
whereas in the block diagram of Fig. 4-21b, the multiplicity of the inputs and
outputs is denoted by vectors. The case of Fig. 4-21b is preferable in practice
because of its simplicity.

Figure 4-21   Block diagram representations of a multivariable system.

Figure 4-22 shows the block diagram of a multivariable feedback control



system. The transfer function relationships of the system are expressed in
vector-matrix form (see App. A):

Figure 4-22   Block diagram of a multivariable feedback control system.

where Y(s) is the q × 1 output vector; U(s), R(s), and B(s) are all p × 1
vectors; and G(s) and H(s) are q × p and p × q transfer-function matrices,
respectively. Substituting Eq. (4-11) into Eq. (4-10) and then from Eq. (4-10)
to Eq. (4-9), we get

Solving for Y(s) from Eq. (4-12) gives

provided that I + G(s)H (s) is nonsingular. The closed-loop transfer matrix
is defined as

Then Eq. (4-14) is written as

EXAMPLE 4-1-6  Consider that the forward-path transfer function matrix
and the feedback-path transfer function matrix of the



system shown in Fig. 4-22 are

respectively. The closed-loop transfer function matrix
of the system is given by Eq. (4-15), and is evaluated as
follows:

The closed-loop transfer function matrix is

where

Thus,



4-2  SIGNAL-FLOW GRAPHS
A SFG may be regarded as an alternative representation of a block

diagram. The SFG was introduced by S. J. Mason [2, 3] for the cause-and-
effect (input-output) representation of linear systems that are modeled by
algebraic equations. An SFG may be defined as a graphical means of
portraying the input-output relationships among the variables of a set of
linear algebraic equations.

The relation between block diagrams and SFGs are tabulated for four
important cases, as shown in Fig. 4-23.



Figure 4-23   Block diagrams and their SFG equivalent representations.
(a) Input-output representation in block diagram form. (b) Equivalent input-
output representation in SFG form. (c) A cascade block diagram
representation. (d) Equivalent cascade SFG representation. (e) A parallel
block diagram representation. (f) Equivalent parallel SFG representation. (g)
A negative feedback block diagram representation. (h) Equivalent negative



feedback SFG representation.

Considering Fig. 4-23b, when constructing an SFG, junction points, or
nodes, are used to represent variables—in this case U(s) is the input variable
and Y(s) is the output variable. The nodes are connected by line segments
called branches, according to the cause-and-effect equations. The branches
have associated branch gains and directions—in this case the branch
represents the transfer function G(s). A signal can transmit through a branch
only in the direction of the arrow. In general, the construction of the SFG is
basically a matter of following through the input-output relations of each
variable in terms of itself and the others. As a result, in Fig. 4-23b, the SFG
represents the transfer function:

In an SFG, signals can transmit through a branch only in the direction
of the arrow.

where U(s) is the input, Y(s) is the output, and G(s) is the gain, or
transmittance, between the two variables. The branch between the input node
and the output node should be interpreted as a unilateral amplifier with gain
G(s), so when a signal of one unit is applied at the input U(s), a signal of
strength G(s)U(s) is delivered at node Y(s). Although algebraically Eq. (4-44)
can be written as

the SFG of Fig. 4-23b does not imply this relationship. If Eq. (4-45) is
valid as a cause-and-effect equation, a new SFG should be drawn with Y(s) as
the input and U(s) as the output.

Comparing Fig. 4-23c with Fig. 4-23d, or Fig. 4-23e with Fig. 4-23g, it is
easy to see that the nodes in SFGs represent the variables in the block
diagrams—that is, input, output, and intermediate variables such as A(s). The



nodes are then connected through branches with gains that represent the
transfer functions G1(s) and G2(s), respectively.

The SFG representation of cascade and parallel forms and the feedback
system, shown in Figs. 4-23e and f, are discussed in more detail in the next
section.

4-2-1  SFG Algebra
Let us outline the following manipulation rules and algebra for the SFGs:

1.    The value of the variable represented by a node is equal to the sum
of all the signals entering the node. For the SFG of Fig. 4-24, the value
of y1 is equal to the sum of the signals transmitted through all the
incoming branches; that is,

Figure 4-24   Node as a summing point and as a transmitting point.

2.    The value of the variable represented by a node is transmitted
through all branches leaving the node. In the SFG of Fig. 4-24, we have



3.    Parallel branches in the same direction connecting two nodes can
be replaced by a single branch with gain equal to the sum of the gains of
the parallel branches. An example of this case is illustrated in Figs. 4-23f
and 4-25.

Figure 4-25   Signal-flow graph with parallel paths replaced by one with a
single branch.

4.    A series (cascade) connection of unidirectional branches, as shown
in Fig. 4-23d or 4-26, can be replaced by a single branch with gain equal
to the product of the branch gains.

Figure 4-26   Signal-flow graph with cascade unidirectional branches
replaced by a single branch.

5.    A feedback system as shown in Fig. 4-23g is subject to the



following algebraic equations:

and

Substituting Eq. (4-49) into Eq. (4-48), while eliminating the
intermediate variable E(s), we get

Solving for Y(s)/R(s), we get the closed-loop transfer function

EXAMPLE 4-2-1  Convert the block diagram in Fig. 4-27a to an SFG
format.



Figure 4-27   (a) Block diagram of a control system. (b) Signal nodes. (c)
Equivalent signal-flow graph.

SOLUTION   First identify all block diagram
variables—in this case, R, E, Y3, Y2, Y1, and Y. Next,



associate each variable to a node, as shown in Fig. 4-27b.
Note that it is important to clearly identify the input and
output nodes R and Y, respectively, as shown in Fig. 4-
27b. Use branches to interconnect the nodes while
ensuring the branch directions match the signal directions
in the block diagram. Label each branch with the
appropriate gain corresponding to a transfer function in
Fig. 4-27a. Make sure to incorporate the negative
feedback signs into the gains (i.e., –G1(s),–G2(s) and – 1)
—see Fig. 4-27c. 

EXAMPLE 4-2-2   As an example on the construction of an SFG, consider
the following set of algebraic equations:

The SFG for these equations is constructed, step by
step, in Fig. 4-28. 



Figure 4-28   Step-by-step construction of the signal-flow graph in Eq. (4-
52).

4-2-2  Definitions of SFG Terms
In addition to the branches and nodes defined earlier for the SFG, the

following terms are useful for the purpose of identification and execution of
the SFG algebra.



Input Node (Source)
An input node is a node that has only outgoing branches (example: node

U(s) in Fig. 4-23b).

Output Node (Sink)
An output node is a node that has only incoming branches (example: node

Y(s) in Fig. 4-23b). However, this condition is not always readily met by an
output node. For instance, the SFG in Fig. 4-29a does not have a node that
satisfies the condition of an output node. It may be necessary to regard y2

and/or y3 as output nodes to find the effects at these nodes due to the input. To
make y2 an output node, we simply connect a branch with unity gain from the
existing node y2 to a new node also designated as y2, as shown in Fig. 4-29b.
The same procedure is applied to y3. Notice that, in the modified SFG of Fig.
4-29b, the equations y2 = y2 and y3 = y3 are added to the original equations. In
general, we can make any noninput node of an SFG an output by the
procedure just illustrated. However, we cannot convert a noninput node into
an input node by reversing the branch direction of the procedure described
for output nodes. For instance, node y2 of the SFG in Fig. 4-29a is not an
input node. If we attempt to convert it into an input node by adding an
incoming branch with unity gain from another identical node y2, the SFG of
Fig. 4-30 would result. The equation that portrays the relationship at node y2

now reads

An input node has only outgoing branches.

An output node has only incoming branches.



Figure 4-29   Modification of a signal-flow graph so that y2 and y3 satisfy
the condition as output nodes.

Figure 4-30   Erroneous way to make node y2 an input node.

which is different from the original equation given in Fig. 4-29a.

Path
A path is any collection of a continuous succession of branches traversed

in the same direction. The definition of a path is entirely general, since it
does not prevent any node from being traversed more than once. Therefore,
as simple as the SFG of Fig. 4-29a is, it may have numerous paths just by



traversing the branches a23 and a32 continuously.

Forward Path
A forward path is a path that starts at an input node and ends at an output

node and along which no node is traversed more than once. For example, in
the SFG of Fig. 4-28d, y1 is the input node, and the rest of the nodes are all
possible output nodes. The forward path between y1 and y2 is simply the
connecting branch between the two nodes. There are two forward paths
between y1 and y3: One contains the branches from y1 to y2 to y3, and the other
one contains the branches from y1 to y2 to y4 (through the branch with gain a24)
and then back to y3 (through the branch with gain a43). The reader should try to
determine the two forward paths between y1 and y4. Similarly, there are three
forward paths between y1 and y5.

Path Gain
The product of the branch gains encountered in traversing a path is called

the path gain. For example, the path gain for the path y1 – y2 – y3 – y4 in Fig. 4-
28d is a12a23a34

Loop
A loop is a path that originates and terminates on the same node and along

which no other node is encountered more than once. For example, there are
four loops in the SFG of Fig. 4-28d. These are shown in Fig. 4-31.



Figure 4-31   Four loops in the signal-flow graph of Fig. 4-28d.

The SFG gain formula can only be applied between an input node
and an output node.

Δ is the same regardless of which output node is chosen.

Forward-Path Gain
The forward-path gain is the path gain of a forward path.

Loop Gain
The loop gain is the path gain of a loop. For example, the loop gain of the

loop y2 – y4 – y3 – y2 in Fig. 4-31 is a24a43a32.

Nontouching Loops
Two parts of an SFG are nontouching if they do not share a common node.

For example, the loops y2 – y3 – y2 and y4 – y4 of the SFG in Fig. 4-28d are
nontouching loops.

Two parts of an SFG are nontouching if they do not share a common
node.

4-2-3  Gain Formula for SFG
Given an SFG or block diagram, the task of solving for the input-output

relations by algebraic manipulation could be quite tedious. Fortunately, there
is a general gain formula available that allows the determination of the input-
output relations of an SFG by inspection.

Given an SFG with N forward paths and K loops, the gain between the
input node yin and output node yout is [3]



where

or

Δ = 1 – (sum of the gains of all individual loops) + (sum of products
of gains of all possible combinations of two nontouching loops) – (sum
of products of gains of all possible combinations of three nontouching
loops) + (sum of products of gains of all possible combinations of four
nontouching loops) –...

Δk = the Δ for that part of the SFG that is nontouching with the kth
forward path.

The gain formula in Eq. (4-54) may seem formidable to use at first glance.
However, Δ and Δk are the only terms in the formula that could be
complicated if the SFG has a large number of loops and nontouching loops.

Care must be taken when applying the gain formula to ensure that it is
applied between an input node and an output node.

EXAMPLE 4-2-3  Consider that the closed-loop transfer function Y(s)/R(s)
of the SFG in Fig. 4-23f is to be determined by use of
the gain formula, Eq. (4-54). The following results are
obtained by inspection of the SFG:

1.    There is only one forward path between R(s) and
Y(s), and the forward-path gain is

2.    There is only one loop; the loop gain is



3.    There are no nontouching loops since the forward
path is in touch with the loop L11. Thus, Δ1 = 1, and

Using Eq. (4-54), the closed-loop transfer function is
written as

which agrees with Eq. (4-12) or (4-51). 

EXAMPLE 4-2-4  Consider the SFG shown in Fig. 4-28d. Let us first
determine the gain between y1 and y5 using the gain
formula.
The three forward paths between y1 and y5 and the

forward-path gains are

The four loops of the SFG are shown in Fig. 4-28. The
loop gains are

There are two nontouching loops; that is,



Thus, the product of the gains of the two nontouching
loops is

All the loops are in touch with forward paths M1 and
M3. Thus, Δ1 = Δ3 = 1. Two of the loops are not in touch
with forward path M2. These loops are y3 – y4 – y3 and y4 –
y4. Thus,

Substituting these quantities into Eq. (4-54), we have

where

The reader should verify that choosing y2 as the
output,

where Δ is given in Eq. (4-63). 

EXAMPLE 4-2-5  We can convert the block diagram in Fig. 4-32a to an
SFG format in Fig. 4-32c, by first associating all block
diagram variables y1 – y7 to a node as in Fig. 4-32b.
Next using branches we interconnect the nodes while
ensuring the branch directions match the signal
directions in the block diagram. Then we label each



branch with the appropriate gain corresponding to a
transfer function in Fig. 4-32a. Make sure to
incorporate the negative feedback signs into the gains
(i.e., – H1(s), – H2(s), – H3(s), and – H4(s))—see Fig. 4-
32c.

Figure 4-32   (a) Block diagram of a control system. (b) Signal nodes



representing the variables. (c) Equivalent signal-flow graph.

The two forward paths between y1 and y7 and the
forward-path gains are

The four loops of the SFG are shown in Fig. 4-32. The
loop gains are

The three following loops are nontouching

Thus, the products of the gains of two of the three
nontouching loops are

Also the following two loops are nontouching

Thus, the product of the gains of the nontouching loops
is

Further, the product of the three nontouching loop
gains is



Hence,

All the loops are in touch with forward paths M1. Thus,
Δ1 = 1. Loop y4 – y5 – y4 is not in touch with forward path
M2. Thus,

Substituting these quantities into Eq. (4-54), we have

The following input-output relations may also be
obtained by use of the gain formula:

4-2-4  Application of the Gain Formula between Output
Nodes and Noninput Nodes

It was pointed out earlier that the gain formula can only be applied
between a pair of input and output nodes. Often, it is of interest to find the
relation between an output-node variable and a noninput-node variable. For
example, in the SFG of Fig. 4-32, it may be of interest to find the relation
y7/y2, which represents the dependence of y7 upon y2; the latter is not an input.

We can show that, by including an input node, the gain formula can still be
applied to find the gain between a noninput node and an output node. Let yin



be an input and yout be an output node of an SFG. The gain, yout/y2, where y2 is
not an input, may be written as

Because Δ is independent of the inputs and the outputs, the last equation is
written as

Notice that Δ does not appear in the last equation.

EXAMPLE 4-2-6  From the SFG in Fig. 4-32, the gain between y2 and y7 is
written as

EXAMPLE 4-2-7  Consider the block diagram shown in Fig. 4-27a. The
equivalent SFG of the system is shown in Fig. 4-27c.
Notice that since a node on the SFG is interpreted as
the summing point of all incoming signals to the node,
the negative feedback on the block diagram is
represented by assigning negative gains to the
feedback paths on the SFG. First, we can identify the
forward paths and loops in the system and their
corresponding gains. That is,



The four loops of the SFG are shown in Fig. 4-28. The
loop gains are

Note that all loops touch. Hence, the closed-loop
transfer function of the system is obtained by applying
Eq. (4-54) to either the block diagram or the SFG in Fig.
4-27. That is,

where

Similarly,

The last expression is obtained using Eq. (4-74). 

4-2-5  Simplified Gain Formula
From Example 4-2-7, we can see that all loops and forward paths are

touching in this case. As a general rule, if there are no nontouching loops and
forward paths (e.g., y2 – y3 – y2 and y4 – y4 in Example 4-2-3) in the block
diagram or SFG of the system, then Eq. (4-54) takes a far simpler look, as
shown next.



EXAMPLE 4-2-8  For Example 4-2-5, where there are nontouching loops, as
seen in Fig. 4-33, the simplified gain formula can be
used by eliminating the nontouching loops after some
block diagram manipulations.

Figure 4-33   (a) Modified block diagram of the control system in Fig. 4-
32 to eliminate the nontouching loops. (b) Signal nodes representing the



variables. (c) Equivalent signal-flow graph.

The two forward paths between y1 and y7 and the
forward-path gains are now

The two touching loops of the SFG are shown in Fig.
4-33. The loop gains are

Note in this case

Hence,

As a result,

4-3  STATE DIAGRAM
In this section, we introduce the state diagram, which is an extension of the

SFG to portray state equations and differential equations. A state diagram is



constructed following all the rules of the SFG using the Laplace-transformed
state equations. The basic elements of a state diagram are similar to the
conventional SFG, except for the integration operation.

Let the variables x1(t) and x2(t) be related by the first-order differentiation:

Integrating both sides of the last equation with respect to t from the initial
time t0, we get

Because the SFG algebra does not handle integration in the time domain,
we must take the Laplace transform on both sides of Eq. (4-85). We have

Because the past history of the integrator is represented by x1(t0), and the
state transition is assumed to start at τ = t0, x2(τ) = 0 for 0 < τ < t0. Thus, Eq.
(4-86) becomes

Equation (4-83) is now algebraic and can be represented by an SFG, as
shown in Fig. 4-34, where the output of the integrator is equal to s−1 times the
input, plus the initial condition x1(t0)/s. An alternative SFG with fewer
elements for Eq. (4-87) is shown in Fig. 4-35.



Figure 4-34   Signal-flow graph representation of 
.

Figure 4-35   San alternative signal-flow graph representation of 
.

4-3-1  From Differential Equations to State Diagrams
When a linear system is described by a high-order differential equation, a

state diagram can be constructed from these equations, although a direct
approach is not always the most convenient. Consider the following
differential equation:

To construct a state diagram using this equation, we rearrange the equation
as



The outputs of the integrators in the state diagram are usually defined as
the state variable.

The process is highlighted next.

1.    The nodes representing  and Y(s)
are arranged from left to right, as shown in Fig. 4-36a.
2.    Because siY(s) corresponds to diy(t)/dti, i = 0, 1, 2, …, n, in the
Laplace domain, the nodes in Fig. 4-36a are connected by branches to
portray Eq. (4-85), resulting in Fig. 4-36b.



Figure 4-36   State-diagram representation of the differential equation of
Eq. (4-89).

3.    Finally, the integrator branches with gains of s−1 are inserted, and the
initial conditions are added to the outputs of the integrators, according to
the basic scheme in Fig. 4-35.

The complete state diagram is drawn as shown in Fig. 4-36c. The outputs
of the integrators are defined as the state variables, x1, x2, …, xn. This is
usually the natural choice of state variables once the state diagram is drawn.

When the differential equation has derivatives of the input on the right
side, the problem of drawing the state diagram directly is not as
straightforward as just illustrated. We will show that, in general, it is more
convenient to obtain the transfer function from the differential equation first
and then arrive at the state diagram through decomposition (Sec. 8-10).

The outputs of the integrators in the state diagram are usually defined
as the state variable.

EXAMPLE 4-3-1  Consider the differential equation

Equating the highest-ordered term of the last equation
to the rest of the terms, we have

Following the procedure just outlined, the state
diagram of the system is drawn as shown in Fig. 4-37.
The state variables x1 and x2 are assigned as shown. 



Figure 4-37   State diagram for Eq. (4-89).

4-3-2  From State Diagrams to Transfer Functions
The transfer function between an input and an output is obtained from the

state diagram by using the gain formula and setting all other inputs and initial
states to zero. The following example shows how the transfer function is
obtained directly from a state diagram.

EXAMPLE 4-3-2  Consider the state diagram of Fig. 4-37. The transfer
function between R(s) and Y(s) is obtained by applying
the gain formula between these two nodes and setting
the initial states to zero. We have

4-3-3  From State Diagrams to State and Output Equations
The state equations and the output equations can be obtained directly from

the state diagram by using the SFG gain formula. The general form of a state
equation and the output equation for a linear system is described in Chap. 3
and presented here.

State equation:



Output equation:

where x(t) is the state variable; r(t) is the input; y(t) is the output; and a, b,
c, and d are constant coefficients. Based on the general form of the state and
output equations, the following procedure of deriving the state and output
equations from the state diagram are outlined:

1.    Delete the initial states and the integrator branches with gains s−1

from the state diagram, since the state and output equations do not
contain the Laplace operator s or the initial states.
2.    For the state equations, regard the nodes that represent the
derivatives of the state variables as output nodes, since these variables
appear on the left-hand side of the state equations. The output y(t) in the
output equation is naturally an output node variable.
3.    Regard the state variables and the inputs as input variables on the
state diagram, since these variables are found on the right-hand side of
the state and output equations.
4.    Apply the SFG gain formula to the state diagram.

EXAMPLE 4-3-3  Figure 4-38 shows the state diagram of Fig. 4-37 with the
integrator branches and the initial states eliminated.
Using dx1(t)/dt and dx2(t)/dt as the output nodes and
x1(t), x2(t), and r(t) as input nodes, and applying the
gain formula between these nodes, the state equations
are obtained as

Figure 4-38   State diagram of Fig. 4-37 with the initial states and the



integrator branches left out.

Applying the gain formula with x1(t), x2(t), and r(t) as
input nodes and y(t) as the output node, the output
equation is written as

Note that for the complete state diagram, shown in Fig.
4-37 with t0 as the initial time. The outputs of the
integrators are assigned as state variables. Applying the
gain formula to the state diagram in Fig. 4-37, with X1(s)
and X2(s) as output nodes and x1(t0), x2(t0), and R(s) as
input nodes, we have

where

After simplification, Eqs. (4-98) and (4-99) are
presented in vector-matrix form:

Note that Eq. (4-100) may also be obtained by taking
the Laplace transform of Eqs. (4-95) and (4-96). For zero



initial conditions, and since Y(s) = X1(s), the output-input
transfer function is

which is the same as Eq. (4-88). 

EXAMPLE 4-3-4   As another example on the determination of the state
equations from the state diagram, consider the state
diagram shown in Fig. 4-39a. This example will also
emphasize the importance of applying the gain
formula. Figure 4-39b shows the state diagram with
the initial states and the integrator branches deleted.
Notice that, in this case, the state diagram in Fig. 4-
39b still contains a loop. By applying the gain formula
to the state diagram in Fig. 4-39b with  and

 as output-node variables and r(t), x1(t), x2(t), and
x3(t) as input nodes, the state equations are obtained as
follows in vector-matrix form:



Figure 4-39   (a) State diagram. (b) State diagram in part (a) with all initial
states and integrators left out.



The output equation is

4-4  CASE STUDIES
EXAMPLE 4-4-1  Consider the mass-spring-damper system shown in Fig.

4-40a. The linear motion concerned is in the
horizontal direction. The free-body diagram of the
system is shown in Fig. 4-40b. Following the
procedure outlined in Sec. 2-1-1, the equation of
motion may be written into an input-output form as

Figure 4-40   (a) Mass-spring-friction system. (b) Free-body diagram.



where y(t) is the output,  is considered the input,

and  and  represent velocity
and acceleration, respectively.

For zero initial conditions, the transfer function
between Y(s) and F(s) is obtained by taking the Laplace
transform on both sides of Eq. (4-105):

Hence,

The same result is obtained by applying the gain
formula to the block diagram, which is shown in Fig. 4-
41.

Figure 4-41   Block diagram representation of mass-spring-damper system
of Eq. (4-106).

Equation (4-105) may also be represented in the space
state form



where

and

The output equation is

So Eq. (4-107) is rewritten as

The state Eq. (4-111) may also be written as a set of
first-order differential equations:

For zero initial conditions, the transfer function
between Y(s) and F(s) is obtained by taking the Laplace
transform on both sides of Eq. (4-112):



resulting in

The block diagram associated with Eq. (4-113) is
shown in Fig. 4-42. Note that this block diagram may
also be obtained directly from the block diagram in Fig.
4-41 by factoring out the 1/M term. The transfer function
in Eq. (4-114) may also be obtained by applying the gain
formula to the block diagram in Fig. 4-42.

Figure 4-42   Block diagram representation of mass-spring-damper system
of shown in Fig. 4-41.

For nonzero initial conditions, Eq. (4-112) has a
different Laplace transform representation that may be
written as

The corresponding SFG representation for Eq. (4-115)
is shown in in Fig. 4-43.



Figure 4-43   SFG representation of mass-spring-damper system of Eq. (4-
115) with nonzero initial conditions x1(t0) and x2(t0).

Upon simplifying Eq. (4-115) or by applying the gain
formula to the SFG representations of the system, the
output becomes

Toolbox 4-4-1
Time domain step response for Eq. (4-114) is calculated using

MATLAB for K = 1, M = 1, B = 1:



The step response of the system in Eq. (4-114) is shown in Fig. 4-44.



Figure 4-44   Time response of Eq. (4-114) for a unit step input.

EXAMPLE 4-4-2  Consider the system shown in Fig. 4-45a. Because the
spring is deformed when it is subject to a force f(t),
two displacements, y1 and y2, must be assigned to the
end points of the spring. The free-body diagrams of
the system are shown in Fig. 4-45b. The force
equations are



Figure 4-45   Mechanical system for Example 4-4-2. (a) Mass-spring-
damper system. (b) Free-body diagram.

These equations are rearranged in input-output form as

For zero initial conditions, the transfer function
between Y1(s) and F2(s) is obtained by taking the Laplace
transform on both sides of Eq. (4-118):

For state representation, the equations may be
rearranged as



The transfer function in Eq. (4-120) may also be
obtained by applying the gain formula to the block
diagram representation of the system, which is from Eq.
(4-121) and is shown in Fig. 4-46. Note that in Fig. 4-46,
F(s), Y1(s), X1(s), Y2(s), and X2(s) are Laplace transforms of
f(t), y1(t), x1(t), y2(t), and x2(t), respectively. For zero initial
conditions, the transfer function of Eq. (4-121) is the
same as that of Eq. (4-119). By using the last two
equations, the state variables are defined as x1(t) = y2(t)
and x2(t) = dy2(t)/dt, and t state equations are therefore
written as



Figure 4-46   Mass-spring-damper system of Eq. (4-121). (a) The signal-
flow graph representation. (b) Block diagram representation.

EXAMPLE 4-4-3  Figure 4-47a shows the diagram of a motor coupled to an
inertial load through a shaft with a spring constant K.
A nonrigid coupling between two mechanical
components in a control system often causes torsional
resonances that can be transmitted to all parts of the
system. The system variables and parameters are
defined as follows:



Figure 4-47   (a) Motor-load system. (b) Free-body diagram.

Tm(t) = motor torque
Bm = motor viscous-friction coefficient
K = spring constant of the shaft
θm(t) = motor displacement
ωm(t) = motor velocity
Jm = motor inertia
θL(t) = load displacement
ωL(t) = load velocity
JL = load inertia

The free-body diagrams of the system are shown in
Fig. 4-47b. The torque equations of the system are

In this case, the system contains three energy-storage



elements in Jm, JL, and K. Thus, there should be three state
variables. Care should be taken in constructing the state
diagram and assigning the state variables so that a
minimum number of the latter are incorporated.
Equations (4-123) and (4-124) are rearranged as

The state variables in this case are defined as 
 and 

 The state equations are

The SFG representation is shown in Fig. 4-48. 

Figure 4-48   Rotational system of Eq. (4-123) signal-flow graph
representation.



EXAMPLE 4-4-4   Let us consider the RLC network shown in Fig. 4-49a.
Using the voltage law



Figure 4-49   RLC network. (a) Electrical schematics. (b) Signal-flow
graph representation. (c) Block diagram representation.

Then

Taking a derivative of Eq. (4-129) with respect to time,
and using the relation for current in C:

we get the equation of the RLC network as

A practical approach is to assign the current in the
inductor L, i(t), and the voltage across the capacitor C,
ec(t), as the state variables. The reason for this choice is
because the state variables are directly related to the
energy-storage element of a system. The inductor stores
kinetic energy, and the capacitor stores electric potential
energy. By assigning i(t) and ec(t) as state variables, we
have a complete description of the past history (via the
initial states) and the present and future states of the
network. The state equations for the network in Fig. 4-
49b are written by first equating the current in C and the
voltage across L in terms of the state variables and the
applied voltage e(t). In vector-matrix form, the equations
of the system are expressed as



This format is also known as the state form if we set

Then

The transfer functions of the system are obtained by
applying the gain formula to the SFG or block diagram of
the system in Fig. 4-49c when all the initial states are set
to zero.

Toolbox 4-4-2
Time domain unit step responses using Eqs. (4-135) and (4-136) are

shown using MATLAB for R = 1, L = 1, and C = 1:



The results are shown in Fig. 4-50 where unit step
responses for ec(t) and i(t) are obtained from Eq. (4-135)
and i(t) using Eq. (4-136) for R = 1, L = 1, and C = 1. 



Figure 4-50   RLC network time domain unit step responses for ec(t) using
Eq. (4-135) and i(t) using Eq. (4-136) for R = 1, L = 1, and C = 1.

EXAMPLE 4-4-5  As another example of writing the state equations of an
electric network, consider the network shown in Fig.
4-51a. According to the foregoing discussion, the
voltage across the capacitor, ec(t), and the currents of
the inductors, i1(t) and i2(t), are assigned as state
variables, as shown in Fig. 4-51a. The state equations
of the network are obtained by writing the voltages
across the inductors and the currents in the capacitor
in terms of the three state variables. The state



equations are

Figure 4-51   Network of Example 4-4-5. (a) Electrical schematic. (b) SFG
representation.



In vector-matrix form, the state equations are written
as

where x1 = i1(t), x2 = i2(t), and x3 = ec(t). The signal-flow
diagram of the network, without the initial states, is
shown in Fig. 4-51b. The transfer functions between I1(s)
and E(s), I2(s) and E(s), and Ec(s) and E(s), respectively,
are written from the state diagram

where

The the unit step responses are shown in Fig. 4-52.



Figure 4-52   Example 4-4-5 network time domain unit step responses for
i1(t) using Eq. (4-141), i2(t) using Eq. (4-142) and ec(t) using Eq. (4-143) for R1

= 1, R2 = 1, L1 = 1, L2 = 1, and C = 1.

Toolbox 4-4-3
Time domain unit step responses using Eqs. (4-141) to (4-143) are

shown using MATLAB for R1 = 1, R2 = 1, L1 = 1, L2 = 1, and C = 1:



4-5  MATLAB TOOLS
There is no specific software developed for this chapter. Although the

MATLAB Controls Toolbox offers functions for finding the transfer
functions from a given block diagram, it was felt that students may master
this subject without referring to a computer. For simple operations, however,
MATLAB may be used, as shown in the following example.

EXAMPLE 4-5-1  Consider the following transfer functions, which
correspond to the block diagrams shown in Fig. 4-53.



Figure 4-53   Basic block diagrams used for Example 4-3-1.

Use MATLAB to find the transfer function Y(s)/R(s)
for each case. The results are as follows.

Toolbox 4-5-1
Case (a): Use MATLAB to find G1*G2.



Use “minreal(YR)” for pole zero cancellation, if necessary.
Alternatively use “YR=series(G1,G2)” instead of “YR=G1*G2”.
Case (b): Use MATLAB to find G1 + G2.



Use “minreal(YR)” for pole zero cancellation, if necessary.
Alternatively use “YR=parallel(G1,G2)” instead of “YR=G1+G2”.

Toolbox 4-5-2
Case (c): Use MATLAB to find the closed-loop feedback function 



Use “minreal (YR)” for pole zero cancellation, if necessary.

4-6  SUMMARY
This chapter was devoted to the mathematical modeling of physical

systems. Transfer functions, block diagrams, and signal-flow graphs were
defined. The block diagram representation was shown to be a versatile



method of portraying linear and nonlinear systems. A powerful method of
representing the interrelationships between the signals of a linear system is
the SFG. When applied properly, an SFG allows the derivation of the transfer
functions between input and output variables of a linear system using the gain
formula. A state diagram is an SFG that is applied to dynamic systems that
are represented by differential equations.

At the end of the chapter, various practical examples were given, which
complete the modeling aspects of dynamic and control systems already
studied in Chaps. 2 and 3. MATLAB was also used to calculate transfer
functions and time responses of simple block diagram systems.
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PROBLEMS
PROBLEMS FOR SEC. 4-1
4-1.    Consider the block diagram shown in Fig. 4P-1.



Figure 4P-1

Find:
(a)   The loop transfer function.
(b)   The forward path transfer function.
(c)   The error transfer function.
(d)   The feedback transfer function.
(e)   The closed loop transfer function.

4-2.    Reduce the block diagram shown in Fig. 4P-2 to unity feedback
form and find the system characteristic equation.

Figure 4P-2

4-3.    Reduce the block diagram shown in Fig. 4P-3 and find the Y/X.



Figure 4P-3

4-4.    Reduce the block diagram shown in Fig. 4P-4 to unity feedback
form and find the Y/X.

Figure 4P-4

4-5.    The aircraft turboprop engine shown in Fig. 4P-5a is controlled by a
closed-loop system with block diagram shown in Fig. 4P-5b. The engine is
modeled as a multivariable system with input vector E(s), which contains the
fuel rate and propeller blade angle, and output vector Y(s), consisting of the
engine speed and turbine-inlet temperature. The transfer function matrices are
given as



Find the closed-loop transfer function matrix [I+G(s)]–1G(s).

Figure 4P-5

4-6.    Use MATLAB to solve Prob. 4-5.

4-7.    The block diagram of the position-control system of an electronic
word processor is shown in Fig. 4P-7.

(a)   Find the loop transfer function Θo(s)/Θe(s) (the outer feedback path is
open).

(b)   Find the closed-loop transfer function Θo(s)/Θr(s).



Figure 4P-7

4-8.    The block diagram of a feedback control system is shown in Fig. 4P-
8. Find the following transfer functions:

(a)   

(b)   

(c)   
(d)   Find the output Y(s) when R(s) and N(s) are applied simultaneously.



Figure 4P-8

4-9.    The block diagram of a feedback control system is shown in Fig. 4P-
9.

(a)   Apply the SFG gain formula directly to the block diagram to find the
transfer functions:

Express Y(s) in terms of R(s) and N(s) when both inputs are applied
simultaneously.

(b)   Find the desired relation among the transfer functions G1(s), G2(s),
G3(s), G4(s), H1(s) and H2(s) so that the output Y(s) is not affected by the
disturbance signal N(s) at all.



Figure 4P-9

4-10.   Figure 4P-10 shows the block diagram of the antenna control
system of the solar-collector field shown in Fig. 1-5. The signal N(s) denotes
the wind gust disturbance acted on the antenna. The feedforward transfer
function Gds) is used to eliminate the effect of N(s) on the output Y(s). Find
the transfer function Y(s)/N(s)|R=0. Determine the expression of Gd(s) so that
the effect of N(s) is entirely eliminated.

Figure 4P-10

4-11.    Figure 4P-11 shows the block diagram of a dc-motor control



system. The signal N(s) denotes the frictional torque at the motor shaft.
(a)   Find the transfer function H(s) so that the output Y(s) is not affected

by the disturbance torque N(s).
(b)   With H(s) as determined in part (a), find the value of K so that the

steady-state value of e(t) is equal to 0.1 when the input is a unit-ramp
function, , and N(s) = 0. Apply the final-value
theorem.

Figure 4P-11

4-12.    The block diagram of an electric train control is shown in Fig. 4P-
12. The system parameters and variables are

er(t) = voltage representing the desired train speed,

v(t) = speed of train, ft/sec

M =Mass of train = 30,000 lb/sec

K = amplifier gain

Kt = gain of speed indicator = 0.15 V/ft/sec



Figure 4P-12

To determine the transfer function of the controller, we apply a step
function of 1 V to the input of the controller, that is, ec(t) = us(t). The output
of the controller is measured and described by the following equation:

(a)   Find the transfer function Gc(s) of the controller.
(b)   Derive the forward-path transfer function V(s)/E(s) of the system. The

feedback path is opened in this case.
(c)   Derive the closed-loop transfer function V(s)/Er(s) of the system.
(d)   Assuming that K is set at a value so that the train will not run away

(unstable), find the steady-state speed of the train in feet per second when the
input is er(t) = us(t)V.

4-13.    Use MATLAB to solve Prob. 4-12.

4-14.    Repeat Prob. 4-12 when the output of the controller is measured
and described by the following expression:

when a step input of 1 V is applied to the controller.

4-15.    Use MATLAB to solve Prob. 4-14.

4-16.    A linear time-invariant multivariable system with inputs r1(t) and
r2(t) and outputs y1(t) and y2(t) is described by the following set of differential
equations.



Find the following transfer functions:

PROBLEMS FOR SEC. 4-2

4-17.    Find the state-flow diagram for the system shown in Fig. 4P-4.

4-18.    Draw a signal-flow diagram for the system with the state-space of

4-19.    Find the state-space of a system with the following transfer
function:

4-20.    Draw signal-flow graphs for the following sets of algebraic
equations. These equations should first be arranged in the form of cause-and-
effect relations before SFGs can be drawn. Show that there are many possible
SFGs for each set of equations.

(a)   



(b)   

4-21.    The block diagram of a control system is shown in Fig. 4P-21.
(a)   Draw an equivalent SFG for the system.
(b)   Find the following transfer functions by applying the gain formula of

the SFG directly to the block diagram.

(c)   Compare the answers by applying the gain formula to the equivalent
SFG.

Figure 4P-21

4-22.   Apply the gain formula to the SFGs shown in Fig. 4P-22 to find the

following transfer functions: 





Figure 4P-22

4-23.    Find the transfer functions Y7/Y1 and Y2/Y1 of the SFGs shown in Fig.
4P-23.

Figure 4P-23

4-24.   Signal-flow graphs may be used to solve a variety of electric
network problems. Shown in Fig. 4P-24 is the equivalent circuit of an
electronic circuit. The voltage source ed(t) represents a disturbance voltage.
The objective is to find the value of the constant k so that the output voltage



eo(t) is not affected by ed(t). To solve the problem, it is best to first write a set
of cause-and-effect equations for the network. This involves a combination of
node and loop equations. Then construct an SFG using these equations. Find
the gain eo/ed with all other inputs set to zero. For ed not to affect eo, set eo/ed to
zero.

Figure 4P-24

4-25.    Show that the two systems shown in Fig. 4P-25a and b are
equivalent.



Figure 4P-25

4-26.    Show that the two systems shown in Fig. 4P-26a and b are not
equivalent.

Figure 4P-26

4-27.    Find the following transfer functions for the SFG shown in Fig. 4P-
27.



Figure 4P-27

4-28.    Find the following transfer functions for the SFG shown in Fig. 4P-
28. Comment on why the results for parts (c) and (d) are not the same.

(a)   

(b)   

(c)   



(d)   

Figure 4P-28

4-29.   The coupling between the signals of the turboprop engine shown in
Fig. 4P-4a is shown in Fig. 4P-29. The signals are defined as

R1(s) = fuel rate

R2(s) = propeller blade angle

Y1(s) = engine speed

Y2(s) = turbine inlet temperature
(a)   Draw an equivalent SFG for the system.
(b)   Find the Δ of the system using the SFG gain formula.
(c)   Find the following transfer functions:

(d)   Express the transfer functions in matrix form, Y(s) = G(s)R(s).



Figure 4P-29

4-30.    Figure 4P-30 shows the block diagram of a control system with
conditional feedback. The transfer function Gp(s) denotes the controlled
process, and Gc(s) and H(s) are the controller transfer functions.

(a)   Derive the transfer functions Y(s)/R(s)|N=0 and Y(s)/N(s)|R=0. Find
Y(s)/R(s)|N=0 when Gc(s) = Gp(s).

(b)   Let

Find the output response y(t) when N(s) = 0 and r(t) = us(t).
(c)   With Gp(s) and Gc(s) as given in part (b), select H(s) among the

following choices such that when n(t) = us(t) and r(t) = 0, the steady-state
value of y(t) is equal to zero. (There may be more than one answer.)

Keep in mind that the poles of the closed-loop transfer function must all be
in the left-half s-plane for the final-value theorem to be valid.



Figure 4P-30

4-31.    Use MATLAB to solve Prob. 4-30.

PROBLEMS FOR SEC. 4-3

4-32.    Consider the following differential equations of a system:

(a)   Draw a state diagram for the following state equations.
(b)   Find the characteristic equation of the system.
(c)   Find the transfer functions X1(s)/R(s) and X2(s)/R(s).

4-33.    The differential equation of a linear system is

where y(t) is the output, and r(t) is the input.
(a)   Draw a state diagram for the system.
(b)   Write the state equation from the state diagram. Define the state



variables from right to left in ascending order.
(c)   Find the characteristic equation and its roots. Use any computer

program to find the roots.
(d)   Find the transfer function Y(s)/R(s).
(e)   Perform a partial-fraction expansion of Y(s)/R(s).
(f)   Find the output y(t) for t ≥ 0 when r(t) = us(t).
(g)   Find the final value of y(t) by using the final-value theorem.

4-34.    Consider the differential equation given in Prob. 4-33. Use
MATLAB to

(a)   Perform a partial-fraction expansion of Y(s)/R(s).
(b)   Find the Laplace transform of the system.
(c)   Find the output y(t) for t ≥ 0 when r(t) = us(t).
(d)   Plot the step response of the system.
(e)   Verify the final value that you obtained in Prob. 4-33 part (g).

4-35.    Repeat Prob. 4-33 for the following differential equation:

4-36.    Repeat Prob. 4-34 for the differential equation given in Prob. 4-35.

4-37.    The block diagram of a feedback control system is shown in Fig.
4P-37.

(a)   Derive the following transfer functions:

(b)   The controller with the transfer function G4(s) is for the reduction of
the effect of the noise N(s). Find G4(s) so that the output Y(s) is totally
independent of N(s).

(c)   Find the characteristic equation and its roots when G4(s) is as
determined in part (b).



(d)   Find the steady-state value of e(t) when the input is a unit-step
function. Set N(s) = 0.

(e)   Find y(t) for t ≥ 0 when the input is a unit-step function. Use G4(s) as
determined in part (b).

Figure 4P-37

4-38.    Use MATLAB to solve Prob. 4-37.

ADDITIONAL PROBLEMS
4-39.    Assuming

(a)   Use MATLAB to find roots of P1 and P2.
(b)   Use MATLAB to calculate P3 = P2 – P1, P4 = P2 + P1, and P5 = (P1 –

P2)*P1.

4-40.    Use MATLAB to calculate the polynomial.
(a)   



(b)   

4-41.    Use MATLAB to perform partial-fraction expansion to the
following functions:

(a)   

(b)   

4-42.    Use MATLAB to calculate unity feedback closed loop transfer
function for Prob. 4-41.

4-43.    Use MATLAB to calculate
(a)   
(b)   

(c)   

(d)   

1See Chap. 7 for the difference between an input or a reference input.



CHAPTER 5



Stability of Linear Control Systems

Among the many forms of performance specifications used in design of
control systems, stability is the most important one. When all types of
systems are considered—linear, nonlinear, time-invariant, and time-varying
—the definition of stability can be given in many different forms. In this
book, we deal only with the stability of linear single-input single-output
(SISO) time-invariant systems.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Assess stability of linear SISO time-invariant systems in the Laplace
domain, or in the state space form.
2.  Use the Routh-Hurwitz criterion to investigate the stability of the
system.
3.  Use MATLAB to conduct your stability study.

In this chapter, we introduce the concept of stability, and utilize the Routh-
Hurwitz criterion to investigate the stability of SISO time-invariant systems.
Through various examples, we investigate the stability of transfer functions
and state space systems. We further use MATLAB tools to help solve various
problems.

5-1  INTRODUCTION TO STABILITY
In Chap. 3, from the studies of linear differential equations with constant

coefficients, we learned that the time response of a linear time-invariant
system is usually divided into two parts: the transient response and the
steady-state response. Let y(t) denote the time response of a continuous-data



system; then, in general, it can be written as

where yt(t) denotes the transient response and yss(t) denotes the steady-state
response.

In stable control systems, transient response corresponds to the
homogeneous solution of the governing differential equations and is defined
as the part of the time response that goes to zero as time becomes very large.
Thus, yt(t) has the property

The steady-state response is simply the part of the total response that
remains after the transient has died out.

As discussed in Sec. 3-4-3, stability of the system is directly dependent on
the roots of the system characteristic equation—or the poles of the system.
For a bounded input, the total response of the system generally follows the
input (bounded-output), if the roots of characteristic equation have negative
real components.

For BIBO stability, the roots of the characteristic equation must all lie
in the left-half s-plane.

A system that is BIBO stable is simply called stable; otherwise, it is
unstable.

With zero initial conditions, the system is said to be BIBO (bounded-input,
bounded-output) stable, or simply stable, if its output is bounded to a
bounded input. For BIBO stability, the roots of the characteristic equation, or
the poles of G(s), cannot be located in the right-half s-plane or on the jω-axis;
in other words, they must all lie in the left-half s-plane. A system is said to be
unstable if it is not BIBO stable. When a system has roots on the jω-axis, say,
at s = Jω0 and s = −Jω0, if the input is a sinusoid, (sin ω0t), then the output
will be of the form of (t sin ω0t), which is unbounded, and the system is



unstable.
For analysis and design purposes, we can classify stability as absolute

stability and relative stability.1 Absolute stability refers to whether the
system is stable or unstable; it is a yes or no answer. Once the system is found
to be stable, it is of interest to determine how stable it is, and this degree of
stability is a measure of relative stability.

We start by demonstrating the concept of stability through a simple
example.

EXAMPLE 5-1-1  In Chap. 2, we obtained the equation of motion of a
simple (ideal) pendulum with a mass m and a massless
rod of length l, hinged at point O, as shown in Fig. 5-
1. This equation was simplified to

Figure 5-1   (a) A simple pendulum. (b) Free-body diagram of mass m.

From the free body diagram of mass m in Fig. 5-1b, we
note the simple pendulum to have two static equilibrium
positions, where



Upon solving Eq. (5-4), we identify θ =0 and π as the
pendulum static equilibria, where it can be fully at rest in
the absence of any external forces, initial conditions, or
other disturbances. In this case, the weight of the
pendulum is completely balanced by the reaction force at
the hinge O.

Using static equilibrium position θ =0 as the operating
point, the linearization of the system implies θ ≈ θ.
Hence, the linear representation of the system is

or

where  rad/s is the natural frequency of
the linearized model.

Equation (5-6) describes the pendulum behavior in the
neigborhood of the static equilibrium position θ = 0, for
small motions (just give the pendulum a slight tap). The
system response in this case, after application of a small
initial condition θ(0) =θ0, is sinusoidal. Further if we
account for the hinge O friction and the air resistance
facing mass m, given a small initial condition, the
pendulum swings a few times until it comes to rest at θ
=0. Note in this case, the transient response of the
system due to the initial conditions approaches zero with
time. As a result, the motion of the pendulum about θ =0
is stable.

If we add an external force F(t) to the mass m and add
viscous damping, which approximates all mentioned
frictional forces in the system, Eq. (5-6) can be modified
to



where  In this case, Eq. (5-7) has the
following transfer function

From Chap. 3, for ζ > 0 the poles of the system in Eq.
(5-8)—that is, roots of the characteristic equation—have
negative real parts. Note that to obtain the time response
of the system, you need to clearly identify and include the
initial conditions in the Laplace transform of the system
in Eq. (5-7)—see Example 3-4-2. However, because the
motion of the damped pendulum about θ = 0 is stable, its
transient response diminishes with time, and the
pendulum follows the input (steady-state response)—
say a step input—moving to a constant angle.

Looking back at Eq. (5-3), upon using θ = π as the
operating point, the linearized equation of the system is
(verify):

Upon a small disturbance, the pendulum starts
swinging about θ = 0; not θ = π! As a result, θ = π is
considered as an unstable equilibrium, and the solution
of Eq. (5-9) reflects the pendulum to be moving away
from this equilibrium point. The time response of the
linearized Eq. (5-9) includes an exponential growth
(unbounded motion), regardless of the initial conditions,
which implies the mass to be moving away from the
point θ = π. Obviously the linear approximation range is
small and this solution is only valid while the mass stays
within this region.

In this case using a similar approach as in Eq. (5-8), we
can obtain the transfer function of the system to be



where for ζ > 0 one of the poles of the system in Eq.
(5-10) is real and positive, while the other is negative. 

See MATLAB tools in Sec. 5-4.

From the preceding discussions, we see that, for linear time-invariant
systems, stability of the system can be determined by the poles of the system,
and for a stable system the roots of the characteristic equation must all be
located in the left-half s-plane. Further, if a system is stable, it must also be
zero-input stable—that is, its response solely due to initial conditions
converges to zero. For this reason, we shall simply refer to the stability
condition of a linear system as stable or unstable. The latter condition refers
to the condition that at least one of the characteristic equation roots is not in
the left-half s-plane. For practical reasons, we often refer to the situation in
which the characteristic equation has simple roots on the jω-axis and none in
the right-half plane as marginally stable or marginally unstable. An
exception to this is if the system were intended to be an integrator (or, in the
case of control systems, a velocity control system); then the system would
have root(s) at s =0 and would be considered stable. Similarly, if the system
were designed to be an oscillator, the characteristic equation would have
simple roots on the jω-axis, and the system would be regarded as stable.

As discussed in Sec. 3-7-2, because the roots of the characteristic equation
are the same as the eigenvalues of matrix A of the state equations, the
stability condition places the same restrictions on the eigenvalues—see
Example 5-4-4. We further discuss the stability analysis of state space
equations in Chap. 8.

Let the characteristic equation roots or eigenvalues of matrix A of a linear



continuous-data time-invariant SISO system be st = σt + jωt, i = 1, 2, ..., n. If
any of the roots is complex, it is in complex-conjugate pairs. The possible
stability conditions of the system are summarized in Table 5-1 with respect to
the roots of the characteristic equation.

TABLE 5-1   STABILITY CONDITIONS OF LINEAR
CONTINUOUS-DATA TIME-INVARIANT SISO SYSTEMS

In conclusion, the stability of linear time-invariant SISO systems can
be determined by checking on the location of the roots of the
characteristic equation of the system. For all practical purposes, there is no
need to compute the complete system response to determine stability. The
regions of stability and instability in the s-plane are illustrated in Fig. 5-2.



Figure 5-2   Stable and unstable regions in the s-plane.

The following example illustrates the stability conditions of systems with
reference to the poles of the system transfer functions that are also the roots
of the characteristic equation.

EXAMPLE 5-1-2  The following closed-loop transfer functions and their
associated stability conditions are given.



5-2  METHODS OF DETERMINING
STABILITY

When the system parameters are all known, the roots of the characteristic
equation can be found using MATLAB as demonstrated in various MATLAB
toolbox windows discussed earlier in Chap. 3 (also see Toolbox 5-3-1). The
methods outlined in the following list are well known for determining the
stability of linear continuous-data systems without involving root solving.

1.    Routh-Hurwitz criterion. This criterion is an algebraic method that
provides information on the absolute stability of a linear time-invariant
system that has a characteristic equation with constant coefficients. The
criterion tests whether any of the roots of the characteristic equation lie
in the right-half s-plane. The number of roots that lie on the jω-axis and
in the right-half s-plane is also indicated.
2.    Nyquist criterion. This criterion is a semigraphical method that
gives information on the difference between the number of poles and
zeros of the closed-loop transfer function that are in the right-half s-
plane by observing the behavior of the Nyquist plot of the loop transfer
function. This topic is discussed in detail in Chap. 10.
3.    Bode diagram. This diagram is a plot of the magnitude of the loop
transfer function G(jω)H(jω) in dB and the phase of G(jω)H(jω) in
degrees, all versus frequency ω· The stability of the closed-loop system
can be determined by observing the behavior of these plots. This topic is
discussed in detail in Chap. 10.

Thus, as will be evident throughout the text, most of the analysis and
design techniques on control systems represent alternate methods of solving
the same problem. The designer simply has to choose the best analytical tool,
depending on the particular situation.

Details of the Routh-Hurwitz stability criterion are presented in the
following section.



5-3  ROUTH-HURWITZ CRITERION
The Routh-Hurwitz criterion represents a method of determining the

location of zeros of a polynomial with constant real coefficients with respect
to the left half and right half of the s-plane, without actually solving for the
zeros. Because root-finding computer programs can solve for the zeros of a
polynomial with ease, the value of the Routh-Hurwitz criterion is at best
limited to equations with at least one unknown parameter.

Consider that the characteristic equation of a linear time-variant SISO
system is of the form

where all the coefficients are real. To ensure the last equation does not
have roots with positive real parts, it is necessary (but not sufficient) that the
following conditions hold:

1.    All the coefficients of the equation have the same sign.

2.    None of the coefficients vanish.

These conditions are based on the laws of algebra, which relate the
coefficients of Eq. (5-11) as follows:

Thus, all these ratios must be positive and nonzero unless at least one of
the roots has a positive real part.



The two necessary conditions for Eq. (5-11) to have no roots in the right-
half s-plane can easily be checked by inspection of the equation. However,
these conditions are not sufficient, for it is quite possible that an equation
with all its coefficients nonzero and of the same sign still may not have all the
roots in the left half of the s-plane.

5-3-1  Routh’s Tabulation
The Hurwitz criterion gives the necessary and sufficient condition for all

roots of Eq. (5-11) to lie in the left half of the s-plane. The criterion requires
that the equation’s n Hurwitz determinants must all be positive.

However, the evaluation of the n Hurwitz determinants is tedious to carry
out. But Routh simplified the process by introducing a tabulation method in
place of the Hurwitz determinants.

The first step in the simplification of the Hurwitz criterion, now called the
Routh-Hurwitz criterion, is to arrange the coefficients of the equation in Eq.
(5-11) into two rows. The first row consists of the first, third, fifth, …,
coefficients, and the second row consists of the second, fourth, sixth, …,
coefficients, all counting from the highest-order term, as shown in the
following tabulation:

The next step is to form the following array of numbers by the indicated
operations, illustrated here for a sixth-order equation:



This array is called the Routh’s tabulation or Routh’s array. The column
of s’s on the left side is used for identification purposes. The reference
column keeps track of the calculations, and the last row of the Routh’s
tabulation should always be the s0 row.

Once the Routh’s tabulation has been completed, the last step in the
application of the criterion is to investigate the signs of the coefficients in the
first column of the tabulation, which contains information on the roots of the
equation. The following conclusions are made:

The roots of the equation are all in the left half of the s-plane if all the
elements of the first column of the Routh’s tabulation are of the same
sign. The number of changes of signs in the elements of the first column
equals the number of roots with positive real parts, or those in the right-
half s-plane.

The following examples illustrate the applications of the Routh-Hurwitz
criterion when the tabulation terminates without complications.



EXAMPLE 5-3-1   Consider the equation

Because the equation has no missing terms and the
coefficients are all of the same sign, it satisfies the
necessary condition for not having roots in the right-half
or on the imaginary axis of the s-plane. However, the
sufficient condition must still be checked. Routh’s
tabulation is made as follows:

See MATLAB tools in Sec. 5-4.

Because there are two sign changes in the first column
of the tabulation, the equation has two roots in the right
half of the s-plane. Solving for the roots of Eq. (5-17), we
have the four roots at s=−1.005±j0.933 and
s=0.755±j1.444. Clearly, the last two roots are in the
right-half s-plane, which cause the system to be unstable.



Toolbox 5-3-1
The roots of the polynomial in Eq. (5-17) are obtained using the

following sequence of MATLAB functions.

5-3-2  Special Cases When Routh’s Tabulation Terminates
Prematurely

The equations considered in the two preceding examples are designed so
that Routh’s tabulation can be carried out without any complications.
Depending on the coefficients of the equation, the following difficulties may
occur, which prevent Routh’s tabulation from completing properly:

The coefficients of the auxiliary equation are those of the row just
above the row of zeros in Routh’s tabulation.

The roots of the auxiliary equation must also satisfy the original
equation.

1.    The first element in any one row of Routh’s tabulation is zero, but
the others are not.
2.    The elements in one row of Routh’s tabulation are all zero.

In the first case, if a zero appears in the first element of a row, the elements
in the next row will all become infinite, and Routh’s tabulation cannot



continue.
To remedy the situation, we replace the zero element in the first column by

an arbitrary small positive number ε, and then proceed with Routh’s
tabulation. This is illustrated by the following example.

EXAMPLE 5-3-2 Consider the characteristic equation of a linear system

Because all the coefficients are nonzero and of the
same sign, we need to apply the Routh-Hurwitz criterion.
Routh’s tabulation is carried out as follows:

See MATLAB tools in Sec. 5-4.

Because the first element of the s2 row is zero, the
elements in the s1 row would all be infinite. To overcome
this difficulty, we replace the zero in the s2 row with a
small positive number ε, and then proceed with the
tabulation. Starting with the s2 row, the results are as
follows:



Because there are two sign changes in the first column
of Routh’s tabulation, the equation in Eq. (5-18) has two
roots in the right-half s-plane. Solving for the roots of Eq.
(5-18), we get s=−0.091±j0.902 and s=0.406±j1.293; the
last two roots are clearly in the right-half s-plane.

It should be noted that the ε-method described may not
give correct results if the equation has pure imaginary
roots. 

In the second special case, when all the elements in one row of Routh’s
tabulation are zeros before the tabulation is properly terminated, it indicates
that one or more of the following conditions may exist:

1.    The equation has at least one pair of real roots with equal magnitude
but opposite signs.
2.    The equation has one or more pairs of imaginary roots.
3.    The equation has pairs of complex-conjugate roots forming
symmetry about the origin of the s-plane; for example, s=−1±j1, s=1±j1.

The situation with the entire row of zeros can be remedied by using the
auxiliary equation A(s)= 0, which is formed from the coefficients of the row
just above the row of zeros in Routh’s tabulation. The auxiliary equation is
always an even polynomial; that is, only even powers of s appear. The roots
of the auxiliary equation also satisfy the original equation. Thus, by solving
the auxiliary equation, we also get some of the roots of the original equation.
To continue with Routh’s tabulation when a row of zero appears, we conduct
the following steps:

1.    Form the auxiliary equation A(s)= 0 by using the coefficients from
the row just preceding the row of zeros.
2.    Take the derivative of the auxiliary equation with respect to s; this
gives dA(s)/ds= 0.
3.    Replace the row of zeros with the coefficients of dA(s)/ds= 0.
4.    Continue with Routh’s tabulation in the usual manner with the
newly formed row of coefficients replacing the row of zeros.
5.    Interpret the change of signs, if any, of the coefficients in the first
column of the Routh’s tabulation in the usual manner.



EXAMPLE 5-3-3   Consider the following equation, which may be the
characteristic equation of a linear control system:

Routh’s tabulation is

See MATLAB tools in Sec. 5-4.

Because a row of zeros appears prematurely, we form
the auxiliary equation using the coefficients of the s2
row:

The derivative of A(s) with respect to s is

from which the coefficients 8 and 0 replace the zeros
in the s1 row of the original tabulation. The remaining
portion of the Routh’s tabulation is



Because there are no sign changes in the first column
of the entire Routh’s tabulation, the equation in Eq. (5-
21) does not have any root in the right-half s-plane.
Solving the auxiliary equation in Eq. (5-20), we get the
two roots at s = j and s =-j, which are also two of the
roots of Eq. (5-19). Thus, the equation has two roots on
the jω-axis, and the system is marginally stable. These
imaginary roots caused the initial Routh’s tabulation to
have the entire row of zeros in the s1 row.

Because all zeros occurring in a row that corresponds
to an odd power of s creates an auxiliary equation that
has only even powers of s, the roots of the auxiliary
equation may all lie on the jω-axis. For design purposes,
we can use the all-zero-row condition to solve for the
marginal value of a system parameter for system stability.
The following example illustrates the realistic value of
the Routh-Hurwitz criterion in a simple design problem. 

EXAMPLE 5-3-4   Consider that a third-order control system has the
characteristic equation

See MATLAB tools in Sec. 5-4.

The Routh-Hurwitz criterion is best suited to determine
the critical value of K for stability, that is, the value of K



for which at least one root will lie on the jω-axis and
none in the right-half s-plane. Routh’s tabulation of Eq.
(5-22) is made as follows:

For the system to be stable, all the roots of Eq. (5-22)
must be in the left-half s-plane, and, thus, all the
coefficients in the first column of Routh’s tabulation
must have the same sign. This leads to the following
conditions:

and

From the inequality of Eq. (5-23), we have K < 273.57,
and the condition in Eq. (5-24) gives K > 0. Therefore,
the condition of K for the system to be stable is

If we let K = 273.57, the characteristic equation in Eq.
(5-22) will have two roots on the jω-axis. To find these
roots, we substitute K = 273.57 in the auxiliary equation,
which is obtained from Routh’s tabulation by using the
coefficients of the s2 row. Thus,

which has roots at s = j1097 and s= −j1097, and the



corresponding value of K at these roots is 273.57. Also, if
the system is operated with K = 273.57, the zero-input
response of the system will be an undamped sinusoid
with a frequency of 1097.27 rad/s. 

EXAMPLE 5-3-5   As another example of using the Routh-Hurwitz criterion
for simple design problems, consider that the
characteristic equation of a closed-loop control system
is

See MATLAB tools in Sec. 5-4.

It is desired to find the range of K so that the system is
stable. Routh’s tabulation of Eq. (5-27) is

From the s2 row, the condition of stability is K < 0, and
from the s1 row, the condition of stability is

or



When the conditions of K > 0 and K > 0.528 are
compared, it is apparent that the latter requirement is
more stringent. Thus, for the closed-loop system to be
stable, K must satisfy

The requirement of K < −2.528 is disregarded because
K cannot be negative. 

It should be reiterated that the Routh-Hurwitz criterion is valid only if the
characteristic equation is algebraic with real coefficients. If any one of the
coefficients is complex, or if the equation is not algebraic, for example,
containing exponential functions or sinusoidal functions of s, the Routh-
Hurwitz criterion simply cannot be applied.

Another limitation of the Routh-Hurwitz criterion is that it is valid only for
the determination of roots of the characteristic equation with respect to the
left half or the right half of the s-plane. The stability boundary is the jω-axis
of the s-plane. The criterion cannot be applied to any other stability
boundaries in a complex plane, such as the unit circle in the z-plane, which is
the stability boundary of discrete-data systems (App. H).

5-4  MATLAB TOOLS AND CASE STUDIES
The easiest way to assess stability of known transfer functions is to find the

location of the poles. For that purpose, the MATLAB code that appears in
Toolbox 5-3-1 is the easiest way for finding the roots of the characteristic
equation polynomial—that is, the poles of the system.

In this section, we introduce the tfrouth stability tool, which may be used
to find the Routh array, and more importantly it may be utilized for controller
design applications where it is important to assess the stability of a system for
a controller gain, say k.

The steps involved in setting up and then solving a given stability problem
using tfrouth are as follows:



1.    In order to use the tfrouth tool, you first need to download the
ACSYS software, available at www.mhprofessional.com/golnaraghi.
2.    Load MATLAB, and use the folder browser at the top of the
MATLAB command window to go to your ACSYS directory—for
example, for PCs, C:\documents\ACSYS2013—if you have put
ACSYS2013 directory in your documents folder.2

3.    At the MATLAB command window type “dir” and identify the
“TFSymbolic” directory.
4.    Move to “TFSymbolic” directory by typing in “cd TFSymbolic.”
5.    Type “tfrouth” in the MATLAB command window within the
“TFSymbolic” directory.
6.    The “Routh-Hurwitz” window will appear. Enter the characteristic
polynomial as a coefficient row vector (e.g., for s3 + s2 + s + 1, enter: [1
1 1 1]).
7.    Press the “Routh-Hurwitz” button and check the results in the
MATLAB command window.
8.    In case you wish to assess the stability of the system for a design
parameter, enter it in the box designated as “Enter Symbolic
Parameters.” For example, for s3 + k1s2 + k2s + 1, you need to enter “k1
k2” in the “Enter Symbolic Parameters” box, followed by entering the
polynomial as [1 k1 k2 1] in the “Characteristic Equation” box. Note
that the default coefficient is “k,” which you can change to other
character(s)—in this case k1 and k2.
9.    Press the “Routh-Hurwitz” button to form the Routh’s array and
conduct the Routh-Hurwitz stability test.

To better illustrate how to use tfrouth, let us solve some of the earlier
examples in this chapter.

EXAMPLE 5-4-1  Recall Example 5-3-1; let’s use tfrouth for the following
polynomial:

Following the instructions in the beginning of the
section, in the MATLAB command window, type in

http://www.mhprofessional.com/golnaraghi


“tfrouth” and enter the characteristic Eq. (5-31) in
coefficient vector form [2 1 3 5 10], followed by clicking
the “Routh-Hurwitz” button to get the Routh-Hurwitz
matrix, as shown in Fig. 5-3.

Figure 5-3   Entering characteristic polynomial for Example 5-3-1 using
the tfrouth module.

The results match with Example 5-3-1. The system is
therefore unstable because of two positive poles. The
Routh’s array first column also shows two sign changes



to confirm this result. To see the complete Routh table,
the user must refer to the MATLAB command window,
as shown in Fig. 5-4.

The following box shows where the sign changes
occur.

Figure 5-4   Stability results for Example 5-4-1, after using the Routh-
Hurwitz test.

EXAMPLE 5-4-2   Consider Example 5-3-2 for characteristic equation of a
linear system:



After entering the transfer function characteristic
equation using tfrouth as [1 1 2 3] and pressing the
“Routh-Hurwitz” button, we get the following output:

Hence, because of the final two sign changes, we
expect to see two unstable poles. 

EXAMPLE 5-4-3  Revisiting Example 5-3-3, use tfrouth to study the
following characteristic equation:

Enter the characteristic equation coefficients as [1 4 8
8 7 4]. The MATLAB output will be as follows:



EXAMPLE 5-4-4  Considering the characteristic equation of a closed-loop
control system

It is desired to find the range of K so that the system is
stable. Using the default parameter “k,” enter the
characteristic equation coefficients as [1 3 * k k + 2 4]—
see Fig. 5-5.



Figure 5-5   Entering characteristic polynomial for Example 5-4-4 using
the tfrouth module.



In tfrouth, the Routh array is store under variable name
“RH.” In order to check the system stability for different
values of k, you need to assign a value to k first. Then use
the MATLAB command “eval(RH)” to obtain the
numerical value of the Routh array as shown below:

In this case, the system is unstable for k = 0.4, and
stable for k = 1. 

EXAMPLE 5-4-5   Considering the following state space system:

State equation of the system is

where



Taking the Laplace transform of Eq. (5-36), assuming
zero initial conditions, and solving for Y(s), we have

From the discussions in Secs. 3-7-1 and 3-7-2, the
system transfer function in this case is

More specifically, noting Y(s) = X(s), we have

Setting the denominator of the transfer-function matrix
G(s) to zero, we get the characteristic equation:

This implies that the roots of the characteristic
equation are the eigenvalues of the matrix A. Hence,

From the first Routh-Hurwitz criterion, this system is
unstable—see Fig. 5-6 for the time response.



Figure 5-6   Time response of Eq. (5-34) for a unit step input. Note: y(t) =
x(t).

Using the following state feedback controller, we can
address stability issues and other control goals (see Chap.
8 for more discussion on the subject):

where k1 and k2 are real constants, and r(t) is a unit step
input.

The next step is to determine the system stability for
parameters k1 and k2. Upon substitution of Eq. (5-44) into
Eq. (5-36), we have the closed-loop system equation:



where

and

Taking the Laplace transform of Eq. (5-45), assuming
zero initial conditions, and solving for Y(s), we have

Following the same procedure as in Eq. (5-39), the
characteristic equation of the closed-loop system is now:

For stability requirements we us tfrouth as shown in
Fig. 5-7. As a result, to ensure stability, all elements in
the first column of the Routh array must be positive. This
requires that both of the following conditions are met
simultaneously.



Figure 5-7   Entering characteristic polynomial for Example 5-4-5 using
the tfrouth module.

Hence, for stability we must ensure

Using k2 = 2 and k1 = 2, both conditions are met for the



system to be stable. In this case, we have

Using Toolbox 5-4-1, upon revising the denominator
term to [1 1 10], we obtain the time response of the
system for a unit step r(t), as shown in Fig. 5-8.



Figure 5-8   Time response of Eq. (5-53) for a unit step input. Note: y(t) =
x(t).

Toolbox 5-4-1
Time domain step response of Eq. (5-39) for a unit step input is

shown in Fig. 5-6.

5-5  SUMMARY
In this chapter, we utilized the Routh-Hurwitz stability criterion for linear

time-invariant continuous systems. We showed that the condition of these
types of stability is related directly to the roots of the characteristic equation.
For a continuous-data system to be stable, the roots of the characteristic
equation must all be located in the left half of the s-plane. While the Routh-
Hurwitz stability applies to the characteristic equations of the systems, we
highlighted that this approach can also apply to examine the stability of the
system in state space representation—because the eigenvalues of the A
matrix are the same as the roots of the characteristic equation.

We solved various examples using tfrouth, the stability MATLAB tool
developed for this book.
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PROBLEMS
5-1.   Without using the Routh-Hurwitz criterion, determine if the

following systems are asymptotically stable, marginally stable, or unstable. In
each case, the closed-loop system transfer function is given.

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

5-2.   Use the ROOTS command in MATLAB to solve Prob. 5-33.

5-3.   Using the Routh-Hurwitz criterion, determine the stability of the



closed-loop system that has the following characteristic equations. Determine
the number of roots of each equation that are in the right-half s-plane and on

the .

(a)  s3 + 25s2 + 10s + 450 = 0

(b)  s3 + 25s2 + 10s + 50 = 0

(c)  s3 + 25s2 + 250s + 10 = 0

(d)  2s4 + 10s3 + 5.5s2 + 10 = 0

(e)  s6 + 2s5 + 8s4 + 20s2 + 16s + 16 = 0

(f)  s4 + 2s3 + 20s + 5 = 0

(g)  s8 + 2s7 + 8s6 + 12s5 + 20s4 + 16s3 + 16s2 = 0

5-4.   Use MATLAB to solve Prob. 5-35.

5-5.   Use MATLAB Toolbox 5-3-1 to find the roots of the following
characteristic equations of linear continuous-data systems and determine the
stability condition of the systems.

(a)  s3 + 10s2 + 10s + 130 = 0

(b)  s4 + 12s3 + s2+ 2s + 10 = 0

(c)  s4 + 12s3 + 10s2 + 10s + 10 = 0

(d)  s4 + 12s3 + s2 + 10s + 1 = 0

(e)  s6 + 6s5 + 125s4 + 100s3 + 100s2 +20s + 10 = 0

(f)  s5 + 125s4 + 100s3 + 100s2 + 20s + 10 = 0

5-6.   For each of the characteristic equations of feedback control systems
given, use MATLAB to determine the range of K so that the system is
asymptotically stable. Determine the value of K so that the system is
marginally stable and determine the frequency of sustained oscillation, if
applicable.

(a)  s4 + 25s3 + 15s2 + 20s + K = 0

(b)  s4 + Ks3 + 2s2 + (K + 1)s + 10 = 0



(c)  s3 + (K + 2)2 + 2Ks + 10 = 0

(d)  s3 + 20s2 + 10K = 0

(e)  s4 + Ks3 + 5s2 + 10s + 10K = 0

(f)  s4 + 12.5s3 + s2 + 5s + K = 0

5-7.   The loop transfer function of a single-loop feedback control system
is given as

The parameters K and T may be represented in a plane with K as the
horizontal axis and T as the vertical axis. Determine the regions in the T-
versus-K parameter plane where the closed-loop system is asymptotically
stable and where it is unstable. Indicate the boundary on which the system is
marginally stable.

5-8.   Given the forward-path transfer function of unity-feedback control
systems, apply the Routh-Hurwitz criterion to determine the stability of the
closed-loop system as a function of K. Determine the value of K that will
cause sustained constant-amplitude oscillations in the system. Determine the
frequency of oscillation.

(a)  

(b)  

(c)  

(d)  

5-9.   Use MATLAB to solve Prob. 5-40.

5-10.   A controlled process is modeled by the following state equations.



The control u(t) is obtained from state feedback such that

where k1 and k2 are real constants. Determine the region in the k1-versus-k2

parameter plane in which the closed-loop system is asymptotically stable.

5-11.   A linear time-invariant system is described by the following state
equations.

where

The closed-loop system is implemented by state feedback, so that u(t) =
–Kx(t), where K = [k1 k2 k3] and k1, k2, and k3 are real constants. Determine the
constraints on the elements of K so that the closed-loop system is
asymptotically stable.

5-12.   Given the system in state equation form,

(a)  

(b)  

Can the system be stabilized by state feedback u(t=−Kx(t), where K= [k1 k2

k3]?



5-13.   Consider the open-loop system in Fig. 5P-13a.

where  and 

Figure 5P-13a

Figure 5P-13b

Our goal is to stabilize this system so the closed-loop feedback control will
be defined as shown in the block diagram in Fig. 5P-13b.

Assuming 

(a)  Find the open-loop transfer function.

(b)  Find the closed-loop transfer function.

(c) Find the range of kp and kd in which the system is stable.

(d)  Suppose  and τ = 0.1. If y(0) = 10 and  then plot the step
response of the system with three different values for kp and kd. Then show
that some values are better than others; however, all values must satisfy the
Routh-Hurwitz criterion.

5-14.   The block diagram of a motor-control system with tachometer
feedback is shown in Fig. 5P-14. Find the range of the tachometer constant Kt
so that the system is asymptotically stable.



Figure 5P-14

5-15.   The block diagram of a control system is shown in Fig. 5P-15. Find
the region in the K-versus-α plane for the system to be asymptotically stable.
(Use K as the vertical and gα as the horizontal axis.)

Figure 5P-15

5-16.   The conventional Routh-Hurwitz criterion gives information only
on the location of the zeros of a polynomial F(s) with respect to the left half
and right half of the s-plane. Devise a linear transformation s = f(p, α), where
p is a complex variable, so that the Routh-Hurwitz criterion can be applied to
determine whether F(s) has zeros to the right of the line s=−α, where α is a
positive real number. Apply the transformation to the following characteristic
equations to determine how many roots are to the right of the line s = –1 in
the s-plane.

(a)  F(s)=s2 + 5s +3 =0

(b)  s3 + 3s2 + 3s + 1 =0

(c)  F(s)= s3 + 4s2 + 3s + 10 =0

(d)  s + 4s2 + 4s + 4 =0

5-17.   The payload of a space-shuttle-pointing control system is modeled
as a pure mass M. The payload is suspended by magnetic bearings so that no
friction is encountered in the control. The attitude of the payload in the y



direction is controlled by magnetic actuators located at the base. The total
force produced by the magnetic actuators is f (t). The controls of the other
degrees of motion are independent and are not considered here. Because there
are experiments located on the payload, electric power must be brought to the
payload through cables. The linear spring with spring constant Ks is used to
model the cable attachment. The dynamic system model for the control of the
y-axis motion is shown in Fig. 5P-17. The force equation of motion in the y-
direction is

where Ks = 0.5 N m/m and M = 500kg. The magnetic actuators are
controlled through state feedback, so that

Figure 5P-17

(a)  Draw a functional block diagram for the system.

(b)  Find the characteristic equation of the closed-loop system.

(c)  Find the region in the KD-versus-KP plane in which the system is
asymptotically stable.

5-18.   An inventory-control system is modeled by the following
differential equations:



where x1(t) is the level of inventory; x2(t), the rate of sales of product; u(t),
the production rate; and K, a real constant. Let the output of the system by
y(t) = x1 and r(t) be the reference set point for the desired inventory level. Let
u(t)= r(t − y(t). Determine the constraint on K so that the closed-loop system
is asymptotically stable.

5-19.   Use MATLAB to solve Prob. 5-50.

5-20.   Use MATLAB to

(a)  Generate symbolically the time function of f (t)

(b)  Generate symbolically 

(c)  Find the Laplace transform of f (t) and name it F(s).

(d)  Find the inverse Laplace transform of G(s) and name it g(t).

(e)  If G(s) is the forward-path transfer function of unity-feedback control
systems, find the transfer function of the closed-loop system and apply the
Routh-Hurwitz criterion to determine its stability.

(f)  If F(s) is the forward-path transfer function of unity-feedback control
systems, find the transfer function of the closed-loop system and apply the
Routh-Hurwitz criterion to determine its stability.

1The formal and mathematical discussions of this topic are included in App. B.
2For Mac or Unix users refer to MATLAB help for information.



CHAPTER 6



Important Components of Feedback
Control Systems

As mentioned in Chap. 1, the design process of a control system starts with
development of a mathematical model of the system, which is normally
composed of various subcomponents such as mechanical, electrical,
chemical, sensors, actuators (motors), etc., otherwise known as dynamic
systems. In Chap. 2, we looked at modeling of simple dynamic systems such
as mechanical, electrical, fluid, and heat transfer systems, which may be
considered as the subcomponents of most control systems encountered. Using
the basic modeling principles such as Newton’s second law of motion,
Kirchoff’s law, or the law of conservation of mass, the models of these
dynamic systems are represented by differential equations. In Chap. 3, we
utilized the transfer function and state space approaches to solve these
differential equations to find the behavior of the dynamic systems. Later in
Chap. 4, we learned how to graphically represent the system models using
block, signal flow, and state diagrams and learned about the concept of
feedback in control systems. We further learned that a typical feedback
control system, as shown in Fig. 6-1, is composed of various components
including

Figure 6-1   Block diagram representation of a general feedback control
system.



Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Understand the necessary components that make a feedback control
system work, including sensors, actuators, and the controller.
2.  Develop mathematical model for these components, including
potenti-ometers, tachometers, encoders, op amps, and dc motors.
3.  Establish the transfer functions for speed and position time response
of dc motors.
4.  Characterize a dc motor through series of experimental
measurements.

•   Reference sensor (or input sensor)
•   Output sensor
•   Actuator
•   Controller
•   Plant (the component whose variables are to be controlled—normally
a dynamic system as described in Chap. 2)

In a feedback control system, sensors are very important to sense various
properties of the system, particularly, the output of the plant. A controller can
then compare the output signal with the desired objective, or the input and
adjust the performance of the overall system, using an actuator, to meet the
desired goal.

Sensors, actuators, and the controller are the most important
components of any control system.

In this chapter, we focus on the necessary components that make a
feedback control system work. These include sensors, actuators, and the
actual brain of the control system, that is, the controller. Of particular
interest are components that possess linear models—or at least as close to
linear as possible. In this textbook we will, for the sake of simplicity and to



meet our linearity objective, use dc motors as actuators. We also look at
sensors that may be used to quantify the motion of dc motors, namely,
encoders, tachometers, and potentiometers. As an example, Fig. 6-2a
shows a typical dc motor-gearbox system equipped with an encoder that
senses the motor shaft output. A close up of the attached encoder is shown in
Fig. 6-2b.





Figure 6-2   (a) A typical dc motor-gearbox system with an onboard
encoder to measure motor shaft rotation—picture taken by the author from a
GM8224S009 12VDC 500 CPR Ametec Pittman model. (b) A view of the
encoder in the bottom of the motor.

In this chapter, we will also learn about op-amps and their role as building
blocks of any control system. Finally, through case studies, we bring all the
material learned in Chaps. 1 to 5 together.

By the end of this chapter, you are able to understand how to model a
complete control system and its individual components and further
understand how these components are related and interact with one another.

Finally, at the end of this chapter, we also provide a Control Lab, which
includes a practical means of characterizing a dc motor through series of
experimental measurements.

6-1  MODELING OF ACTIVE ELECTRICAL
ELEMENTS: OPERATIONAL AMPLIFIERS

Operational amplifiers, or simply op-amps, offer a convenient way to
build, implement, or realize continuous-data or s-domain transfer functions.
In control systems, op-amps are often used to implement the controllers or
compensators that evolve from the control-system design process, so in this
section we illustrate common op-amp configurations. An in-depth
presentation of op-amps is beyond the scope of this text. For those interested,
many texts are available that are devoted to all aspects of op-amp circuit
design and applications [8, 9].

Our primary goal here is to show how to implement first-order transfer
functions with op-amps while keeping in mind that higher-order transfer
functions are also important. In fact, simple high-order transfer functions can
be implemented by connecting first-order op-amp configurations together.
Only a representative sample of the multitude of op-amp configurations will
be discussed. Some of the practical issues associated with op-amps are
demonstrated in Chaps. 7 and 11.

6-1-1  The Ideal Op-Amp



An op-amp circuit is usually analyzed by considering the op-amp to be
ideal. The ideal op-amp circuit is shown in Fig. 6-3, and it has the following
properties:

Figure 6-3   Schematic diagram of an op-amp.

1.    The voltage between the + and − terminals is zero, that is, e+ = e−.
This property is commonly called the virtual ground or virtual short.
2.    The currents into the + and − input terminals are zero. Thus, the
input impedance is infinite.
3.    The impedance seen looking into the output terminal is zero. Thus,
the output is an ideal voltage source.
4.    The input-output relationship is eo = A(e+ − e−), where the gain A
approaches infinity.

The input-output relationship for many op-amp configurations can be
determined by using these principles. An op-amp cannot be used as shown in
Fig. 6-3. Rather, linear operation requires the addition of feedback of the
output signal to the “–” input terminal.

6-1-2  Sums and Differences
As illustrated in Chap. 4, one of the most fundamental elements in a block

diagram or an SFG is the addition or subtraction of signals. When these
signals are voltages, op-amps provide a simple way to add or subtract signals,
as shown in Fig. 6-4, where all the resistors have the same value. Using
superposition and the ideal properties given in the preceding section, the
input-output relationship in Fig. 6-4a is eo = −(ea − eb). Thus, the output is the
negative sum of the input voltages. When a positive sum is desired, the
circuit shown in Fig. 6-4b can be used. Here, the output is given by eo = ea +



eb. Modifying Fig. 6-4b slightly gives the differencing circuit shown in Fig. 6-
34c, which has an input-output relationship of eo = ib − ea.





Figure 6-4   Op-amps used to add and subtract signals.

6-1-3  First-Order Op-Amp Configurations
In addition to adding and subtracting signals, op-amps can be used to

implement transfer functions of continuous-data systems. While many
alternatives are available, we will explore only those that use the inverting
op-amp configuration shown in Fig. 6-5. In the figure, Z1(s) and Z2(s) are
impedances commonly composed of resistors and capacitors. Inductors are
not commonly used because they tend to be bulkier and more expensive.
Using ideal op-amp properties, the input-output relationship, or transfer
function, of the circuit shown in Fig. 6-5 can be written in a number of ways,
such as

Figure 6-5   Inverting op-amp configuration.

where Y1(s) = 1/Z1(s) and Y2(s) = 1/Z2(s) are the admittances associated with
the circuit impedances. The different transfer function forms given in Eq. (6-
1) apply conveniently to the different compositions of the circuit impedances.

Using the inverting op-amp configuration shown in Fig. 6-5 and using
resistors and capacitors as elements to compose Z1(s) and Z2(s), it is possible



to implement poles and zeros along the negative real axis as well as at the
origin in the s-plane, as shown in Table 6-1. Because the inverting op-amp
configuration has been used, all the transfer functions have negative gains.
The negative gain is usually not an issue because it is simple to add a gain of
−1 to the input and output signal to make the net gain positive.

TABLE 6-1   Inverting Op-Amp Transfer Functions





EXAMPLE 6-1-1  As an example of op-amp realization of transfer
functions, consider the transfer function

where KP, KD, and KI are real constants. In Chaps. 7 and 11, this transfer
function will be called the PID controller, since the first term is a
proportional gain, the second is an integral term, and the third is a
derivative term. Using Table 6-1, the proportional gain can be implemented
using line (a), the integral term can be implemented using line (b), and the
derivative term can be implemented using line (c). By superposition, the
output of G(s) is the sum of the responses due to each term in G(s). This sum
can be implemented by adding an additional input resistance to the circuit
shown in Fig. 6-4a. By making the sum negative, the negative gains of the
proportional, integral, and derivative term implementations are canceled,
giving the desired result shown in Fig. 6-5. The transfer functions of the
components of the op-amp circuit in Fig. 6-5 are

The output voltage is

Thus, the transfer function of the PID op-amp circuit is

By equating Eqs. (6-2) and (6-7), the design is completed by choosing the
values of the resistors and the capacitors of the op-amp circuit so that the



desired values of KP, KI, and KD are matched. The design of the controller
should be guided by the availability of standard capacitors and resistors.

It is important to note that Fig. 6-6 is just one of many possible
implementations of Eq. (6-2). For example, it is possible to implement the
PID controller with just three op-amps. Also, it is common to add
components to limit the high-frequency gain of the differentiator and to limit
the integrator output magnitude, which is often referred to as antiwindup
protection. One advantage of the implementation shown in Fig. 6-6 is that
each of the three constants KP, KI, and KD can be adjusted or tuned
individually by varying resistor values in its op-amp circuits. Op-amps are
also used in control systems for A/D and D/A converters, sampling devices,
and realization of nonlinear elements for system compensation.



Figure 6-6   Implementation of a PID controller.

6-2  SENSORS AND ENCODERS IN CONTROL
SYSTEMS

Sensors and encoders are important components used to monitor the
performance and for feedback in control systems. In this section, the principle
of operation and applications of some of the sensors and encoders that are
commonly used in control systems are described.

6-2-1  Potentiometer
A potentiometer is an electromechanical transducer that converts

mechanical energy into electrical energy. The input to the device is in the
form of a mechanical displacement, either linear or rotational. When a
voltage is applied across the fixed terminals of the potentiometer, the output
voltage, which is measured across the variable terminal and ground, is
proportional to the input displacement, either linearly or according to some
nonlinear relation.

Rotary potentiometers are available commercially in single-revolution or
multirevolution form, with limited or unlimited rotational motion. The
potentiometers are commonly made with wirewound or conductive plastic
resistance material. Figure 6-7 shows a cutaway view of a rotary
potentiometer, and Fig. 6-8 shows a linear potentiometer that also contains a
built-in operational amplifier. For precision control, the conductive plastic
potentiometer is preferable because it has infinite resolution, long rotational
life, good output smoothness, and low static noise.



Figure 6-7   Ten-turn rotary potentiometer. (Courtesy of Helipot Division
of Beckman Instruments, Inc.)



Figure 6-8   Linear motion potentiomenter with built-in operational
amplifier. (Courtesy of Waters Manufacturing, Inc.)

Figure 6-9 shows the equivalent circuit representation of a potentiometer,
linear or rotary. Because the voltage across the variable terminal and
reference is proportional to the shaft displacement of the potentiometer, when
a voltage is applied across the fixed terminals, the device can be used to
indicate the absolute position of a system or the relative position of two
mechanical outputs. Figure 6-10a shows the arrangement when the housing
of the potentiometer is fixed at reference; the output voltage e(t) will be
proportional to the shaft position θc(t) in the case of a rotary motion. Then

Figure 6-9   Electric circuit representation of a potentiometer.



Figure 6-10   (a) Potentiometer used as a position indicator. (b) Two
potentiometers used to sense the positions of two shafts.

where Ks is the proportional constant. For an N-turn potentiometer, the total
displacement of the variable arm is 2πN radians. The proportional constant Ks

is given by

where E is the magnitude of the reference voltage applied to the fixed
terminals. A more flexible arrangement is obtained by using two
potentiometers connected in parallel, as shown in Fig. 6-10b. This
arrangement allows the comparison of two remotely located shaft positions.
The output voltage is taken across the variable terminals of the two
potentiometers and is given by

Figure 6-11 illustrates the block diagram representation of the setups in
Fig. 6-10. In dc-motor control systems, potentiometers are often used for
position feedback. Figure 6-12a shows the schematic diagram of a typical dc-
motor, position-control system. The potentiometers are used in the feedback
path to compare the actual load position with the desired reference position.
If there is a discrepancy between the load position and the reference input, an



error signal is generated by the potentiometers that will drive the motor in
such a way that this error is minimized quickly. As shown in Fig. 6-12a, the
error signal is amplified by a dc amplifier whose output drives the armature
of a permanent-magnet dc motor. Typical waveforms of the signals in the
system when the input θr(t) is a step function are shown in Fig. 6-13b. Note
that the electric signals are all unmodulated. In control-systems terminology,
a dc signal usually refers to an unmodulated signal. On the other hand, an ac
signal refers to signals that are modulated by a modulation process. These
definitions are different from those commonly used in electrical engineering,
where dc simply refers to unidirectional signals and ac indicates alternating
signals.

Figure 6-11   Block diagram representation of potentiometer arrangements
in Fig. 6-10.





Figure 6-12   (a) A dc-motor, position-control system with potentiometers
as error sensors. (b) Typical waveforms of signals in the control system of
part (a).



Figure 6-13   (a) An ac control system with potentiometers as error
detectors. (b) Typical waveforms of signals in the control system of part (a).



Figure 6-13a illustrates a control system that serves essentially the same
purpose as that of the system in Fig. 6-12a, except that ac signals prevail. In
this case, the voltage applied to the error detector is sinusoidal. The frequency
of this signal is usually much higher than that of the signal that is being
transmitted through the system. Control systems with ac signals are usually
found in aerospace systems that are more susceptible to noise.

Typical signals of an ac control system are shown in Fig. 6-13b. The signal
v(t) is referred to as the carrier whose frequency is ωc, or

Analytically, the output of the error signal is given by

where θc(t) is the difference between the input displacement and the load
displacement, or

For the θc(t) shown in Fig. 6-13b, e(t) becomes a suppressed-carrier-
modulated signal. A reversal in phase of e(t) occurs whenever the signal
crosses the zero-magnitude axis. This reversal in phase causes the ac motor to
reverse in direction according to the desired sense of correction of the error
signal θe(t). The term suppressed-carrier modulation stems from the fact that
when a signal θe(t) is modulated by a carrier signal v(t) according to Eq. (6-
12), the resultant signal e(t) no longer contains the original carrier frequency
ωc. To illustrate this, let us assume that θe(t) is also a sinusoid given by

where, normally, e(t). Using familiar trigonometric relations and
substituting Eqs. (6-11) and (6-14) into Eq. (6-12), we get

Therefore, e(t) no longer contains the carrier frequency Ec or the signal



frequency ωs but has only the two sidebands ωc + ωs and ωc − ωs.
When the modulated signal is transmitted through the system, the motor

acts as a demodulator, so that the displacement of the load will be of the same
form as the dc signal before modulation. This is clearly seen from the
waveforms of Fig. 6-13b. It should be pointed out that a control system need
not contain all dc or all ac components. It is quite common to couple a dc
component to an ac component through a modulator, or an ac device to a dc
device through a demodulator. For instance, the dc amplifier of the system in
Fig. 6-13a may be replaced by an ac amplifier that is preceded by a
modulator and followed by a demodulator.

6-2-2  Tachometers
Tachometers are electromechanical devices that convert mechanical energy

into electrical energy. The device works essentially as a voltage generator,
with the output voltage proportional to the magnitude of the angular velocity
of the input shaft. In control systems, most of the tachometers used are of the
dc variety; that is, the output voltage is a dc signal. DC tachometers are used
in control systems in many ways; they can be used as velocity indicators to
provide shaft-speed readout, velocity feedback, speed control, or
stabilization. Figure 6-14 is a block diagram of a typical velocity-control
system in which the tachometer output is compared with the reference
voltage, which represents the desired velocity to be achieved. The difference
between the two signals, or the error, is amplified and used to drive the motor
so that the velocity will eventually reach the desired value. In this type of
application, the accuracy of the tachometer is highly critical, as the accuracy
of the speed control depends on it.



Figure 6-14   Velocity-control system with tachometer feedback.

In a position-control system, velocity feedback is often used to improve the
stability or the damping of the closed-loop system. Figure 6-15 shows the
block diagram of such an application. In this case, the tachometer feedback
forms an inner loop to improve the damping characteristics of the system, and
the accuracy of the tachometer is not so critical.

Figure 6-15   Position-control system with tachometer feedback.

The third and most traditional use of a dc tachometer is in providing the
visual speed readout of a rotating shaft. Tachometers used in this capacity are
generally connected directly to a voltmeter calibrated in revolutions per
minute (rpm).

Mathematical Modeling of Tachometers
The dynamics of the tachometer can be represented by the equation

where et(t) is the output voltage; θ(t), the rotor displacement in radians;
ω(t), the rotor velocity in rad/s; and Kt, the tachometer constant in V/rad/s.
The value of Kt is usually given as a catalog parameter in volts per 1000 rpm
(V/krpm).

The transfer function of a tachometer is obtained by taking the Laplace



transform on both sides of Eq. (6-16). The result is

where Et(s) and Θ(s) are the Laplace transforms of et(t) and θ(t),
respectively.

6-2-3  Incremental Encoder
Incremental encoders are frequently found in modern control systems for

converting linear or rotary displacement into digitally coded or pulse signals.
The encoders that output a digital signal are known as absolute encoders. In
the simplest terms, absolute encoders provide as output a distinct digital code
indicative of each particular least significant increment of resolution.
Incremental encoders, on the other hand, provide a pulse for each increment
of resolution but do not make distinctions between the increments. In
practice, the choice of which type of encoder to use depends on economics
and control objectives. For the most part, the need for absolute encoders has
much to do with the concern for data loss during power failure or the
applications involving periods of mechanical motion without the readout
under power. However, the incremental encoder’s simplicity in construction,
low cost, ease of application, and versatility have made it by far one of the
most popular encoders in control systems. Incremental encoders are available
in rotary and linear forms. Figures 6-16 and 6-17 show typical rotary and
linear incremental encoders.



Figure 6-16   Rotary incremental encoder. (Courtesy of DISC Instruments,
Inc.)

Figure 6-17   Linear incremental encoder. (Courtesy of DISC Instruments,
Inc.)

A typical rotary incremental encoder has four basic parts: a light source, a
rotary disk, a stationary mask, and a sensor, as shown in Fig. 6-18. The disk
has alternate opaque and transparent sectors. Any pair of these sectors
represents an incremental period. The mask is used to pass or block a beam of
light between the light source and the photosensor located behind the mask.
For encoders with relatively low resolution, the mask is not necessary. For
fine-resolution encoders (up to thousands of increments per evolution), a
multiple-slit mask is often used to maximize reception of the shutter light.
The waveforms of the sensor outputs are generally triangular or sinusoidal,
depending on the resolution required. Square-wave signals compatible with
digital logic are derived by using a linear amplifier followed by a comparator.
Figure 6-19a shows a typical rectangular output waveform of a single-
channel incremental encoder. In this case, pulses are produced for both
directions of shaft rotation. A dual-channel encoder with two sets of output



pulses is necessary for direction sensing and other control functions. When
the phase of the two-output pulse train is 90° apart electrically, the two
signals are said to be in quadrature, as shown in Fig. 6-19b. The signals
uniquely define 0-to-1 and 1-to-0 logic transitions with respect to the
direction of rotation of the encoder disk so that a direction-sending logic
circuit can be constructed to decode the signals. Figure 6-20 shows the
single-channel output and the quadrature outputs with sinusoidal waveforms.
The sinusoidal signals from the incremental encoder can be used for fine
position control in feedback control systems. The following example
illustrates some applications of the incremental encoder in control systems.

Figure 6-18   Typical incremental optomechanics.



Figure 6-19   (a) Typical rectangular output waveform of a single-channel
encoder device (bidirectional). (b) Typical dual-channel encoder signals in
quadrature (bidirectional).



Figure 6-20   (a) Typical sinusoidal output waveform of a single-channel
encoder device. (b) Typical dual-channel encoder signals in quadrature.

EXAMPLE 6-2-1  Consider an incremental encoder that generates two
sinusoidal signals in quadrature as the encoder disk
rotates. The output signals of the two channels are
shown in Fig. 6-21 over one cycle. Note that the two
encoder signals generate 4 zero crossings per cycle.
These zero crossings can be used for position
indication, position control, or speed measurements in
control systems. Let us assume that the encoder shaft
is coupled directly to the rotor shaft of a motor that
directly drives the printwheel of an electronic
typewriter or word processor. The printwheel has 96
character positions on its periphery, and the encoder
has 480 cycles. Thus, there are 480 × 4 = 1920 zero
crossings per revolution. For the 96-character
printwheel, this corresponds to 1920/96 = 20 zero
crossings per character; that is, there are 20 zero
crossings between two adjacent characters.

Figure 6-21   One cycle of the output signals of a dual-channel
incremental encoder.

One way of measuring the velocity of the printwheel is to count the
number of pulses generated by an electronic clock that occurs between



consecutive zero crossings of the encoder outputs. Let us assume that a 500-
kHz clock is used; that is, the clock generates 500,000 pulses/s. If the counter
records, say, 500 clock pulses while the encoder rotates from the zero
crossing to the next, the shaft speed is

The encoder arrangement described can be used for fine position control of
the printwheel. Let the zero crossing A of the waveforms in Fig. 6-21
correspond to a character position on the printwheel (the next character
position is 20 zero crossings away), and the point corresponds to a stable
equilibrium point. The coarse position control of the system must first drive
the printwheel position to within 1 zero crossing on either side of position A;
then, by using the slope of the sine wave at position A, the control system
should null the error quickly.

6-3  DC MOTORS IN CONTROL SYSTEMS
Direct-current (dc) motors are one of the most widely used prime movers

in the industry today. Years ago, the majority of the small servomotors used
for control purposes were ac. In reality, ac motors are more difficult to
control, especially for position control, and their characteristics are quite
nonlinear, which makes the analytical task more difficult. DC motors, on the
other hand, are more expensive because of their brushes and commutators,
and variable-flux dc motors are suitable only for certain types of control
applications. Before permanent-magnet technology was fully developed, the
torque-per-unit volume or weight of a dc motor with a permanent-magnet
(PM) field was far from desirable. Today, with the development of the rare-
earth magnet, it is possible to achieve very high torque-to-volume PM dc
motors at reasonable cost. Furthermore, the advances made in brush-and-



commutator technology have made these wearable parts practically
maintenance-free. The advancements made in power electronics have made
brushless dc motors quite popular in high-performance control systems.
Advanced manufacturing techniques have also produced dc motors with
ironless rotors that have very low inertia, thus achieving a very high torque-
to-inertia ratio. Low-time-constant properties have opened new applications
for dc motors in computer peripheral equipment such as printers and disk
drives, as well as in slew of other applications including automation and
machine-tool industries.

6-3-1  Basic Operational Principles of DC Motors
The dc motor is basically a torque transducer that converts electric energy

into mechanical energy. The torque developed on the motor shaft is directly
proportional to the field flux and the armature current. As shown in Fig. 6-22,
a current-carrying conductor is established in a magnetic field with flux ϕ,
and the conductor is located at a distance r from the center of rotation. The
relationship among the developed torque, flux ϕ, and current ia is

Figure 6-22   Torque production in a dc motor.

where Tm is the motor torque (in N · m, lb · ft, or oz · in.); ϕ, the magnetic
flux (in webers); ia, the armature current (in amperes); and Km, a proportional
constant.

In addition to the torque developed by the arrangement shown in Fig. 6-22,



when the conductor moves in the magnetic field, a voltage is generated across
its terminals. This voltage, the back emf, which is proportional to the shaft
velocity, tends to oppose the current flow. The relationship between the back
emf and the shaft velocity is

where eb denotes the back emf (volts) and ωm is the shaft velocity (rad/s) of
the motor. Equations (6-19) and (6-20) form the basis of the dc-motor
operation.

6-3-2  Basic Classifications of PM DC Motors
In general, the magnetic field of a dc motor can be produced by field

windings or permanent magnets. Due to the popularity of PM dc motors in
control system applications, we shall concentrate on this type of motor.

PM dc motors can be classified according to commutation scheme and
armature design. Conventional dc motors have mechanical brushes and
commutators. However, an important type of dc motors in which the
commutation is done electronically is called brushless dc.

According to the armature construction, the PM dc motor can be broken
down into three types of armature design: iron-core, surface-wound, and
moving-coil motors.

Iron-Core PM DC Motors
The rotor and stator configuration of an iron-core PM dc motor is shown in

Fig. 6-23. The permanent-magnet material can be barium ferrite, Alnico, or a
rare-earth compound. The magnetic flux produced by the magnet passes
through a laminated rotor structure that contains slots. The armature
conductors are placed in the rotor slots. This type of dc motor is characterized
by relatively high rotor inertia (since the rotating part consists of the armature
windings), high inductance, low cost, and high reliability.



Figure 6-23   Cross-section view of a permanent-magnet (PM) iron-core
dc motor.

6-3-3  Surface-Wound DC Motors
Figure 6-24 shows the rotor construction of a surface-wound PM dc motor.

The armature conductors are bonded to the surface of a cylindrical rotor
structure, which is made of laminated disks fastened to the motor shaft.
Because no slots are used on the rotor in this design, the armature has no
“cogging” effect. The conductors are laid out in the air gap between the rotor
and the PM field, so this type of motor has lower inductance than that of the
iron-core structure.



Figure 6-24   Cross-section view of a surface-wound permanent-magnet
(PM) dc motor.

6-3-4  Moving-Coil DC Motors
Moving-coil motors are designed to have very low moments of inertia and

very low armature inductance. This is achieved by placing the armature
conductors in the air gap between a stationary flux return path and the PM
structure, as shown in Fig. 6-25. In this case, the conductor structure is
supported by nonmagnetic material—usually epoxy resins or fibreglass—to
form a hollow cylinder. One end of the cylinder forms a hub, which is
attached to the motor shaft. A cross-section view of such a motor is shown in
Fig. 6-26. Because all unnecessary elements have been removed from the
armature of the moving-coil motor, its moment of inertia is very low.
Because the conductors in the moving-coil armature are not in direct contact
with iron, the motor inductance is very low, and values of less than 100 μH
are common in this type of motor. Its low-inertia and low-inductance
properties make the moving-coil motor one of the best actuator choices for
high-performance control systems.



Figure 6-25   Cross-section view of a surface-wound permanent-magnet
(PM) dc motor.

Figure 6-26   Cross-section side view of a moving-coil dc motor.

6-3-5  Brushless DC Motors
Brushless dc motors differ from the previously mentioned dc motors in that

they employ electrical (rather than mechanical) commutation of the armature
current. The most common configuration of brushless dc motors—especially



for incremental-motion applications—is one in which the rotor consists of
magnets and “back-iron” support and whose commutated windings are
located external to the rotating parts, as shown in Fig. 6-27. Compared to the
conventional dc motors, such as the one shown in Fig. 6-26, it is an inside-out
configuration.

Figure 6-27   Cross-section view of a brushless, permanent-magnet (PM),
iron-core dc motor.

Depending on the specific application, brushless dc motors can be used
when a low moment of inertia is needed, such as the spindle drive in high-
performance disk drives used in computers.

6-3-6  Mathematical Modeling of PM DC Motors
Dc motors are extensively used in control systems. In this section, we

establish the mathematical model for dc motor. As it will be demonstrated
here, the mathematical model of a dc motor is linear. We use the equivalent
circuit diagram in Fig. 6-28 to represent a PM dc motor. The armature is
modeled as a circuit with resistance Ra connected in series with an inductance
La, and a voltage source eb representing the back emf (electromotive force) in
the armature when the rotor rotates. The motor variables and parameters are
defined as follows:



Figure 6-28   Model of a separately excited dc motor.

With reference to the circuit diagram of Fig. 6-28, the control of the dc
motor is applied at the armature terminals in the form of the applied
voltage ea(t). For linear analysis, we assume that the torque developed by the
motor is proportional to the air-gap flux and the armature current. Thus,

Because ϕ is constant, Eq. (6-21) is rewritten as

where Ki is the torque constant in N · m/A, lb · ft/A, or oz · in/A.
Starting with the control input voltage ea(t), the cause-and-effect equations

for the motor circuit in Fig. 6-28 are



where TL(t) represents a load frictional torque such as Coulomb friction,
which works as a disturbance reducing the speed of the motor. As an
example, consider how the speed of a motor is reduced in case of an electric
juicer once a fruit is pressed in.

Equations (6-23) through (6-26) consider that the applied voltage ea(t) is
the cause; Eq. (6-23) considers that dia(t)/dt is the immediate effect due to
ea(t); in Eq. (6-24), ia(t) causes the torque Tm(t); Eq. (6-25) defines the back
emf; and, finally, in Eq. (6-26), the torque Tm(t) causes the angular speed ωm(t)
and displacement θm(t).

Upon taking the Laplace transform of Eqs. (6-23) through (6-26), and
assuming zero initial conditions, we get

After rearranging Eq. (6-27) and breaking down Eq. (6-30) to represent
angular speed and position separately, Eqs. (6-27) through (6-30) take the
following form



the resulting equations may be individually represented by block diagrams,
as shown in Fig. 6-29.

Figure 6-29   Individual block diagram representation of Eqs. (6-31)
through (6-35).



Figure 6-30 shows a block-diagram representation of the dc-motor system.
The advantage of using the block diagram is that it gives a clear picture of the
transfer function relation between each block of the system. The transfer
function between the motor displacement and the input voltage is obtained
from the overall system block diagram in Fig. 6-30 as

Figure 6-30   Block diagram of a dc-motor system.

where TL(t) has been set to zero—that is, no load is applied to the motor.
Because an s can be factored out of the denominator of Eq. (6-36), the

significance of the transfer function Θm(s)/Ea(s) is that the dc motor is
essentially an integrating device between these two variables. This is
expected because, if ea(t) is a constant input, the output motor displacement
will behave as the output of an integrator; that is, it will increase linearly with
time.

Although a dc motor by itself is basically an open-loop system, the block
diagram of Fig. 6-30 shows that the motor has a “built-in” feedback loop
caused by the back emf. Physically, the back emf represents the feedback of a
signal that is proportional to the negative of the speed of the motor. As seen
from Eq. (6-36), the back-emf constant Kb represents an added term to the
resistance Ra and the viscous-friction coefficient Bm. Therefore, the back-emf
effect is equivalent to an “electric damping,” which tends to improve the
stability of the motor and, in general, the stability of the system.

The state variables of the system can be defined as ia(t), ωm(t), and θm(t).



By direct substitution and eliminating all the nonstate variables from Eqs. (6-
23) through (6-26), the state equations of the dc-motor system are written in
vector-matrix form:

The dc motor is essentially an integrating device between these two
variables.

Notice that, in this case, TL(t) is treated as a second input in the state
equations.

The SFG diagram of the system is drawn as shown in Fig. 6-31, following
the procedure discussed in Sec. 4-3.

Figure 6-31   Signal-flow graph diagram of a dc-motor system with
nonzero initial conditions.



6-3-7  Relation between Ki and Kb
Although functionally the torque constant Ki and back-emf constant Kb are

two separate parameters, for a given motor their values are closely related. To
show the relationship, we write the mechanical power developed in the
armature as

The mechanical power is also expressed as

where, in SI units, Tm(t) is in N · m and wm(t) is in rad/s. Now, substituting
Eqs. (6-24) and (6-25) in Eqs. (6-38) and (6-39), we get

from which we get, in SI units

In SI units, the values of Kb and Ki are identical.

Thus, we see that, in SI units, the values of Kb and Ki are identical if Kb is
represented in V/rad/s and Ki is in N · m/A.

In the British unit system, we convert Eq. (6-38) into horsepower (hp); that
is,

In terms of torque and angular speed, P in Eq. (6-39) is rewritten in terms
of hp as



where Tm(t) is in ft-lb and wm(t) is in rad/s. Using Eqs. (6-24) and (6-25),
and equating Eq. (6-42) to Eq. (6-43), we get

Thus,

where Kb is in V/rad/s and Ki is in ft · lb/A.

6-4  SPEED AND POSITION CONTROL OF A
DC MOTOR

Servomechanisms are probably the most frequently encountered
electromechanical control systems. Applications include robots (each joint in
a robot requires a position servo), numerical control (NC) machines, and laser
printers, to name but a few. The common characteristic of all such systems is
that the variable to be controlled (usually position or velocity) is fed back to
modify the command signal. The servomechanism that will be used in the
experiments in this chapter comprises a dc motor and amplifier that are fed
back the motor speed and position values.

One of the key challenges in the design and implementation of a successful
controller is obtaining an accurate model of the system components,
particularly the actuator. In the previous section, we discussed various issues
associated with modeling of dc motors. In this section, we study the speed
and position control of dc motors.

6-4-1  Speed Response and the Effects of Inductance and
Disturbance: Open-Loop Response

Consider the schematic diagram of an armature-controlled dc motor shown



in Fig. 6-32, where the field current is held constant in this system. In this
case, the sensor attached to the motor is a tachometer, which is used to sense
the motor shaft speed. Depending on the application, for example, position
control, a potentiometer, or an encoder may be used as a sensor instead—see
Fig. 6-2. System parameters and variables include

Figure 6-32   An armature-controlled dc motor with a gear head and a load
inertia JL.

Ra = armature resistance, Ω
La = armature inductance, H
ea = applied armature voltage, V
eb = back emf, V
θm = angular displacement of the motor shaft, rad
ωm = angular speed of the motor shaft, rad/s
Tm = torque developed by the motor, N · m
JL = moment of inertia of the load, kg · m2

TL = external load torque considered as a disturbance, N · m
Jm = moment of inertia of the motor (motor shaft), kg · m2

J = equivalent moment of inertia of the motor and load connected to the
motor-shaft, J = JL/n2 + Jm, kg − m2 (refer to Chap. 2 for more details)

n = gear ratio
Bm = viscous-friction coefficient of the motor, N · m/rad/s
BL = viscous-friction coefficient of the load, N · m/rad/s
B = equivalent viscous-friction coefficient of the motor and load referred to



the motor shaft, N · m/rad/s (in the presence of gear ratio, B must be
scaled by n; refer to Chap. 2 for more details)

Ki = torque constant, N · m/A
Kb = back-emf constant, V/rad/s
Kt = speed sensor (in this case a tachometer) gain, V/rad/s

As shown in Fig. 6-33, the armature-controlled dc motor is itself a
feedback system, where back-emf voltage is proportional to the speed of the
motor. In Fig. 6-33, we have included the effect of any possible external load
(e.g., the load applied to a juice machine by the operator pushing in the fruit)
as a disturbance torque TL. The system may be arranged in input-output form,
in Laplace domain, such that Ea(s) is the input and Ωm(s) is the output:

Figure 6-33   Block diagram of an armature-controlled dc motor.

The ratio La/Ra is called the motor electric-time constant, which makes the



system speed-response transfer function second order and is denoted by τe.
Also, it introduces a zero to the disturbance-output transfer function.
However, because La in the armature circuit is very small, τe may be
neglected, resulting in the simplified transfer functions and the block diagram
of the system. Thus, the speed of the motor shaft may be simplified to

or

where Keff = Ki/(RaBm + KiKb) is the motor gain constant, and τm = RaJm/(RaBm +
KiKb) is the motor mechanical time constant.

Using superposition, we get

To find the response ωm(t), we use superposition and find the response due
to the individual inputs. For TL = 0 (no disturbance and B = 0) and an applied
voltage ea(t) = A, such that Ea(s) = A/s,

In this case, note that the motor mechanical time constant τm is reflective of
how fast the motor is capable of overcoming its own inertia Jm to reach a
steady-state or constant speed dictated by voltage Ea. From Eq. (6-50), the

speed final value is  As it will be seen later in Chap. 7,



this value is also known as the reference input, which reflects the desired
output value for a give input voltage. As τm increases, the approach to steady
state takes longer. See Fig. 6-34 for the typical time response associated with
Eq. (6-50).

Figure 6-34   Typical speed response of a dc motor. Solid line represents a
no- load response. Dashed line represents the effect of a constant load on the
speed response.

If we apply a constant load torque of magnitude D to the system (i.e., TL =
D/s), the speed response from Eq. (6-48) will change to

which clearly indicates that the disturbance TL affects the final speed of the
motor. From Eq. (6-51), at steady state, the speed of the motor is 

 Here the final value of ωm(t) is reduced by
RaD/KmKb, as shown in Fig. 6-34. A practical note is that the value of TL = D
may never exceed the motor stall torque, and hence for the motor to turn,
from Eq. (6-51), AKi/Ra > D, which sets a limit on the magnitude of the torque
TL. For a given motor, the value of the stall torque can be found in the
manufacturer’s catalog.

In a realistic scenario, you must measure motor speed using a sensor. How
would the sensor affect the equations of the system (see Fig. 6-33)?



6-4-2  Speed Control of DC Motors: Closed-Loop Response
As seen previously, the output speed of the motor is highly dependent on

the value of torque TL. We can improve the speed performance of the motor
by using a proportional feedback controller. The controller is composed of a
sensor (usually a tachometer for speed applications) to sense the speed and an
amplifier with gain K (proportional control—refer to row (a) in Table 6-1) in
the configuration shown in Fig. 6-35. The block diagram of the system is also
shown in Fig. 6-36.

Figure 6-35   Feedback control of an armature-controlled dc motor with a
load inertia.

Figure 6-36   Block diagram of a speed-control, armature-controlled dc
motor.

Note that the speed at the motor shaft is sensed by the tachometer with a
gain Kt. For ease in comparison of input and output, the input to the control



system is converted from voltage Ein to speed Ωin using the tachometer gain Kt.
Hence, for La ⋍ 0, we have

For a step input Ωin = A/s and disturbance torque value TL = D/s, the output
becomes

where  is the system time constant. The steady-
state response in this case is

where ωfv → A as K → ∞. While the time response of Eq. (6-53) has a
similar graphical representation as in Fig. 6-34, the control gain can reduce
the effect of disturbance, because for high K values, the disturbance effect is
reduced. Of course, there are limitations. For example, practically speaking,
we are limited by amplifier saturation and the motor’s input voltage limits.
The system in this case will also exhibit steady-state error, which is later
discussed in Chaps. 7 and 8. As in Sec. 6-4-1, the reader should investigate
what happens if the inertia JL is included in this model. If the load inertia JL is
too large, will the motor be able to turn? Again, as in Sec. 6-4-1, you will



have to read the speed-sensor voltage to measure speed. How will that affect
your equations?

6-4-3  Position Control
The position response in the open-loop case may be obtained by

integrating the speed response. Then, considering Fig. 6-33, we have Θm()s) =
Ωm(s)/s. The open-loop transfer function is therefore

where in this case we have used the total inertia J = JL/n2 + Jm. For small La,
the time response in this case is

which implies that the motor shaft is turning without stop at a constant
steady-state speed A/Kb. To control the position of the motor shaft, the
simplest strategy is to use an amplifier with gain K, as shown in row (a) in
Table 6-1. The block diagram of the closed-loop system is shown in Fig. 6-
37. The system is composed of an angular position sensor (usually an encoder
or a potentiometer for position applications). Note that, for simplicity, the
input voltage can be scaled to a position input Θin(s) so that the input and
output have the same units and scale. Alternatively, the output can be
converted into voltage using the sensor gain value. The closed-loop transfer
function in this case becomes



Figure 6-37   Block diagram of a position-control, armature-controlled dc
motor.

where Ks is the sensor gain (for the sake of argument let’s use a
potentiometer in this case), and, as before, the motor electrical time constant
τe = (La/Ra) may be neglected for small La. As a result the position transfer
function is simplified to

where Eq. (6-58) is a second-order system, and

As a result, for a step input Θin(s) = 1/s, the position response of the system
will be the same as that of a prototype second-order system, as shown in
Chap. 3 (Fig. 3-11). For a given motor, all parameters are known, and the
only varying term is the amplifier gain K—the controller gain. Upon varying
K, we can directly change ωn and indirectly change ζ to achieve a desired
response. For a positive K, regardless of the type of response (e.g., critically
damped or underdamped), the final value of the system is θfv = 1, which
implies that the output will follow the input (recall we used a unit step input).
Hence, the position will not increase as in the uncontrolled system that is
represented by Eq. (6-56).



Later, in Chaps. 7 and 8, we set up numerical and experimental case
studies to test and verify the preceding concepts and learn more about other
practical issues.

6-5  CASE STUDIES: PRACTICAL EXAMPLES
EXAMPLE 6-5-1  Modeling of a Sun-Seeker Control System

In this case study, we model a sun-seeker control system whose purpose is
to control the attitude of a space vehicle so that it will track the sun with high
accuracy. In the system described here, tracking the sun in only one plane is
accomplished. A schematic diagram of the system is shown in Fig. 6-38. The
principal elements of the error discriminator are two small rectangular silicon
photovoltaic cells mounted behind a rectangular slit in an enclosure. The cells
are mounted in such a way that when the sensor is pointed at the sun, a beam
of light from the slit overlaps both cells. Silicon cells are used as current
sources and connected in opposite polarity to the input of an op-amp. Any
difference in the short-circuit current of the two cells is sensed and amplified
by the op-amp. Because the current of each cell is proportional to the
illumination on the cell, an error signal will be present at the output of the
amplifier when the light from the slit is not precisely centered on the cells.
This error voltage, when fed to the servo-amplifier, will cause the motor to
drive the system back into alignment. The description of each part of the
system is given in following sections.



Figure 6-38   Schematic diagram of a sun-seeker system.

Coordinate System The center of the coordinate system is considered to
be at the output gear of the system. The reference axis is taken to be the fixed
frame of the dc motor, and all rotations are measured with respect to this axis.
The solar axis, or the line from the output gear to the sun, makes an angle
θr(t) with respect to the reference axis, and θo(t) denotes the vehicle axis with
respect to the reference axis. The objective of the control system is to
maintain the error between θr(t) and θo(t), α(t), near zero

The coordinate system described is illustrated in Fig. 6-39.



Figure 6-39   Coordinate system of the sun-seeker system.

Error Discriminator When the vehicle is aligned perfectly with the sun,
α(t) = 0, and io(t) = ib(t) = I, or ia(t) = ib(t) = 0. From the geometry of the sun
ray and the photovoltaic cells shown Fig. 6-39, we have

where oa denotes the width of the sun ray that shines on cell A and ob is
the same on cell B, for a given α(t). Because the current ia(t) is proportional to
oa and ib(t) is proportional to ob, we have

for 0 ≤ tanα(t) ≤ W/2L. For W/2L ≤ tanα(t) ≤ (C − W/2)/L, the sun ray is
completely on cell A, and ia(t) = 2I, ib(t) = 0. For (C − W/2)L ≤ tanα(t) ≤ (C +



W/2)L,ia(t) decreases linearly from 2I to zero. ia(t) = ib(t) = 0 for tanα(t) ≥ (C +
W/2)/L. Therefore, the error discriminator may be represented by the
nonlinear characteristic of Fig. 6-40, where for small angle α(t), tanα(t) has
been approximated by α(t) on the abscissa.

Figure 6-40   Nonlinear characteristic of the error discriminator. The
abscissa is tan α, but it is approximated by α for small values of α.

The relationship between the output of the op-amp and the currents ia(t)
and ib(t) is

Servo-Amplifier The gain of the servo-amplifier is −K. With reference to
Fig. 6-41, the output of the servo-amplifier is expressed as



Figure 6-41   Block diagram of the sun-seeker system.

Tachometer The output voltage of the tachometer et is related to the
angular velocity of the motor through the tachometer constant Kt:

The angular position of the output gear is related to the motor position
through the gear ratio 1/n. Thus,

DC Motor The dc motor has been modeled in Sec. 6-3. The equations are

where J and B are the inertia and viscous-friction coefficient seen at the
motor shaft. The inductance of the motor is neglected in Eq. (6-70) because it



is assumed to be small—recall discussions on small motor electric time
constant in Sec. 6-4-1. A block diagram that characterizes all the functional
relations of the system is shown in Fig. 6-41.

EXAMPLE 6-5-2  Modeling of a Quarter-Car Active Suspension System
For the test vehicle shown in Fig. 6-42, a four-post shaker is used to test

the performance of the vehicle suspension system by applying various
excitations to the vehicle.

Figure 6-42   A Cadillac SRX 2005 model on a four-post shaker test
facility (author’s research on active suspension system).

Classically, the quarter-car model, shown in Fig. 6-43, is used in the study
of the vehicle suspension systems and the resulting dynamic response due to



various road inputs. Typically, the inertia, stiffness, and damping
characteristics of the system as illustrated in Fig. 6-43a are modeled as a two-
degree of freedom (2-DOF) system, as shown in Fig. 6-43b. Although a 2-
DOF system is a more accurate model, it is sufficient for the following
analysis to assume a 1-DOF model, as shown in Fig. 6-43c.

Figure 6-43   Quarter-car model realization. (a) Quarter car. (b) Two
degrees of freedom. (c) One degree of freedom.

Open-Loop Base Excitation Given the simplified system representing a
miniaturized vehicle model suspension, illustrated in Fig. 6-43c, where

the equation of motion of the system is defined as follows:

which can be simplified by substituting the relation z(t) = x(t) − y(t) and



non-dimensionalizing the coefficients to the form

The Laplace transform of Eq. (6-75) yields the input–output relationship

where the base acceleration A(s) is the Laplace transform of a(t) and is the
input, and relative displacement Z(s) is the output. In this case, initial
conditions are assumed to be zero.

Closed-Loop Position Control Active control of the suspension system is
to be achieved using the same dc motor described in Sec. 6-4-3 used in
conjunction with a rack as shown in Fig. 6-43.

In Fig. 6-44, T(t) is the torque produced by the motor with shaft rotation θ,
and r is the radius of the motor drive gear. Thus, Eq. (6-74) is rewritten to
include the active component, F(t),

Figure 6-44   Active control of the 1-DOF model via a dc motor and rack.

where



Because z = θr, we can substitute Eq. (6-78) into Eq. (6-77), rearrange, and
take the Laplace transform to get

Noting that the term mrA(s) is interpreted as a disturbance torque.
The motor equations from Sec. 6-3 are

Using J = mr2 + Jm, B = cr2 + Bm, and K = kr2 in Eq. (6-79), and combining
the resulting equation with Eqs. (6-80) through (82), the transfer function of
the overall system may be obtained for the applied motor voltage Ea(s) and
the disturbance torque. The new equation of the system is in the following
form:

In order to control the bounce of the car, we need to sense z(t) using a
position sensor, for example, string potentiometer with a gain Ks. In that case,
addition of the sensor and a controller—in this case a proportional controller
with a gain K as in Sec. 6-4-3—will create a feedback control system as
shown in Fig. 6-45. In this case, the input Zin(s) reflects the desired bounce
level—normally zin(t) = 0 for the control objective of having no bounce in
response to disturbances from the road.



Figure 6-45   Block diagram of the active feedback control quarter-car
system, for bounce control.

6-6  THE CONTROL LAB: INTRODUCTION
TO LEGO MINDSTORMS NXT MOTOR—
MODELING AND CHARACTERIZATION

This section offers a practical approach to modeling and characterization of
a dc motor, without any reliance on manufacturer datasheets. It intends to
provide an understanding and appreciation of where each term, discussed
earlier in this chapter, comes from, and how to experimentally obtain or
verify their value.

In this section, we continue our work with the project described earlier in
Sec. 2-6 (and in detail in App. D), and experimentally characterize the motor
parameters to arrive at an accurate model of the overall electrometrical
system.

6-6-1  NXT Motor
The NXT motor used in this project is a 9-V dc motor specific to the

LEGO MINDSTORMS NXT set. As shown in Fig. 6-46, the motor contains
a gear-train from the motor to the output shaft to provide greater torque.



Figure 6-46   NXT motor internals.

The overall gear ratio calculation from motor to output shaft is shown in
Table 6-2. In this case, as discussed in App. D, because the encoder measures
the rotational position of the output shaft, and not that of the motor shaft, the
gear ratio and its model may be absorbed into the motor model—see earlier
discussions in this chapter for details. As a result, from this point forward,
any reference to the motor implicitly refers to the motor-gear-train system.
Further, all parameters obtained will be for the motor-gear-train combination.

TABLE 6-2   NXT Motor to Output Shaft Gear Reductions

The gear ratio and its model may be absorbed into the motor model.



Note: All parameters obtained will be for the motor-gear-train
combination.

In order to fully model the motor, both the electrical and mechanical
characteristics of the motor are obtained experimentally.

6-6-2  Electrical Characteristics1

The electrical characteristics required to model the motor are its armature
resistance and armature inductance. The following sections will provide you
with tests that can be done on the motor to measure its electrical
characteristics (see App. D for more details).

Armature Resistance
To begin, we must measure the armature current using a multimeter. Using

the procedure as described in App. D. You will notice the current will
drastically increase when the motor is stalled. Record the stall current, Istall,
that is reported by the multimeter and repeat for various trials. After
measuring the stall current, the armature voltage must also be measured with
the multimeter. Next calculate the experimental armature resistance, as
suggested in App. D, using

where va is the voltage measured when the motor is stalled.
Experimental data for the NXT motor for various input power values (as a

percentage of maximum power) are shown in Table 6-3. Applying Eq. (6-84),
the average experimental armature resistance of the NXT motor was found to
be Ra = 2.27 Ω.

TABLE 6-3   Armature Resistance Measurement Experimental Data



Armature Inductance
There are a number of ways to measure the motor inductance. One way

commonly practiced in most undergraduate control labs is to connect a
known resistor R (select a value close to Ra) in series with the motor, stall the
motor as in the previous section, provide the system with a constant input
voltage, turn off the input and measure the electric time constant La/(R + Ra).
Knowing the time constant and resistance values, you can calculate La. We
took the easy way out by using a multimeter that is able to measure
inductance. Simply connect the multimeter to the motor terminals, and set the
multimeter to measure inductance, as shown in Fig. 6-47. The experimentally
measured armature inductance was found to be La = 4.7 mH.





Figure 6-47   Motor direct inductance measurement with a multimeter.

6-6-3  Mechanical Characteristics2

The mechanical characteristics required to model the motor are the torque
constant, the back-emf constant, viscous-friction coefficient (recall from
Chap. 2 that for simplicity we assume all friction is modeled as viscous
damping), armature and load moments of inertia, and system mechanical time
constant. The following sections will provide you with tests that you can use
to measure the NXT motor mechanical characteristics.

Motor Torque Constant
As discussed in Sec. 6-3, the motor torque constant Ki is obtained from

where Tm is the motor torque and ia is the armature current. Determining the
torque constant experimentally requires you to measure both the current
supplied to the motor and the torque that it provides.

Start by attaching a shaft and spool to the end of the motor as illustrated in
Fig. 6-48 as a pulley. Finally, attach a weight with known mass to the end of
the thread; this will act as the external torque that the motor has to overcome
in order to rotate. The torque can be calculated using



Figure 6-48   Torque constant test setup.

where rspool is the radius of the spool and W is the weight corresponding to
mass M. The motor will stall when T = 0. The corresponding Tm and ia are
motor stall torque and current, respectively.

In this experiment, the motor rotation results in the mass M to move up or
down. You will be required to measure the current supplied to the motor for a
variable mass—recall the earlier instructions on how to measure the motor
current form Sec. 6-6-2. Start by applying an input to the motor and let the



mass rise to the top. While the motor is pulling the mass upward, measure the
current supplied to the motor using a multimeter. Repeat this process for
various masses and plot the experimental torque Tm from Eq. (6-85) against
the measured current. It should be noted that Ki is independent of the input
voltage value. Table 6-4 shows some of the measurements for our
experiment. Note that for TW = 0 N · m, ia = 0.041 A, which is the current in
the motor to overcome the internal motor friction. This value can later be
used to calculate the motor damping parameter. Also note that for mass M =
0.874 kg the motor stalls and the corresponding stall torque is Tstall = Tw =
0.116 N · m. The experimental motor torque curve for our NXT motor is
shown in Fig. 6-49, where the experimental motor torque curve is
extrapolated from the data points using the linear regression tool in
MATLAB. The NXT experimentally measured motor constant is the inverse
of the slope (3.95 A/N · m) or Ki = 0.252 N · m/A.

TABLE 6-4   Motor Torque Constant Measurement Experiment (rspool =
0.013575 m)





Figure 6-49   Experiment motor torque Tw versus current curve for NXT
motor to calculate Ki.

Back-emf Constant
As discussed earlier in this chapter, the back-emf constant is obtained from

where eb is the back-emf or motor voltage and ωm is the motor angular
speed. To measure the motor back-emf constant, you will be required to test
the motor’s open-loop speed response using Simulink as well as measuring
the supplied voltage using a multimeter (see App. D).

A sample open-loop step response for a 2.0-V step input is shown in Fig.
6-50. You will observe that there is noise visible in the output. The noise is a
result of differentiation of the low resolution position signal from the encoder
to find speed, and it is also attributed to the gear backlash. As a result, you
need to record the average steady-state speed for various step inputs and
record the steady-state speed and armature voltage for each trial. Finally, plot
the experimental armature voltage against the measured steady-state average
speeds. A sample plot is shown in Fig. 6-51, where the experimental data
points are shown as well as an extrapolated trend line found using the linear
regression tool in MATLAB. The slope of this line is the back-emf constant
of the motor. The back-emf constant of the NXT motor was experimentally
measured to be Kb = 0.249 V/rad/s.



Figure 6-50   Open-loop speed response for 2.0-V input (50% power).



Figure 6-51   Voltage versus steady-state speed.

It should be noted that, in an ideal case, the back-emf constant and motor
torque constant are numerically equal in the SI units. However, because
these values have been experimentally measured, their corresponding
experimentally measured values are close, but not equal. To equate the two
constants, we can find the average value that exists between them so that both
Kb and Ki are numerically equal. The average value between Kb = 0.249
V/rad/s and Ki = 0.252 N · m/A is 0.25; therefore, this average value will be
used for both Kb and Ki.

Note: All parameters obtained will be for the motor-gear-train
combination.



Viscous-Friction Coefficient
The viscous-friction coefficient describes the amount of friction that exists

in the system. In reality, the friction may not be viscous. However, as
discussed in Chap. 2, this is an assumption that we make to arrive at an
approximate linear model for the motor-gear-train combination—again any
reference to motor implicitly refers to the motor-gear-train combination.
Important note: Because of various nonlinear affects such as friction and
gear backlash, it is not expected that this parameter can be estimated
accurately.

Using small inductance assumption, that is, La ≃ 0, we can arrive at the
effective damping due the electrical and mechanical components. From Sec.
6-3-6, the speed response of the motor in Fig. 6-48 (assuming negligible
spool inertia) is

where Bm is the viscous-friction coefficient, Ra is the motor armature
resistance, Ki is the motor torque constant and Kb is the back-emf constant.

Next, using the formula for steady-state speed,

We can calculate Bm experimentally, using

To measure the viscous-friction coefficient, apply a step input—in this
case 2 V—to the motor, using the procedure outlined earlier in back-emf
constant measurement section, and observe the open-loop speed response, as
shown in Fig. 6-50. Record the steady-state speed—in this case 7.636 rad/s—



and substitute the values in Eq. (6-90), as shown.
Alternatively, using the mechanical equation of the motor, and replacing

the motor torque with armature current using Eq. (6-87), we have

Hence, the viscous-friction coefficient at steady-state angular speed can
also be measured using

Using the no-load case (TW = 0), and from Table 6-4 the no-load armature
current ia = 0.041 A, we can calculate Bm experimentally to be

The no-load value of current is what the motor needs to overcome internal
friction.

You can also obtain the viscous-friction coefficient for different load
torque values using Eq. (6-93) and Table 6-4, provided that you have the
corresponding steady-state angular speed for each TW. Constructing the motor
speed-torque curve, as in Fig. 6-52, will help you with this task. You can
experimentally obtain this curve using the same procedure as in Ki calculation
that was discussed earlier in this section. In Fig. 6-48, the relation between
angular speed and torque is



Figure 6-52   Motor speed-torque curve.

From Table 6-4 and Eqs. (6-90) and (6-92), the average value of viscous-
friction coefficient Bm = 1.36 × 10−3 N · m/s.

Caution: The value of Bm varies with the power provided to the motor. In
our case, we have calculated the viscous damping coefficient at power equal
to 50%. Upon application of different percentage of power to the motor, we
can find a relationship between viscous-friction coefficient and percentage of
motor power. As shown in Fig. 6-53, the viscous-friction coefficient value
decreases as the motor power increases. In this project, therefore, the lower
value of viscous-friction coefficient of the NXT motor with no load was
adopted—that is, Bm = 1.31 × 10−3 N · m/s.



Figure 6-53   Measured damping coefficient as the power supplied to the
motor varies from 10 to 100 percent.

The experiment was repeated with the arm attached to the motor and the
equivalent motor-payload viscous-friction coefficient was experimentally
measured using Eqs. (6-90) and (6-93) to be B = Bm + Barm/payload = 2.7 × 10−3 N ·
m/s. The higher value of B in this case amounts to the higher initial torque
required to overcome the higher internal friction associated with moving the
arm/payload system. Please note that this measurement required the robot
arm to rotate with the payload attached for about ten seconds. In most
practical applications, this approach, while simple, may not be feasible (or
safe!). An alternative approach may be to use the position control response
(see Chap. 7 for position response) to obtain or fine tune the value of B.

Mechanical Time Constant
As discussed earlier in this chapter, the mechanical time constant τm is

defined as the time required for the motor speed to reach 63.2% of its final
value for a step input. To measure the time constant, you will be required to
use the open-loop speed response experiment described earlier in back-emf
calculations. First, ensure there is no external load connected to the motor.
Next, apply a step input to the motor using the model shown in Fig. 6-50 and



plot the resulting response. Find the average steady-state speed and calculate
63.2% of the steady-state speed as shown in Fig. 6-50.

In this trial, the average steady-state speed is measured to be 7.636 rad/s
while 63.2% of the steady-state speed (to measure the time constant) is
calculated to be 4.826 rad/s. The mechanical time constant for the NXT
motor with no load was experimentally measured to be τm = 0.081 s. The
experiment was repeated with the robotic arm and the time constant was
experimentally measured to be τm = 0.10 s—obviously the slower response is
due to a higher inertia added through the payload.

Moment of Inertia
The combination armature-load moment of inertia Jm can be experimentally

calculated using

where this equation relates the overall motor-gear-train moment of inertia
to the other parameters found in the previous sections. Applying Eq. (6-95)
and substituting the parameters found in previous sections, the moment of
inertia of the motor-gear-train is experimentally calculated to be Jm = Jmotor +
Jgear = 2.33 × 10−3 kg · m2.

As a final check, for the no-load motor with speed response shown in Fig.
6-50, after reaching the final speed value, turn off the input and record how
the speed decays with time to reach zero, as shown in Fig. 6-54. The system
equation with power off is



Figure 6-54   Time constant measurement with the motor input off after
reaching steady-state response.

where, the time constant of the system in this case is τ = Jm/Bm. Based on
our estimated values of Jm and Bm the system time constant is τ = 1.78 s, which
is very close to the measure value of τ = 1.68 s, shown in Fig. 6-54.

As a result, we have a very high confidence on the accuracy of our
estimated parameters of the system.

Similarly, the moment of inertia of the motor with the arm attached and the
payload is experimentally calculated to be Jtotal = Jm + Jgear + Jarm/payload = 3.02 × 10−3

kg · m2. Note the total inertia was obtained using Eq. (8-13) with τm = 0.10
and B = Bm + Barm/payload = 2.7 × 10−3.

Alternatively, you can calculate the arm/payload inertia by first identifying
the combined mass center using techniques such as parallel axis theorem that
you have learned in your second year dynamics course (or through using a
CAD software). Then, by measuring the mass of the arm/payload, you can
estimate Jarm/payload = Marm/payload r2

cm. This approach assumes the arm/payload system
as a point mass M at a distance rcm away from the axis of rotation. You may,



however, find this a bit time consuming. It all depends on how much time
you plan to spend on finding an approximate model. In practice, good enough
is good enough!

6-6-4  Speed Response and Model Verification
Now that the motor parameters have been measured, the mathematical

model of the speed response system can be developed and fine-tuned by
comparing the simulated response to the response of the actual motor (see
App. D for the simulation details). Using the parameter values in Table 6-5
and a step input of amplitude 2.0 V starting at time equal to 1 s, the speed
response, shown in Fig. 6-55, closely matches that of the actual system that
was earlier shown in Fig. 6-50.

TABLE 6-5   NXT No-Load Motor Experimental Parameters



Figure 6-55   Speed response of modeled system for 2.0-V input.

In order to further verify the model with the arm attached, it is
recommended that you look at the position control response, discussed in
Chap. 7.

6-7  SUMMARY
In a feedback control system, sensors are very important to sense various

properties of the system, particularly, the output of the plant. A controller can
then compare the output signal with the desired objective, or the input, and
adjust the performance of the overall system, using an actuator, to meet the
desired goal. This chapter is devoted to the mathematical modeling of
necessary components that make a feedback control system work. These
include sensors, actuators, and the actual brain of the control system, that is,
the controller. Of particular interest are components that possess linear
models—or at least as close to linear as possible. For linear systems,
differential equations, state equations, and transfer functions are the



fundamental tools of modeling.
In this chapter, we used dc motors as actuators—because of their

simplicity of models and high usage in the field. We also looked at sensors
that may be used to quantify the motion of dc motors, namely, encoders,
tachometers, and potentiometers. In this chapter, we also learned about op-
amps and their role as building blocks of any control system.

We also discussed the concepts of speed and position response of dc
motors and introduced speed and position control of dc motors. In the end,
case study examples were presented that reflect mathematical modeling and
motor parameter estimation in practical applications.

Upon successful completion of this chapter, you are now able to
understand how to model a complete control system and its individual
components, and further understand how these components are related and
interact with one another.
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PROBLEMS
6-1.   Write the force equations of the linear translational systems shown in

Fig. 6P-1.

Figure 6P-1

(a)  Draw state diagrams using a minimum number of integrators. Write
the state equations from the state diagrams.



(b)  Define the state variables as follows:

(i)    x1 = y2, x2 = dy2/dt, x3 = y1, and x4 = dy1/dt
(ii)   x1 = y2, x2 = y1, and x3 = dy1/dt
(iii)  x1 = y1, x2 = y2, and x3 = dy2/dt

Write the state equations and draw the state diagram with these state
variables. Find the transfer functions Y1(s)/F(s) and Y2(s)/F(s).

6-2.   Write the force equations of the linear translational system shown in
Fig. 6P-2. Draw the state diagram using a minimum number of integrators.
Write the state equations from the state diagram. Find the transfer functions
Y1(s)/F(s) and Y2(s)/F(s). Set Mg = 0 for the transfer functions.

Figure 6P-2

6-3.   Write the torque equations of the rotational systems shown in Fig.
6P-3. Draw state diagrams using a minimum number of integrators. Write the
state equations from the state diagrams. Find the transfer function Θ(s)/T(s)



for the system in (a). Find the transfer functions Θ1(s)/T(s) and Θ2(s)/T(s) for
the systems in parts (b), (c), (d), and (e).

Figure 6P-3

6-4.   An open-loop motor control system is shown in Fig. 6P-4. The
potentiometer has a maximum range of 10 turns (20π red.). Find the transfer
functions Eo(s)/Tm(s). The following parameters and variables are defined:
θm(t) is the motor displacement; θL(t), the load displacement; Tm(t), the motor
torque; Jm, the motor inertia; Bm, the motor viscous-friction coefficient; Bp, the
potentiometer viscous-friction coefficient; eo(t), the output voltage, and K, the
torsional spring constant.



Figure 6P-4

6-5.   Write the torque equations of the gear-train system shown in Fig. 6P-
5. The moments of inertia of gears are lumped as J1, J2, and J3. Tm(t) is the
applied torque; N1, N2, N3, and N4 are the number of gear teeth. Assume rigid
shafts.

Figure 6P-5

(a)  Assume that J1, J2, and J3 are negligible. Write the torque equations of
the system. Find the total inertia of the motor.

(b)  Repeat part (a) with the moments of inertia J1, J2, and J3.
6-6.   A vehicle towing a trailer through a spring-damper coupling hitch is

shown in Fig. 6P-6. The following parameters and variables are defined: M is
the mass of the trailer; Kh, the spring constant of the hitch; Bh, the viscous
damping coefficient of the hitch; Bt, the viscous-friction coefficient of the
trailer; y1(t), the displacement of the towing vehicle; y2(t), the displacement of
the trailer; and f(t), the force of the towing vehicle.



Figure 6P-6

(a)  Write the differential equation of the system.
(b)  Write the state equations by defining the following state variables: x1(t)

= y1(t) – y2(t) and x2(t) = dy2(t)dt.
6-7.   Figure 6P-7 shows a motor-load system coupled through a gear train

with gear ratio n = N1/N2. The motor torque is Tm(t), and TL(t) represents a load
torque.

Figure 6P-7

(a)  Find the optimum gear ratio n* such that the load acceleration αL =
d2θL/dt2 is maximized.

(b)  Repeat part (a) when the load torque is zero.
6-8.   Figure 6P-8 shows the simplified diagram of the printwheel control

system of a word processor. The printwheel is controlled by a dc motor
through belts and pulleys. Assume that the belts are rigid. The following
parameters and variables are defined: Tm(t) is the motor torque; θm(t), the



motor displacement; y(t), the linear displacement of the printwheel; Jm, the
motor inertia; Bm, the motor viscous-friction coefficient; r, the pulley radius;
M, the mass of the printwheel.

Figure 6P-8

(a)  Write the differential equation of the system.
(b)  Find the transfer function Y(s)/Tm(s).
6-9.   Figure 6P-9 shows the diagram of a printwheel system with belts and

pulleys. The belts are modeled as linear springs with spring constants K1 and
K2.

Figure 6P-9

(a)  Write the differential equations of the system using θm and y as the
dependent variables.

(b)  Write the state equations using x1 = rθm – y, x2 = dy/dt, and x3 = ωm =
dθm/dt as the state variables.

(c)  Draw a state diagram for the system.



(d)  Find the transfer function Y(s)/Tm(s).
(e)  Find the characteristic equation of the system.
6-10.   The schematic diagram of a motor-load system is shown in Fig. 6P-

10. The following parameters and variables are defined: Tm(t) is the motor
torque; ωm(t), the motor velocity; θm(t), the motor displacement; ωL(t), the load
velocity; θL(t), the load displacement; K, the torsional spring constant; Jm, the
motor inertia; Bm, the motor viscous-friction coefficient; and BL, the load
viscous-friction coefficient.

Figure 6P-10

(a)  Write the torque equations of the system.
(b)  Find the transfer functions ΘL(s)/Tm(s) and Θm(s)/Tm(s).
(c)  Find the characteristic equation of the system.
(d)  Let Tm(t) = Tm be a constant applied torque; show that ωm = ωL =

constant in the steady state. Find the steady-state speeds ωm and ωL.
(e)  Repeat part (d) when the value of JL is doubled, but Jm stays the same.
6-11.   The schematic diagram of a control system containing a motor

coupled to a tachometer and an inertial load is shown in Fig. 6P-11. The
following parameters and variables are defined: Tm is the motor torque; Jm, the
motor inertia; Jt, the tachometer inertia; JL, the load inertia; K1 and K2, the
spring constants of the shafts; θt, the tachometer displacement; θm, the motor
velocity; θL, the load displacement; ωt, the tachometer velocity; ωL, the load
velocity; and Bm, the motor viscous-friction coefficient.



Figure 6P-11

(a)  Write the state equations of the system using θL, ωL, θt, ωt, θm, and ωm as
the state variables (in the listed order). The motor torque Tm is the input.

(b)  Draw a signal flow diagram with Tm at the left and ending with θL on
the far right. The state diagram should have a total of 10 nodes. Leave out the
initial states.

(c)  Find the following transfer functions: .
(d)  Find the characteristic equation of the system.
6-12.   The voltage equation of a dc motor is written as

where ea(t) is the applied voltage; ia(t), the armature current; Ra, the
armature resistance; La, the armature inductance; Kb, the back-emf constant;
ωm(t), the motor velocity; and ωn(t), the reference input voltage. Taking the
Laplace transform on both sides of the voltage equation, with zero initial
conditions and solving for Ωm(s), we get

which shows that the velocity information can be generated by feeding
back the armature voltage and current. The block diagram in Fig. 6P-12
shows a dc-motor system, with voltage and current feedbacks, for speed
control.



Figure 6P-12

(a)  Let K1 be a very high gain amplifier. Show that when Hi(s)/He(s) = −
(Ra + Las), the motor velocity ωm(t) is totally independent of the load-
disturbance torque TL.

(b)  Find the transfer function between Ωm(s) and Ωr(s)(TL = 0) when Hi(s)
and He(s) are selected as in part (a).

6-13.   This problem deals with the attitude control of a guided missile.
When traveling through the atmosphere, a missile encounters aerodynamic
forces that tend to cause instability in the attitude of the missile. The basic
concern from the flight-control standpoint is the lateral force of the air, which
tends to rotate the missile about its center of gravity. If the missile centerline
is not aligned with the direction in which the center of gravity C is traveling,
as shown in Fig. 6P-13, with angle θ, which is also called the angle of attack,
a side force is produced by the drag of the air through which the missile
travels. The total force Fα may be considered to be applied at the center of
pressure P. As shown in Fig. 6P-20, this side force has a tendency to cause
the missile to tumble end over end, especially if the point P is in front of the
center of gravity C. Let the angular acceleration of the missile about the point
C, due to the side force, be denoted by αF. Normally, αF is directly
proportional to the angle of attack θ and is given by



Figure 6P-13

where KF is a constant that depends on such parameters as dynamic
pressure, velocity of the missile, air density, and so on, and

J = missile moment of inertia about C
d1 = distance between C and P
The main objective of the flight-control system is to provide the stabilizing

action to counter the effect of the side force. One of the standard control
means is to use gas injection at the tail of the missile to deflect the direction
of the rocket engine thrust Ts, as shown in the figure.

(a)  Write a torque differential equation to relate among Ts, δ, θ, and the
system parameters given. Assume that δ is very small, so that sin δ(t) is
approximated by δ(t).

(b)  Assume that Ts is a constant torque. Find the transfer function Θ(s)/
Δ(s), where Θ(s) and Δ(s) are the Laplace transforms of θ(t) and δ(t),
respectively. Assume that δ(t) is very small.

(c) Repeat parts (a) and (b) with points C and P interchanged. The d1 in the
expression of αF should be changed to d2.

6-14.   Figure 6P-14a shows the schematic diagram of a dc-motor control
system for the control of a printwheel of a word processor. The load in this
case is the printwheel, which is directly coupled to the motor shaft. The



following parameters and variables are defined: Ks is the error-detector gain
(V/rad); Ki, the torque constant (oz · in/A); K, the amplifier gain (V/V); Kb,
the back-emf constant (V/rad/s); n, the gear train ratio θ2/θm = Tm/T2; Bm, the
motor viscous-friction coefficient (oz · in · s); Jm, the motor inertia (oz · in ·
s2); KL the torsional spring constant of the motor shaft (oz · in/rad); and JL, the
load inertia (oz · in · sec2).

Figure 6P-14

(a)  Write the cause-and-effect equations of the system. Rearrange these
equations into the form of state equations with x1 = θo, x2 = θo, x3 = θm, x4 = ωm,
and x5 = ia.

(b)  Draw a state diagram using the nodes shown in Fig. 3P-38b.
(c)  Derive the forward-path transfer function (with the outer feedback path

open): G(s) = Θo(s)/Θe(s). Find the closed-loop transfer function M(s) = Θo(s)/
Θr(s).

(d)  Repeat part (c) when the motor shaft is rigid, that is, KL = ∞ Show that
you can obtain the solutions by taking the limit as KL approaches infinity in
the results in part (c).

6-15.   The schematic diagram of a voice-coil motor (VCM), used as a
linear actuator in a disk memory-storage system, is shown in Fig. 6P-15a.
The VCM consists of a cylindrical permanent magnet (PM) and a voice coil.
When current is sent through the coil, the magnetic field of the PM interacts



with the current-carrying conductor, causing the coil to move linearly. The
voice coil of the VCM in Fig. 6P-15a consists of a primary coil and a
shorted-turn coil. The latter is installed for the purpose of effectively reducing
the electric constant of the device. Figure 6P-15b shows the equivalent circuit
of the coils. The following parameters and variables are defined: ea(t) is the
applied coil voltage; ia(t), the primary-coil current; is(t), the shorted-turn coil
current; Ra, the primary-coil resistance; La, the primary-coil inductance; Las,
the mutual inductance between the primary and shorted-turn coils; v(t), the
velocity of the voice coil; y(t), the displacement of the voice coil; f(t) = Kiv(t),
the force of the voice coil; Ki, the force constant; Kb, the back-emf constant;
eb(t) = Kbv(t), the back emf; MT, the total mass of the voice coil and load; and
BT, the total viscous-friction coefficient of the voice coil and load.

Figure 6P-15



(a)  Write the differential equations of the system.
(b)  Draw a block diagram of the system with Ea(s), Ia(s), Is(s), V(s), and

Y(s) as variables.
(c)  Derive the transfer function Y(s)/Ea(s).
6-16.   A dc-motor position-control system is shown in Fig. 6P-16a. The

following parameters and variables are defined: e is the error voltage; er, the
reference input; θL, the load position; KA, the amplifier gain; ea, the motor
input voltage; eb, the back emf; ia, the motor current; Tm, the motor torque; Jm,
the motor inertia = 0.03 oz · in · s2; Bm, the motor viscous-friction coefficient
= 10 oz · in · s2; KL, the torsional spring constant = 50,000 oz · in/rad; JL, the
load inertia = 0.05 oz · in · s2; Ki, the motor torque constant = 21 oz · in/A; Kb,
the back-emf constant = 15.5 V/1000 rpm; Ks, the error-detector gain = E/2π;
E, the error-detector applied voltage = 2πV; Ra, the motor resistance = 1.15 Ω;
and θe = er − θL.



Figure 6P-16

(a)  Write the state equations of the system using the following state
variables: x1 = θL, x2 = dθL/dt = ωL, x3 = θ3, and x4 = dθm/dt = ωm.

(b)  Draw a signal flow diagram using the nodes shown in Fig. 6P-16b.
(c)  Derive the forward-path transfer function G(s) = ΘL(s)/Θe(s) when the

outer feedback path from θL is opened. Find the poles of G(s).
(d)  Derive the closed-loop transfer function M(s) = ΘL(s)/Θe(s). Find the

poles of M(s) when KA = 1,2738, and 5476. Locate these poles in the s-plane,
and comment on the significance of these values of KA.

6-17.   Figure 6P-17a shows the setup of the temperature control of an air-



flow system. The hot-water reservoir supplies the water that flows into the
heat exchanger for heating the air. The temperature sensor senses the air
temperature TAO and sends it to be compared with the reference temperature Tr.
The temperature error Te is sent to the controller, which has the transfer
function Gc(s). The output of the controller, u(t), which is an electric signal, is
converted to a pneumatic signal by a transducer. The output of the actuator
controls the water-flow rate through the three-way valve. Figure 6P-17b
shows the block diagram of the system.



Figure 6P-17

The following parameters and variables are defined: dMw is the flow rate of
the heating fluid = kMu, KM = 0.054 kg/s/V; TW, the water temperature = KRdMW;
KR = 65°C/kg/s; and TAO the output air temperature.



Heat-transfer equation between water and air:

Temperature sensor equation:

(a)  Draw a functional block diagram that includes all the transfer functions
of the system.

(b)  Derive the transfer function TAO(s)/Tr(s) when Gc(s) = 1.
6-18.   The objective of this problem is to develop a linear analytical model

of the automobile engine for idle-speed control system shown in Fig. 1-2.
The input of the system is the throttle position that controls the rate of air
flow into the manifold (see Fig. 6P-18). Engine torque is developed from the
buildup of manifold pressure due to air intake and the intake of the air/gas
mixture into the cylinder. The engine variations are as follows:

Figure 6P-18

qi(t) = amount of air flow across throttle into manifold
dqi(t)/dt = rate of air flow across throttle into manifold
qm(t) = average air mass in manifold



qo(t) = amount of air leaving intake manifold through intake valves
dqo(t)/dt = rate of air leaving intake manifold through intake valves
T(t) = engine torque
Td = disturbance torque due to application of auto accessories = constant
ω(t) = engine speed
α(t) = throttle position
τD = time delay in engine
Je = inertia of engine

The following assumptions and mathematical relations between the engine
variables are given:

1.   The rate of air flow into the manifold is linearly dependent on the
throttle position:

2.   The rate of air flow leaving the manifold depends linearly on the air
mass in the manifold and the engine speed:

3.   A pure time delay of τD seconds exists between the change in the
manifold air mass and the engine torque:

4.    The engine drag is modeled by a viscous-friction torque Bω(t), where
B is the viscous-friction coefficient.

5.    The average air mass qm(t) is determined from

6.   The equation describing the mechanical components is



(a)  Draw a functional block diagram of the system with α(t) as the input,
ω(t) as the output, and Td as the disturbance input. Show the transfer function
of each block.

(b)  Find the transfer function Ω(s)/α(s) of the system.
(c)  Find the characteristic equation and show that it is not rational with

constant coefficients.
(d)  Approximate the engine time delay by

and repeat parts (b) and (c).
6-19.   Phase-locked loops are control systems used for precision motor-

speed control. The basic elements of a phase-locked loop system
incorporating a dc motor is shown in Fig. 6P-19a. An input pulse train
represents the reference frequency or desired output speed. The digital
encoder produces digital pulses that represent motor speed. The phase
detector compares the motor speed and the reference frequency and sends an
error voltage to the filter (controller) that governs the dynamic response of
the system. Phase detector gain = Kp, encoder gain = Ke, counter gain = 1/N,
and dc-motor torque constant = Ki. Assume zero inductance and zero friction
for the motor.



Figure 6P-19

(a)  Derive the transfer function Ec(s)/E(s) of the filter shown in Fig. 6P-
19b. Assume that the filter sees infinite impedance at the output and zero
impedance at the input.

(b)  Draw a functional block diagram of the system with gains or transfer
functions in the blocks.

(c)  Derive the forward-path transfer function Ωm(s)/E(s) when the feedback
path is open.

(d)  Find the closed-loop transfer function Ωm(s)/Fr(s).
(e)  Repeat parts (a), (c), and (d) for the filter shown in Fig. 6P-19(c).
(f)  The digital encoder has an output of 36 pulses per revolution. The

reference frequency fr is fixed at 120 pulse/s. Find Ke in pulse/rad. The idea of
using the counter N is that with fr fixed, various desired output speeds can be
attained by changing the value of N. Find N if the desired output speed is 200
rpm. Find N if the desired output speed is 1800 rpm.

6-20.   The linearized model of a robot arm system driven by a dc motor is



shown in Fig. 6P-20. The system parameters and variables are given as
follows:

Figure 6P-20



(a)  Write the differential equations of the system with ia(t) and TL(t) as
input and θm(t) and θL(t) as outputs.

(b)  Draw an SFG using Ia(s), TL(s), ΘL(s) as node variables.
(c)  Express the transfer-function relations as

Find G(s).
6-21.   The following differential equations describe the motion of an

electric train in a traction system:

where
x(t) = linear displacement of train
v(t) = linear velocity of train
k(v) = resistance force on train [odd function of v, with the properties: k(0)

= 0 and dk(v)/dv = 0
g(x) = gravitational force for a nonlevel track or due to curvature of track
f(t) = tractive force
The electric motor that provides the tractive force is described by the

following equations:

where e(t) is the applied voltage; ia(t), the armature current; if(t), the field
current; Ra, the armature resistance; ϕ(t), the magnetic flux from a separately
excited field = Kfif(t); and Ki, the force constant.

(a)  Consider that the motor is a dc series motor with the armature and field



windings connected in series, so that ia(t) = if(t), g(x) = 0, k(v) = Bv(t), and Ra

= 0. Show that the system is described by the following nonlinear state
equations:

(b)  Consider that for the conditions stated in part (a), ia(t) is the input of
the system [instead of e(t)]. Derive the state equations of the system.

(c)  Consider the same conditions as in part (a) but with ϕ(t) as the input.
Derive the state equations.

6-22.   Figure 6P-22a shows a well-known “broom-balancing” system. The
objective of the control system is to maintain the broom in the upright
position by means of the force u(t) applied to the car as shown. In practical
applications, the system is analogous to a one-dimensional control problem of
balancing a unicycle or a missile immediately after launching. The free-body
diagram of the system is shown in Fig. 6P-22b, where



Figure 6P-22

fx = force at broom base in horizontal direction
fy = force at broom base in vertical direction
Mb = mass of broom
g = gravitational acceleration
Mc = mass of car
Jb = moment of inertia of broom about center of gravity CG = MbL2/3
(a)  Write the force equations in the x and the y directions at the pivot point

of the broom. Write the torque equation about the center of gravity CG of the
broom. Write the force equation of the car in the horizontal direction.

(b)  Express the equations obtained in part (a) as state equations by
assigning the state variables as x1 = θ, x2 = dθ/dt, x3 = x, and x4 = dx/dt.
Simplify these equations for small θ by making the approximations sinθ ≅ θ
and cosθ ≅ 1.

(c)  Obtain a small-signal linearized state-equation model for the system in
the form of



at the equilibrium point x01(t) = 1, x02(t) = 0, x03(t) = 0, and x04(t) = 0.
6-23.   Figure 6P-23 shows the schematic diagram of a ball-suspension

control system. The steel ball is suspended in the air by the electromagnetic
force generated by the electromagnet. The objective of the control is to keep
the metal ball suspended at the nominal equilibrium position by controlling
the current in the magnet with the voltage e(t). The practical application of
this system is the magnetic levitation of trains or magnetic bearings in high-
precision control systems.

Figure 6P-23

The resistance of the coil is R, and the inductance is L(y) = L/y(t), where L
is a constant. The applied voltage e(t) is a constant with amplitude E.

(a)  Let Eeq be a nominal value of E. Find the nominal values of y(t) and
dy(t)/dt at equilibrium.

(b)  Define the state variables at x1(t) = i(t), x2(t) = y(t), and x3(t) = dy(t)/dt.
Find the nonlinear state equations in the form of



(c)  Linearize the state equations about the equilibrium point and express
the linearized state equations as

The force generated by the electromagnet is Ki2(t)/y(t), where K is a
proportional constant, and the gravitational force on the steel ball is Mg.

6-24.   Figure 6P-24a shows the schematic diagram of a ball-suspension
system. The steel ball is suspended in the air by the electromagnetic force
generated by the electromagnet. The objective of the control is to keep the
metal ball suspended at the nominal position by controlling the current in the
electromagnet. When the system is at the stable equilibrium point, any small
perturbation of the ball position from its floating equilibrium position will
cause the control to return the ball to the equilibrium position. The free-body
diagram of the system is shown in Fig. 6P-24b, where



Figure 6P-24

M1 = mass of electromagnet = 2.0
M2 = mass of steel ball = 1.0
B = viscous-friction coefficient of air = 0.1
K = proportional constant of electromagnet = 1.0
g = gravitational acceleration = 32.2
Assume all units are consistent. Let the stable equilibrium values of the

variable, i(t), y1(t), and y2(t) be I, Y1, and Y2, respectively. The state variables
are defined as x1(t) = y1(t), x2(t) = dy1(t)/dt, x3(t) = y2(t), and x4(t) = dy2(t)/dt.

(a)  Given Y1 = 1, find I and Y2.
(b)  Write the nonlinear state equations of the system in the form of

dx(t)/dt = f(x, i).



(c)  Find the state equations of the linearized system about the equilibrium
state I, Y1, and Y2 in the form:

6-25.   The schematic diagram of a steel-rolling process is shown in Fig.
6P-25. The steel plate is fed through the rollers at a constant speed of V ft/s.
The distance between the rollers and the point where the thickness is
measured is d ft. The rotary displacement of the motor, θm(t), is converted to
the linear displacement y(t) by the gear box and linear-actuator combination
y(t) = nθm(t), where n is a positive constant in ft/rad. The equivalent inertia of
the load that is reflected to the motor shaft is JL.

Figure 6P-25

(a)  Draw a functional block diagram for the system.
(b)  Derive the forward-path transfer function Y(s)/E(s) and the closed-loop

transfer function Y(s)/R(s).

1It is important to note that the measured values provided here may vary from motor to motor, and
you are best to conduct your own experiments to determine your system’s parameter values.

2It is important to note that the measured values provided here may vary from motor to motor, and
you are best to conduct your own experiments to determine your system’s parameter values.



CHAPTER 7



Time-Domain Performance of
Control Systems

In this chapter, building upon the background material discussed in Chaps.
1 to 3, we arrive at the time response of simple control systems. In order to
find the time response of a control system, we first need to model the overall
system dynamics and find a mathematical model that sufficiently represents
the system. In many practical instances, the system is nonlinear and has to be
linearized. The system could be composed of mechanical, electrical, or other
subsystems. Each subsystem may have sensors and actuators to sense the
environment and to interact with it. Next, using Laplace transforms, we can
find the transfer function of all the subcomponents and use the block diagram
approach or signal flow diagrams, to find the interactions among the system
components. Finally, we can find the overall transfer function of the system
and, using inverse Laplace transforms, obtain the time response of the system
to a test input—normally a step input.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Analyze transient and steady-state time response of a simple control
system.
2.  Develop simple design criteria for manipulating the time response.
3.  Determine speed and position time response of dc motors.
4.  Apply basic control techniques and look at the effects of adding a
simple gain or poles and zeros to the system transfer function.
5.  Use MATLAB to study the time response of simple control system.

In this chapter, we look at more details of the time-response analysis,
discuss transient and steady-state time response of simple control systems,



and develop design criteria for manipulating the time response. In the end, we
introduce basic control techniques and look at the effects of adding a simple
gain or poles and zeros to the system transfer function. We also introduce
simple examples of proportional, derivative, and integral controller design
concepts in time domain. The controller design at this level is purely
introductory and relies on observation of the time response.

Throughout the chapter various examples involving the speed and position
control of a dc motor provide practical relevance of the subjects discussed
here. Finally a case study is provided at the end of the chapter that looks at a
practical example involving position control of a dc motor and the issues
surrounding the simplification of dc motor model from a third-order system
to a second order. MATLAB toolboxes have been used throughout the
chapter to facilitate analysis and interpretation of various concepts discussed.

Finally, most undergraduate control courses have labs dealing with time
response and control of dc motors—namely, speed response, speed control,
position response, and position control. In many cases, because of high cost
of control lab equipment, student exposure to test equipment is limited, and
as a result, many students do not gain a practical insight into the subject. In
this textbook, recognizing these limitations, we introduce the concept of
Control Lab, which includes two classes of experiments: SIMLab (model-
based simulation) and LEGOLab (physical experiments). These
experiments are intended to supplement, or replace, the experimental
exposure of the students in a traditional undergraduate control course.

After completing this chapter, the reader is encouraged to refer to App. A
to experience practical aspects of designing a control system, using
LEGOLab.

7-1  TIME RESPONSE OF CONTINUOUS-
DATA SYSTEMS: INTRODUCTION

Because time is used as an independent variable in most control systems, it
is usually of interest to evaluate the state and output responses with respect to
time or, simply, the time response. In the analysis problem, a reference
(test) input signal is applied to a system, and the performance of the system
is evaluated by studying the system response in the time domain. For
instance, if the objective of the control system is to have the output variable



track the input signal, starting at some initial time and initial condition, it is
necessary to compare the input and output responses as functions of time.
Therefore, in most control-system problems, the final evaluation of the
performance of the system is based on the time responses.

In most control-system problems, the final evaluation of the
performance of the system is based on the time responses.

The time response of a control system is usually divided into two
parts: the transient response and the steady-state response.

In stable control systems, transient response is defined as the part of
the time response that goes to zero as time becomes very large.

The steady-state response is simply the part of the total response that
remains after the transient has died out.

As discussed in earlier chapters, the time response of a control system is
usually divided into two parts: the transient response and the steady-state
response. Let y(t) denote the time response of a continuous-data system; then,
in general, it can be written as

where yt(t) denotes the transient response and yss(t) denotes the steady-state
response.

In stable control systems, transient response is defined as the part of the
time response that goes to zero as time becomes very large. Thus, yt(t) has the
property

The steady-state response is simply the part of the total response that
remains after the transient has died out. Thus, the steady-state response can
still vary in a fixed pattern, such as a sine wave, or a ramp function that
increases with time.



All real, stable control systems exhibit transient phenomena to some extent
before the steady state is reached. Because inertia, mass, and inductance are
unavoidable in physical systems, the response of a typical control system
cannot follow sudden changes in the input instantaneously, and transients are
usually observed. Therefore, the control of the transient response is
necessarily important because it is a significant part of the dynamic behavior
of the system, and the deviation between the output response and the input or
the desired response, before the steady state is reached, must be closely
controlled.

The study of a stable control system in the time domain essentially
involves the evaluation of the transient and the steady-state responses of
the system.

The steady-state response of a control system is also very important
because it indicates where the system output ends up when time becomes
large. For a position-control system, the steady-state response when
compared with the desired reference position gives an indication of the final
accuracy of the system. In general, if the steady-state response of the output
does not agree with the desired reference exactly, the system is said to have a
steady-state error.

The study of a stable control system in the time domain essentially involves
the evaluation of the transient and the steady-state responses of the system. In
the design problem, specifications are usually given in terms of the transient
and the steady-state performances, and controllers are designed so that the
specifications are all met by the designed system.

7-2  TYPICAL TEST SIGNALS TO EVALUATE
TIME-RESPONSE PERFORMANCE OF
CONTROL SYSTEMS

Unlike electric networks and communication systems, the inputs to most
practical control systems are not exactly known ahead of time. In many cases,
the actual inputs of a control system may vary in random fashion with respect



to time. For instance, in a radar-tracking system for antiaircraft missiles, the
position and speed of the target to be tracked may vary in an unpredictable
manner, so that they cannot be predetermined. This poses a problem for the
designer because it is difficult to design a control system so that it will
perform satisfactorily to all possible forms of input signals. For the purpose
of analysis and design, it is necessary to assume some basic types of test
inputs so that the performance of a system can be evaluated. By selecting
these basic test signals properly, not only is the mathematical treatment of the
problem systematized but also the response due to these inputs allows the
prediction of the system’s performance to other more complex inputs. In the
design problem, performance criteria may be specified with respect to these
test signals so that the system may be designed to meet the criteria. This
approach is particularly useful for linear systems, since the response to
complex signals can be determined by superposing those due to simple test
signals.

As later discussed in Chap. 10, the response of a linear time-invariant
system may also be analyzed in the frequency domain by using a test
sinusoidal input. When the input frequency is swept from zero to beyond the
significant range of the system characteristics, curves in terms of the
amplitude ratio and phase between the input and the output are drawn as
functions of frequency. In that case, it is possible to predict the time-domain
behavior of the system from its frequency-domain characteristics.

To facilitate the time-domain analysis, the following deterministic test
signals are used.

The step function is very useful as a test signal because its initial
instantaneous jump in amplitude reveals a great deal about a system’s
quickness in responding to inputs with abrupt changes.

Step-Function Input
The step-function is the most important and widely used input, and it

represents an instantaneous change in the reference input. For example, if the
input is an angular position of a motor shaft, a step input represents the
sudden rotation of the shaft. The mathematical representation of a step



function or magnitude R is

where R is a real constant. Or

where us(t) is the unit-step function. The step function as a function of
time is shown in Fig. 7-1a. The step function is very useful as a test signal
because its initial instantaneous jump in amplitude reveals a great deal about
a system’s quickness in responding to inputs with abrupt changes. Also,
because the step function contains, in principle, a wide band of frequencies in
its spectrum, as a result of the jump discontinuity, it is equivalent to the
application of numerous sinusoidal signals with a wide range of frequencies.



Figure 7-1   Basic time-domain test signals for control systems. (a) Step
function. (b) Ramp function. (c) Parabolic function.

Ramp-Function Input
The ramp function is a signal that changes constantly with time.

Mathematically, a ramp function is represented by

where R is a real constant. The ramp function is shown in Fig. 7-1b. If the



input variable represents the angular displacement of a motor shaft, the ramp
input denotes the constant-speed rotation of the shaft. The ramp function has
the ability to test how the system would respond to a signal that changes
linearly with time.

Parabolic-Function Input
The parabolic function represents a signal that is one order faster than the

ramp function. Mathematically, it is represented as

where R is a real constant and the factor ½ is added for mathematical
convenience because the Laplace transform of r (t) is simply R/s3. The
graphical representation of the parabolic function is shown in Fig. 7-1c.

These signals all have the common feature that they are simple to describe
mathematically. From the step function to the parabolic function, the signals
become progressively faster with respect to time. In theory, we can define
signals with still higher rates, such as t3, which is called the jerk function, and
so forth. However, in reality, we seldom find it necessary or feasible to use a
test signal faster than a parabolic function.

7-3  THE UNIT-STEP RESPONSE AND TIME-
DOMAIN SPECIFICATIONS

As defined earlier, the transient portion of the time response is the part that
goes to zero as time becomes large. Nevertheless, the transient response of a
control system is necessarily important because both the amplitude and the
time duration of the transient response must be kept within tolerable or
prescribed limits. For example, in the automobile idle-speed control system
described in Chap. 1, in addition to striving for a desirable idle speed in the
steady state, the transient drop in engine speed must not be excessive, and the
recovery in speed should be made as quickly as possible. For linear control
systems, the characterization of the transient response is often done by use of
the unit-step function us(t) as the input. The response of a control system
when the input is a unit-step function is called the unit-step response. Figure



7-2 illustrates a typical unit-step response of a linear control system. With
reference to the unit-step response, performance criteria commonly used for
the characterization of linear control systems in the time domain are defined
as follows:

Figure 7-2   Typical unit-step response of a control system illustrating the
time-domain specifications.

1.    Maximum overshoot. Let y(t) be the unit-step response. Let ymax

denote the maximum value of y(t); yss, the steady-state value of y(t); and
ymax ≥ yss. The maximum overshoot of y(t) is defined as



For linear control systems, the characterization of the transient
response is often done by use of the unit-step function us(t) as the input.

The maximum overshoot is often represented as a percentage of the
final value of the step response; that is,

The maximum overshoot is often used to measure the relative stability
of a control system. A system with a large overshoot is usually
undesirable. For design purposes, the maximum overshoot is often given
as a time-domain specification. The unit-step illustrated in Fig. 7-2
shows that the maximum overshoot occurs at the first overshoot. For
some systems, the maximum overshoot may occur at a later peak, and, if
the system transfer function has an odd number of zeros in the right-half
s-plane, a negative undershoot may even occur4,5 —see Secs. 7-9-3 and
7-9-4.

2.    Delay time. The delay time td is defined as the time required for the
step response to reach 50 percent of its final value. This is shown in Fig.
7-2.
3.    Rise time. The rise time tr is defined as the time required for the
step response to rise from 10 to 90 percent of its final value, as shown in
Fig. 7-2. An alternative measure is to represent the rise time as the
reciprocal of the slope of the step response at the instant that the
response is equal to 50 percent of its final value.
4.    Settling time. The settling time ts is defined as the time required for
the step response to decrease and stay within a specified percentage of
its final value. A frequently used figure is 5 percent.
5.    Steady-state error. The steady-state error of a system response is
defined as the discrepancy between the output and the reference input
when the steady state (t → ∞) is reached.

The first four quantities, just defined, give a direct measure of the transient



characteristics of a control system in terms of the unit-step response. These
time-domain specifications are relatively easy to measure when the step
response is well defined, as shown in Fig. 7-2. Analytically, these quantities
are difficult to establish, except for simple systems lower than the third order.

It should be pointed out that the steady-state error may be defined for any
test signal such as a step function, ramp function, parabolic function, or even
a sinusoidal input, although Fig. 7-2 only shows the error for a step input.

7-4  TIME RESPONSE OF A PROTOTYPE
FIRST-ORDER SYSTEM

Recalling the prototype first-order system that was discussed in Chap. 3:

Time constant is a measure of how fast the system responds to an
input.

where τ is known as the time constant of the system, which is a measure
of how fast the system responds to initial conditions or external excitations.
For a test unit-step input

then



where s = –1/τ is the single pole of the transfer function. Using inverse
Laplace transform, the time response of Eq. (7-9) is

where t = τ is the time for y(t) to reach 63 percent of its final value of 

.

See MATLAB Toolbox 3-4-1.

Using MATLAB Toolbox 3-4-1, we can obtain the time response shown in
Eq. (7-12). Figure 7-3 shows typical unit-step responses of y(t) for a two
arbitrary values of τ. As the value of time constant τ decreases, the system
response becomes faster. Notice from Fig. 7-3, that with the increase in the
time constant, the pole s = –1/τ moves further to the left in the s-plane.
Finally, for any positive τ values, the pole will always stay in the left-half s-
plane, as shown in Fig. 7-4, and the system is always stable.



Figure 7-3   Unit-step response of a prototype first-order system.

Figure 7-4   Pole position of the transfer function, in Eq. (7-12), of a
prototype first-order system as the system time constant decreases.

EXAMPLE 7-4-1  For the dc motor in Sec. 7-4-1, as shown in Fig. 7-5,
examine the effect of increased damping applied
through a magnetic brake on the speed response. Note
in this case, the magnetic brake may also be
considered as an external load. But for simplicity, we
consider it to strictly change the damping of the
system.



Figure 7-5   An armature-controlled dc motor.

Speed Response of a DC Motor
As discussed in Sec. 7-4-1, the ratio La/Ra, the motor

electric-time constant denoted by τe, is very small and
may be neglected, resulting in the simplified block
diagram of the system, as shown in Fig. 7-6.

Figure 7-6   Simplified block diagram of a dc motor for speed response
assuming a negligible electric time constant.

Thus, the speed of the motor shaft in Laplace domain
is modeled as

or



where Keff = Ki/(RaBm + KiKb) is the motor gain constant,
and τm = RaJm/(RaBm + KiKb) is the motor mechanical time
constant.

To find the response ωm(t), for a unit step input voltage
such that r(t) or R(s)=1/s,

In this case, the motor mechanical time constant τm is
reflective of how fast the motor is capable of overcoming
its own inertia Jm to reach a steady state or constant speed
dictated by voltage R(s). As τm increases, the approach to
steady state takes longer. See Fig. 7-34 for the typical
time response associated with Eq. (7-50). From Eq. (7-
15), the speed final value is

Let’s select a dc motor with given parameters:



Application of a magnetic brake increases the viscous
damping in the system. Using Toolbox 7-4-1 (in Chap.
6), we now examine the damping effect on the speed
response of the motor. Table 7-1 illustrates the motor
mechanical time constant τm and final value ωfv for three
damping values in response to a unit step input. The
three-speed responses are shown in Fig. 7-7. As shown
with higher damping, the motor response is faster, while
the final value decreases. This obviously meets the
common sense notion that by using the brake the final
speed of the motor drops. 



Figure 7-7   Speed response of dc motor in Example 7-4-1 to a unit step
input. (a) Solid line represents no magnetic brake Bm = 0.005 oz·in·s. (b)
Dashed line represents the effect of a magnetic brake when Bm = 0.05 oz·in·s.
(c) Dot-dashed line represent the response to a more dominant damping Bm =
0.5 oz·in·s.

TABLE 7-1   Motor Mechanical Time Constant and Final Speed for
Three Different Damping Values

Toolbox 7-4-1



Speed response of Example 7-4-1 using MATLAB.

7-5  TRANSIENT RESPONSE OF A
PROTOTYPE SECOND-ORDER SYSTEM

Although true second-order control systems are rare in practice, their
analysis generally helps to form a basis for the understanding of analysis and
design of higher-order systems, especially the ones that can be approximated
by second-order systems.

Consider that a second-order control system with unity feedback is
represented by the block diagram shown in Fig. 7-8. The open-loop transfer
function of the system is

Figure 7-8   Prototype second-order control system.



where ζ and ωn are real constants. The closed-loop transfer function of the
system is

As earlier discussed in Chaps. 2 and 3, the system in Fig. 7-8 with the
closed-loop transfer function given by Eq. (7-18) is defined as the prototype
second-order system.

7-5-1   Damping Ratio and Natural Frequency
The characteristic equation of the prototype second-order system is

obtained by setting the denominator of Eq. (7-18) to zero:

The two roots of Eq. (7-19) are the poles of the transfer function in Eq. (7-
18), and can be expressed as

where

and



Figure 7-9 illustrates the relationships among the location of the
characteristic equation roots and σ, ζ, ωn, and ω, when 0 < ζ < 1. For the
complex-conjugate roots shown,

Figure 7-9   Relationship’s among the characteristic-equation roots of the
prototype second-order system and σ, ζ, ωn, and ω.

•   ωn is the radial distance from the roots to the origin of the s-plane.
•   σ is the real part of the roots.
•   ω is the imaginary part of the roots.
•   ζ is the cosine of the angle between the radial line to the roots and the
negative axis when the roots are in the left-half s-plane, or ζ = cosθ

The physical significance of ζ and σ, in Eq. (7-21), is now investigated. As



seen from Chap. 3, the damping constant σ appears as the constant that is
multiplied to t in the exponential term of y(t). Therefore, σ controls the rate of
rise or decay of the unit-step response y(t). In other words, σ controls the
“damping” of the system. The inverse of σ, 1/σ, is proportional to the time
constant of the system.

Damping ratio ζ has a direct impact on the overshoot, while natural
frequency ωn has a direct effect on the rise time, delay time, and settling
time.

When the two roots of the characteristic equation are real and equal, we
called the system critically damped. From Eq. (7-20), we see that critical
damping occurs when ζ = 1. Under this condition, the damping factor is
simply σ = ωn. Thus, we can regard ζ as the damping ratio (unitless); that is,

The parameter ωn is defined as the natural frequency. As seen from Eq.
(7-20), when ζ = 0, the damping is zero, the roots of the characteristic
equation are imaginary, and Eq. (7-27) in Table 7-2 shows that the unit-step
response is purely sinusoidal. Therefore, ωn corresponds to the frequency of
the undamped sinusoidal response. Equation (7-20) shows that, when 0 < ζ <
1, the imaginary part of the roots has the magnitude of ω . When ζ ≠ 0, the
response of y(t) is not a periodic function, and ω defined in Eq. (7-22) is not a
frequency. However, for the purpose of reference, ω in Eq. (7-22) is
sometimes defined as the conditional frequency, or the damped frequency.

The unit step response classification, for the system represented by transfer
function in Eq. (7-18), with respect to the damping ratio ζ is made in Table 7-
2. Figure 7-10 illustrates typical unit-step responses that correspond to the
various root locations.

TABLE 7-2   Classification of Prototype Second-Order System Based
on Damping Ratio







Figure 7-10   Step-response comparison for various characteristic equation
root locations in the s-plane.

In most control applications, when the system is stable, the transient
response corresponding to ζ > 0 are of great interest. Figure 7-11 shows the
unit-step responses of Eqs. (7-24) through (7-26) plotted as functions of the
normalized time ωnt for various values of ζ. As seen, the response becomes
more oscillatory with larger overshoot as ζ decreases. When ζ ≥ 1, the step
response does not exhibit any overshoot; that is, y(t) never exceeds its final
value during the transient. The responses also show that ωn has a direct effect
on the rise time, delay time, and settling time but does not affect the
overshoot.





Figure 7-11   Unit-step responses of the prototype second-order system
with various damping ratios.

As mentioned earlier, overshoot, rise time, delay time and settling time are
quantities that define transient response performance of a control system,
and will be studied in more detail in the following sections.

Finally, it is important to establish a relation between the system pole
locations and the time response of the system. Figure 7-12 shows in the s-
plane (a) the constant-ωn loci, (b) the constant-ζ loci, (c) the constant-σ loci,
and (d) the constant-ω loci. Regions in the s-plane are identified with the
system damping as follows:



Figure 7-12   (a) Constant-natural frequency loci. (b) Constant-damping-
ratio loci. (c) Constant-damping-factor loci. (d) Constant-conditional-
frequency loci.

•   The left-half s-plane corresponds to positive damping; that is, the



damping factor or damping ratio is positive. Positive damping causes the
unit-step response to settle to a constant final value in the steady state
due to the negative exponent of exp(–ζωnt). The system is stable.
•   The right-half s-plane corresponds to negative damping. Negative
damping gives a response that grows in magnitude without bound, and
the system is unstable.
•   The imaginary axis corresponds to zero damping (σ = 0 or ζ = 0).
Zero damping results in a sustained oscillation response, and the
system is marginally stable or marginally unstable.

Thus, we have demonstrated with the help of the simple prototype second-
order system that the location of the characteristic equation roots plays an
important role in the transient response of the system.

7-5-2   Maximum Overshoot (0 < ζ < 1)
Maximum overshoot is one of the most important transient response

performance criteria for a control system. For example, in a pick and place
robot arm, overshoot represents how far the robot end effector moves away
from the final drop-off destination. Generally, the transient response of a
prototype second-order system with overshoot is oscillatory (i.e., 0 < ζ < 1)—
in special circumstances the zeros of a transfer function may also cause
overshoot without oscillations (see Sec. 7-10).

When 0 < ζ < 1 (underdamped response), for a unit-step function input,
R(s) = 1/s, the output response of the system is obtained by taking the inverse
Laplace transform of the output transform:

In most cases, step input transient response of a prototype second-
order system with overshoot is oscillatory (i.e., 0 < ζ < 1).

A critically damped or overdamped transfer function with a zero, in
special circumstances, may exhibit overshoot without oscillations—see
Sec. 7-7.



This can be done by referring to the Laplace transform table in App. D.
The result is

The exact relation between the damping ratio and the amount of overshoot
can be obtained by taking the derivative of Eq. (7-30) with respect to t and
setting the result to zero. Thus,

where ω and θ are defined in Eqs. (7-22) and (7-23), respectively. From
Fig. 7-9 it is easy to see

Hence, can show that the quantity inside the square bracket in Eq. (7-31)
can be reduced to sin ωt. Thus, Eq. (7-31) is simplified to

Setting dy(t)/dt to zero, we have the solutions: t = ∞ and

from which we get



The solution at t = ∞ is the maximum of y(t) only when ζ ≥ 1. For the unit-
step responses shown in Fig. 7-13, the first overshoot is the maximum
overshoot. This corresponds to n = 1 in Eq. (7-36). Thus, the time at which
the maximum overshoot occurs is

Figure 7-13   Unit-step response illustrating that the maxima and minima
occur at periodic intervals.

With reference to Fig. 7-13, the overshoots occur at odd values of n, that
is, n = 1, 3, 5, …, and the undershoots occur at even values of n. Whether the
extremum is an overshoot or an undershoot, the time at which it occurs is
given by Eq. (7-36). It should be noted that, although the unit-step response
for ζ = 0 is not periodic, the overshoots and the undershoots of the response



do occur at periodic intervals, as shown in Fig. 7-13.
The magnitudes of the overshoots and the undershoots can be determined

by substituting Eq. (7-36) into Eq. (7-30). The result is

or

From Eq. (7-7), the maximum overshoot is obtained by

where,  Letting n = 1 in Eq. (7-39), we get

Also from Eq. (7-8) the percent maximum overshoot is

or

Equation (7-41) shows that the maximum overshoot of the step response of
the prototype second-order system is a function of only the damping ratio ζ.

The relationship between the percent maximum overshoot and the damping



ratio given in Eq. (7-104) is plotted in Fig. 7-14. The time tmax in Eq. (7-100) is
a function of both ζ and ωn.

Figure 7-14   Percent overshoot as a function of damping ratio for the step
response of the prototype second-order system.

Finally, because maximum overshoot is only a function of ζ, referring to
Fig. 7-12b all points along the ζ1 line, regardless of the values of ωn, will have
the same maximum overshoot value. Similarly all points along the ζ2 line will
experience the same maximum overshoot, and because ζ2 > ζ1, the maximum
overshoot corresponding to ζ2 is going to be smaller.

7-5-3   Delay Time and Rise Time (0 < ζ < 1)

Delay and rise time are the measures of how fast a control system
responds to an input or initial conditions.

Delay and rise time are the measures of how fast a control system responds
to an input or initial conditions. It is more difficult to determine the exact



analytical expressions of the delay time td, rise time tr, and settling time ts,
even for just the simple prototype second-order system. For instance, for the
delay time, we would have to set y(t) = 0.5 in Eq. (7-30) and solve for t. An
easier way would be to plot ωntd versus ζ, as shown in Fig. 7-15, and then
approximate the curve by a straight line or a curve over the range of 0 < ζ <
1. From Fig. 7-15, the delay time for the prototype second-order system is
approximated as

Figure 7-15   Normalized delay time versus ζ for the prototype second-
order system.

We can obtain a better approximation by using a second-order equation for
td:



For the rise time tr, which is the time for the step response to reach from
10 to 90 percent of its final value, the exact value can be determined directly
from the responses of Fig. 7-11. The plot of ωntr versus ζ is shown in Fig. 7-
16. In this case, the relation can again be approximated by a straight line over
a limited range of ζ:

Figure 7-16   Normalized rise time versus ζ for the prototype second-order
system.

A better approximation can be obtained by using a second-order equation:



From this discussion, the following conclusions can be made on the rise
time and delay time of the prototype second-order system:

•   tr and td are proportional to ζ and inversely proportional to ωn.
•   Increasing (decreasing) the natural frequency ωn will reduce
(increase) tr and td.

7-5-4   Settling Time (5 and 2 Percent)

Settling time is a measure of how fast the step response settles to its
final value.

As the name implies, settling time should be used to measure how fast the
step response settles to its final value. From Fig. 7-11, we see that when 0 < ζ
< 0.69, the unit-step response has a maximum overshoot greater than 5
percent, and the response can enter the band between 0.95 and 1.05 for the
last time from either the top or the bottom. When ζ is greater than 0.69, the
overshoot is less than 5 percent, and the response can enter the band between
0.95 and 1.05 only from the bottom. Figure 7-17a and b show the two
different situations. Thus, the settling time has a discontinuity at ζ = 0.69. The
exact analytical description of the settling time ts is difficult to obtain. We can
obtain an approximation for ts for 0 < ζ < 0.69 by using the envelope of the
damped sinusoid of y(t), as shown in Fig. 7-17a for a 5 percent requirement.
In general, when the settling time corresponds to an intersection with the
upper envelope of y(t), the following relation is obtained:





Figure 7-17   Five-percent settling time of the unit-step response.

When the settling time corresponds to an intersection with the bottom
envelope of y(t), ts must satisfy the following condition:

For the 5 percent requirement on settling time, the right-hand side of Eq.
(7-47) would be 1.05, and that of Eq. (7-48) would be 0.95. It is easily
verified that the same result for ts is obtained using either equation.

Solving Eq. (7-47) for ωnts, we have

where cts is the percentage set for the settling time. For example, if the
threshold is 5 percent, the cts = 0.05. Thus, for a 5-percent settling time, the
right-hand side of Eq. (7-49) varies between 3.0 and 3.32 as ζ varies from 0
to 0.69. We can approximate the settling time for the prototype second-order
system as

In general, settling time is inversely proportional to ζ and ωn. A
practical way of reducing the settling time is to increase ωn while
holding ζ constant. Although the response will be more oscillatory, the
maximum overshoot depends only on ζ and can be controlled
independently.



When the damping ratio ζ is greater than 0.69, from Fig. 7-17b, the unit-
step response will always enter the band between 0.95 and 1.05 from below.
We can show by observing the responses in Fig. 7-11 that the value of ωnts is
almost directly proportional to ζ. The following approximation is used for ts

for ζ > 0.69.

Figure 7-17c shows the actual values of ωnts versus ζ for the prototype
second-order system described by Eq. (7-18), along with the approximations
using Eqs. (7-50) and (7-51) for their respective effective ranges. The
numerical values are shown in Table 7-3.

TABLE 7-3   Comparison of 5% Settling Times of Prototype Second-
Order System, ωnts



It should also be pointed out that the 5 percent threshold is by no means a
number cast in stone. More stringent design problems may require the system
response to settle in any number less than 5 percent. For the 2-percent settling
time, following the same procedure, we get

7-5-5   Transient Response Performance Criteria—Final



Remarks
The performance transient response criteria discussed in the previous

sections, are also considered as transient response design criteria, as they are
used in design of control systems. In order to effectively design a control
system, it is important to fully appreciate how the pole movements affect PO,
rise time, and settling time just from the s-plane. As shown in Fig. 7-18, for
the prototype second-order transfer function in Eq. (7-18):

Figure 7-18   Relationship’s among the pole location and ζ, ωn, PO, tr , and
ts.

•   As the poles move diagonally away from the origin, because θ
remains constant, the damping ratio ζ remains constant while natural
frequency ωn increases. Considering the definitions of the performance



criteria from previous sections, PO remains constant while tmax, tr , and ts

decrease.
•   As the poles move away vertically, the natural frequency of the
system increases while the damping ratio decreases. In this case PO
increases, both tmax and tr decrease, while ts remains constant.
•   As the poles move horizontally to the left, because q remains
constant, the natural frequency of the system increases. In this case, PO
increases while both tr and ts decrease. Note tmax in this case remains
constant.

Since the equations reflecting ts are based on approximations, which are
different depending on the threshold percentage (e.g., 2 or 5 percent), the
above s-plane observations may not always be accurate—refer to Example 7-
5-1.

Finally, please keep in mind that, while the definitions on ymax, tmax, td, tr , and
ts apply to a system of any order, the damping ratio ζ and the natural
undamped frequency ωn strictly apply only to a second-order system whose
closed-loop transfer function is given in Eq. (7-18). Naturally, the
relationships among td, tr , and ts and ζ and ωn are valid only for the same
second-order system model. However, these relationships can be used to
measure the performance of higher-order systems that can be approximated
by second-order ones, under the stipulation that some of the higher-order
poles can be neglected.

EXAMPLE 7-5-1  For the dc motor position control problem discussed in
Sec. 7-4-3, and shown in Fig. 7-19, use the motor with
parameter values of Example 7-4-1 to study the effect
of controller gain K on overshoot, rise time, and
settling time. This example is a very important
introduction to position control of dc motors.



Figure 7-19   Block diagram of a position-control, armature-controlled dc
motor.

Position Control of a DC Motor
Note that for the sake of proper comparison, we need

to ensure that both input and output signals have the same
units. As a result, the input voltage Ein(s) has been scaled
to position Θin(s) using the output sensor gain, Ks. So
using a unit-step input, our objective for the motor shaft
is to rotate 1 rad, as shown in Fig. 7-20. Note the disc
connected to motor shaft is very thin (no inertia). In this
case, for small La , the motor electrical time constant τe =
(La/Ra) has been neglected. Hence, the simplified closed-
loop transfer function is

Figure 7-20   Desired rotation of an armature-controlled dc motor.



where Ks is the sensor gain, a potentiometer in this case
with the gain Ks = 1. Since Eq. (7-53) is a second-order
system, we have

For a given motor and position sensor, all parameters
are known, and the only varying term is the amplifier
gain K—the controller gain. Upon varying K, we can
directly change ωn, while σ = ζωn remains constant. As a
result, ζ changes indirectly. For a positive K, regardless
of the type of response (e.g., critically damped or
underdamped), the final value of the system is θfv = 1,
which implies that the output will follow the input (recall
we used a unit step input). Table 7-4 describes the motor
performance for three values of K. Using Toolbox 7-5-1
the response of the motor for these cases is obtained and
is shown in Fig. 7-21. As shown the actual PO and tmax

exactly match the values obtained in Table 7-4, while the
rise time and the settling time values in Table 7-4 are
approximations.

TABLE 7-4   Motor Performance for Three Values of Controller Gain
K





Figure 7-21   Position control response of dc motor in Example 7-5-1 to a
unit-step input for three controller gain K values.

To find PO, rise time, and settling time using MATLAB, point at a
desired location on the graph and right-click to display the x and y
values.

Based on these results, we observe that as K increases,
the damping ratio ζ decreases while the natural frequency
ωn increases. As a result with the increase in K, the
system PO increases, resulting in a faster rise time tr. In
this case, the 5-percent settling time ts increases with K in
contrast to the s-plane observations in the previous



section. This is because when ζ is greater than 0.69, the
overshoot is less than 5 percent, and the settling time is
less than tmax. For the 2-percent settling time, however,
remains constant and greater than tmax, which is in line
with the s-plane observations in the previous section.

Toolbox 7-5-1
Position response of Example 7-5-1 using MATLAB.

7-6  STEADY-STATE ERROR
One of the objectives of most control systems is that the system output



response follows a specific reference signal accurately in the steady state. For
example, a pick and place robot arm must end up accurately in the desired
position to pick or place an object (in App. A we provide an example of pick
and place robotic arm). In the real world, because of friction and other
imperfections and the natural composition of the system, the steady state of
the output response seldom agrees exactly with the reference. Therefore,
steady-state errors in control systems are almost unavoidable. In a design
problem, one of the objectives is to keep the steady-state error to a minimum,
or below a certain tolerable value, and at the same time the transient response
must satisfy a certain set of specifications.

The accuracy requirement on control systems depends to a great extent on
the control objectives of the system. For instance, the final position accuracy
of an elevator would be far less stringent than the pointing accuracy on the
control of the space telescopes. The accuracy of position control of such
systems is often measured in microradians.

7-6-1   Definition of the Steady-State Error
Unity-Feedback Systems
Error in a unity-feedback control system is defined as the difference

between input and output. For the closed-loop system shown in Fig. 7-22,
the error of the system is defined as

Figure 7-22   Error in a unity-feedback control system.

where r(t), the input, is the signal that the output y(t) is to track. Note that
all quantities in Eq. (7-56) have same units or dimensions (e.g., volts,
meters, etc.). In this case, the input r(t) is also called the reference signal,
which is the desired value for the output. In the Laplace domain as shown in
Fig. 7-23 the error is



Figure 7-23   Nonunity-feedback control system.

or,

The steady-state error is defined as the value of the error at steady state,
or the final value of the error. That is

The steady-state error ess is defined as the value of error at steady
state.

For a unity-feedback system, the steady-state error is obtained from Eq. (7-
59) as

Nonunity-Feedback Systems
Let us consider the nonunity-feedback system in Fig. 7-23, where r(t) is

the input (but not the reference signal), u(t) is the actuating signal, b(t) is the



feedback signal, and y(t) is the output. In this case, the error formula in Eq.
(7-57) is not valid because the input and output may not have same units or
dimensions. In order to establish a proper formula for the error, we must first
obtain a clear picture of what the reference signal is. From the discussions in
Chap. 3 and earlier on in this section, for a stable system, the steady-state
output will be tracking the reference signal. The error of the system at all
times is the difference between the reference signal and the output. In order to
establish the reference signal, let us modify the system in Fig. 7-23 by first
factoring out the feedback gain H(s), as shown in Fig. 7-24. Error in the
system is the difference between the output and the desired value of the
output—or the reference signal. In this case, the reference signal in Laplace
domain is R(s)G1(s), as shown in Fig. 7-24. The value of G1(s) is obviously is
related to 1/H(s), and it may be obtained based on the time response
characteristics of the original system in Fig. 7-23. Obviously, the reference
signal reflects the desired value of the system output based on a given input,
and it cannot contain additional transient behavior due to H(s).

Figure 7-24   Error in a nonunity-feedback control system.

As it becomes clearer through the examples in the end of this section, there
are two possible scenarios based on the value of H(s).

which means that H(s) cannot have poles at s = 0. Hence, the reference
signal becomes



Case 2: H(s) has Nth-order zero at s = 0

In both given cases, the error signal in Laplace transform domain becomes

or,

In the case of a nonunity feedback, the steady-state error is obtained from
Eq. (7-65) as

We can also rearrange the block diagram of Fig. 7-24 to arrive at a unity-
feedback system to be able to utilize Eq. (7-60) as the definition of steady-
state error. This can be done by arriving at an equivalent system with unity
feedback that can model the system in Fig. 7-24. To do so we set the error
equation for the nonunity system equal to the error in an equivalent unity-
feedback system. That is



For this to be valid

where the equivalent system in Eq. (7-65) can now be represented in a
unity-feedback form as in Fig. 7-25. If H(s) = 1 then G1(s) = 1, which implies
Geq = G. As a result the two systems in Figs. 7-22 and 7-25 become the same.

Figure 7-25   Equivalent unity-feedback control system representing the
nonunity-feedback system in Fig. 7-23.

EXAMPLE 7-6-1  The forward-path and closed-loop transfer functions of
the system shown in Fig. 7-22 are given next. The
system is assumed to have unity feedback, so H(s) = 1,
and thus we use Eq. (7-60) for error calculation.

The poles of M(s) are all in the left-half s-plane. Thus,
the system is stable. The steady-state errors due to the



three basic types of inputs are evaluated as follows:
Unit-step input:

Unit-ramp input:

Unit-parabolic input:

EXAMPLE 7-6-2  Consider the nonunity-feedback system, shown in Fig. 7-
23, which has the following transfer functions:

Because H(s) has no zeros at s = 0, we use Case 1
scenario given by Eq. (7-61) in error calculations—that
is, G1(s) = 1/H(0) = 1. So r(t) in Fig. 7-23 is the reference
signal. The closed-loop transfer function is

Using Eq. (7-67) The steady-state errors of the system
are calculated for the three basic types of inputs.

Unit-step input:



Unit-ramp input:

Unit-parabolic input:

It would be important to also find the time response of
the system to calculate the steady-state errors from the
difference between the input and the output and compare
them with the results just obtained. Applying the unit-
step, unit-ramp, and unit-parabolic inputs to the system
described by Eq. (7-74) and taking the inverse Laplace
transform of Y(s), the outputs are

Unit-stepinput:

Thus, from the leading term the reference input is unit
step, the steady-state value of y(t) is also unity, and
therefore, the steady-state error is zero.

Unit-rampinput:



Thus, the reference input is a unit ramp tus(t), the
steady-state portion of y(t) is t – 0.8, and the steady-state
error to a unit ramp is 0.8.

Unit-parabolic input:

Thus, the reference input is a unit parabolic input
t2us(t)/2, the steady-state portion of y(t) is 0.5t2 – 0.8t +
11.2. Thus, the steady-state error is 0.8t + 11.2, which
becomes infinite as time goes to infinity.

Suppose we change the transfer function H(s) so that

Then

The closed-loop transfer function is

The steady-state errors of the system due to the three
basic types of inputs are calculated as follows:

Unit-stepinput:
Solving for the output using the M(s) in Eq. (7-83), we



get

Thus, the steady-state value of y(t) is 0.5, and because
KH = 2, the steady-state error due to a unit-step input is
zero.

Unit-rampinput:
The unit-ramp response of the system is written as

Because the transient terms will die out as t approaches
infinity, the steady-state error due to a unit-ramp input is
0.4.

Unit-parabolic input:
The unit-parabolic input is

Thus, the steady-state error is 0.4t + 2.6, which
increases with time. 

EXAMPLE 7-6-3  Consider the nonunity-feedback system shown in Fig. 7-
23 with the following transfer functions:

where H(s) has one zero at s = 0. Thus,

Hence,



The closed-loop transfer function is

For a unit-step input, the steady-state error, from Eq.
(7-67), is

Unit step input:

To verify this result, we can find the unit-step response
using the closed-loop transfer function in Eq. (7-90). The
result is

From Eq. (7-92), the reference signal is considered to
be 0.5tus(t) = 0.5t, and the steady-state error is 2.9. Of
course, in Laplace domain the reference signal is a ramp

function  as initially selected in Eq. (7-89). 

EXAMPLE 7-6-4  The block diagram of the speed control dc motor system,
discussed in Sec. 7-4-2, without a load for small motor
electric-time constant is shown in Fig. 7-25. In this
case, because r(t) and ωm(t) are not of the same



dimension, following Case 1 in Eq. (7-61), we can
arrive at the reference signal r(t)/Kt for error
calculation. This is equivalent to introducing angular
speed ωin(t) as the input, as shown in Fig. 7-26, and the
gain Kt (tachometer gain in this case) so that ωin(t) =
r(t)/Kt. This would also imply that the input and output
have the same unit and dimension. As a result, the
reference signal is the desired speed and not the
input voltage r(t).

Figure 7-26   Speed control block diagram of a dc motor.

Speed Control of a DC Motor
Simplifying the block diagram in Fig. 7-26 we can

arrive at the final unity-feedback representation of the
system, as in Fig. 7-22, where the open loop transfer
function of the system is

The angular speed of the system can be obtained in
terms of the input as



where

is the system time constant. Note also that the system
in Eq. (7-94) is always stable for any K > 0. Finally, the
time response of the system for the reference signal Ωin(s)
= 1/s is

The final value of angular speed output is

While the steady-state error is obtained as

For H(s) = Kt = 1 (this simply implies the sensor output
is calibrated to show 1 rad/s is 1 V), selecting the system
parameters from Example 7-4-1, we get



The final value of angular speed output is

While the steady-state error is obtained from Eq. (7-
61) as

As shown in Table 7-5, for a unit step input (1 rad/s),
increasing the controller gain K results in the reduction of
both the steady-state error and system time constant
values. The unit-step time responses of the system for
different K values are shown in Fig. 7-27. Practically
speaking there is a limit to how much we can increase K
because of amplifier saturation or the applied voltage
exceeding motor input capacity. 

TABLE 7-5   System Time Constant and Steady-State Speed Error for
Three Different Controller Gain Values—Given a Unit-Step Input



Figure 7-27   System time response for three different controller gain
values when Kt = 1.

Toolbox 7-6-1
Speed response of Example 7-6-4 using MATLAB.



7-6-2   Steady-State Error in Systems with a Disturbance
Not all system errors are defined with respect to the response due to the

input. Figure 7-28 shows a unity-feedback system with a disturbance D(s), in
addition to the input R(s). The output due to D(s) acting alone may also be
considered an error. As discussed in Sec. 4-1-4, disturbance usually adversely
affects the performance of the control system by placing a burden on the
controller/actuator components. Before designing a proper controller for the
system, it is always important to learn the effects of D(s) on the system.

Figure 7-28   Block diagram of a system undergoing disturbance.

For the system in Fig. 7-28, using the principle of superposition, the output
can be written in terms of the input R(s) and disturbance D(s) as

and the error is

The steady-state error of the system is defined as



where

and

are the steady-state errors due to the reference input and disturbance,
respectively.

Observations
ess(R) and ess(D) have the same denominators if the disturbance signal is in

the forward path. The negative sign in the numerator of ess(D) shows that, at
steady state, the disturbance signal adversely affects the performance of the
system. Naturally, to compensate for this burden, the control system has to
alter the system performance at steady state.

EXAMPLE 7-6-5  Follow up to Example 7-6-4, we now add a disturbance
torque TL to the motor speed control system as shown
in Fig. 7-29. Note that in order to use Eq. (7-60) for
steady-state error calculations, the gain Kt is moved to
the forward path to create a unity-feedback system—
compare the block diagram in Fig. 7-29 to Fig. 7-26.
Simplifying the block diagram in Fig. 7-29, we get



Figure 7-29   Speed control block diagram of a dc motor.

Speed Control of a DC Motor with a Disturbance
For a unit step input Ωin = 1/s and a unit disturbance

torque TL = 1/s, the output becomes

where  is the system time
constant. The steady-state response and the steady-state
errors in this case are



As in the previous Example 7-6-4, as K increases, the
steady-state error due to both input and disturbance
signals decrease. 

7-6-3   Types of Control Systems: Unity-Feedback Systems

The steady-state error ess depends on the type of the control system.

Consider that a control system with unity feedback can be represented by
or simplified to the block diagram with H(s) = 1 in Fig. 7-22. The steady-
state error of the system is written as

Clearly, ess depends on the characteristics of G(s). More specifically, we
can show that ess depends on the number of poles G(s) has at s = 0. This
number is known as the type of the control system, or simply, system type.

Let us formalize the system type by referring to the form of the forward-
path transfer function G(s). In general, G(s) can be expressed for convenience
as



the system type refers to the order of the pole of G(s) at s = 0. Thus, the
closed-loop system in Fig. 7-30 having the forward-path transfer function of
Eq. (7-111) is type j, where j = 0, 1, 2, …. The total number of terms in the
numerator and the denominator and the values of the coefficients are not
important to the system type, as system type refers only to the number of
poles G(s) has at s = 0. The following example illustrates the system type
with reference to the form of G(s).

Figure 7-30   A unity-feedback control system used to define system type.

EXAMPLE 7-6-6   For the following transfer functions, in the block diagram
shown in Fig. 7-30, the system types are defined as

Now let us investigate the effects of the types of inputs
on the steady-state error. We shall consider only the step,
ramp, and parabolic inputs. 

7-6-4   Error Constants
Steady-State Error of System with a Step-Function Input
For the unity-feedback control system in Fig. 7-22, when the input r(t) is a

step function with magnitude R, R(s) = R/s, the steady-state error is written
from Eq. (7-60),



For convenience, we define

as the step-error constant. Then Eq. (7-114) becomes

A typical ess due to a step input when Kp is finite and nonzero is shown in
Fig. 7-31. We see from Eq. (7-116) that, for ess to be zero, when the input is a
step function, Kp must be infinite. If G(s) is described by Eq. (7-111), we see
that, for Kp to be infinite, j must be at least equal to unity; that is, G(s) must
have at least one pole at s = 0. Therefore, we can summarize the steady-state
error due to a step function input as follows:

Figure 7-31   Typical steady-state error due to a step input.



Steady-State Error of System with a Ramp-Function Input
For the unity-feedback control system in Fig. 7-22, when the input to is a

ramp-function with magnitude R,

where R is a real constant, the Laplace transform of r(t) is

The steady-state error is written using Eq. (7-60),

We define the ramp-error constant as

Then, Eq. (7-119) becomes

which is the steady-state error when the input is a ramp function. A typical
ess due to a ramp input when Kv is finite and nonzero is illustrated in Fig. 7-32.



Figure 7-32   Typical steady-state error due to a ramp-function input.

Equation (7-121) shows that, for ess to be zero when the input is a ramp
function, Kv must be infinite. Using Eqs. (7-120) and (7-111), we obtain

Thus, for Kv to be infinite, j must be at least equal to 2, or the system must
be of type 2 or higher. The following conclusions may be stated with regard
to the steady-state error of a system with ramp input:

Steady-State Error of System with a Parabolic-Function Input
When the input is described by the standard parabolic form

the Laplace transform of r(t) is



The steady-state error of the system in Fig. 7-22 is

A typical ess of a system with a nonzero and finite Ka due to a parabolic-
function input is shown in Fig. 7-33.

Figure 7-33   Typical steady-state error due to a parabolic-function input.

Defining the parabolic-error constant as

the steady-state error becomes

Following the pattern set with the step and ramp inputs, the steady-state
error due to the parabolic input is zero if the system is of type 3 or greater.
The following conclusions are made with regard to the steady-state error of a



system with parabolic input:

Obviously, for these results to be valid, the closed-loop system must be
stable.

By using the method described, the steady-state error of any linear closed-
loop system subject to an input with an order higher than the parabolic
function can also be derived if necessary. As a summary of the error analysis,
Table 7-6 shows the relations among the error constants, the types of systems
with reference to Eq. (7-111), and the input types.

TABLE 7-6   Summary of the Steady-State Errors Due to Step-,
Ramp-, and Parabolic-Function Inputs for Unity-Feedback Systems



As a summary, the following points should be noted when applying the
error-constant analysis just presented.

1.    The step-, ramp-, or parabolic-error constants are significant for the
error analysis only when the input signal is a step function, ramp
function, or parabolic function, respectively.
2.    Because the error constants are defined with respect to the forward-
path transfer function G(s), the method is applicable to only the system
configuration shown in Fig. 7-22 with a unity feedback. Because the
error analysis relies on the use of the final-value theorem of the Laplace
transform, it is important to first check the stability of the system to see
if sE(s) has any poles on the jω-axis or in the right-half s-plane.
3.    The steady-state error properties summarized in Table 7-6 are for
systems with unity feedback only.
4.    The steady-state error of a system with an input that is a linear
combination of the three basic types of inputs can be determined by
superimposing the errors due to each input component.
5.    When the system configuration differs from that of Fig. 7-22 with



H(s) = 1, we can either simplify the system to the form of Fig. 7-22 or
establish the error signal and apply the final-value theorem. The error
constants defined here may or may not apply, depending on the
individual situation.

When the steady-state error is infinite, that is, when the error increases
continuously with time, the error-constant method does not indicate how the
error varies with time. This is one of the disadvantages of the error-constant
method. The error-constant method also does not apply to systems with
inputs that are sinusoidal, since the final-value theorem cannot be applied.
The following examples illustrate the utility of the error constants and their
values in the determination of the steady-state errors of linear control systems
with unity feedback.

EXAMPLE 7-6-7  Consider that the system shown in Fig. 7-22, that is, H(s)
= 1, has the following transfer functions. The error
constants and steady-state errors are calculated for the
three basic types of inputs using the error constants.

Step input: Step-error constant 
Ramp input: Ramp-error constant 

Parabolic input: Parabolic-error constant 

These results are valid only if the value of K stays
within the range that corresponds to a stable closed-loop
system, which is 0 < K < 1.304

The closed-loop system is unstable for all values of K,



and error analysis is meaningless.

We can show that the closed-loop system is stable. The
steady-state errors are calculated for the three basic types
of inputs.

Step input: Step-error constant: 

Ramp input: Ramp-error constant: 
Parabolic input: Parabolic-error constant: 

 

7-6-5   Steady-State Error Caused by Nonlinear System
Elements

In many instances, steady-state errors of control systems are attributed to
some nonlinear system characteristics such as nonlinear friction or dead zone.
For instance, in real-life applications, an amplifier used in a control system
may have the input-output characteristics shown in Fig. 7-44. Then, when the
amplitude of the amplifier input signal falls within the dead zone, the output
of the amplifier would be zero, and the control would not be able to correct
the error if any exists. Dead-zone nonlinearity characteristics shown in Fig. 7-
34 are not limited to amplifiers. The flux-to-current relation of the magnetic
field of an electric motor may exhibit a similar characteristic. As the current
of the motor falls below the dead zone D, no magnetic flux, and, thus, no
torque will be produced by the motor to move the load.



Figure 7-34   Typical input-output characteristics of an amplifier with
dead zone and saturation.

The output signals of digital components used in control systems, such as a
microprocessor, can take on only discrete or quantized levels. This property
is illustrated by the quantization characteristics shown in Fig. 7-35. When the
input to the quantizer is within ±q/2, the output is zero, and the system may
generate an error in the output whose magnitude is related to ±q/2. This type
of error is also known as the quantization error in digital control systems.



Figure 7-35   Typical input-output characteristics of a quantizer.

When the control of physical objects is involved, friction is almost always
present. Coulomb friction is a common cause of steady-state position errors
in control systems. Figure 7-36 shows a restoring-torque-versus-position
curve of a control system. The torque curve typically could be generated by a



step motor or a switched-reluctance motor or from a closed-loop system with
a position encoder. Point 0 designates a stable equilibrium point on the torque
curve, as well as the other periodic intersecting points along the axis, where
the slope on the torque curve is negative. The torque on either side of point 0
represents a restoring torque that tends to return the output to the equilibrium
point when some angular-displacement disturbance takes place. When there
is no friction, the position error should be zero because there is always a
restoring torque so long as the position is not at the stable equilibrium point.
If the rotor of the motor sees a Coulomb friction torque TF, then the motor
torque must first overcome this frictional torque before producing any
motion. Thus, as the motor torque falls below TF as the rotor position
approaches the stable equilibrium point, it may stop at any position inside the
error band bounded by ±θe, as shown in Fig. 7-36.

Figure 7-36   Torque-angle curve of a motor or closed-loop system with
Coulomb friction.

Although it is relatively simple to comprehend the effects of nonlinearities
on errors and to establish maximum upper bounds on the error magnitudes, it
is difficult to establish general and closed-form solutions for nonlinear
systems. Usually, exact and detailed analysis of errors in nonlinear control
systems can be carried out only by computer simulations.

Therefore, we must realize that there are no error-free control systems in



the real world, and, because all physical systems have nonlinear
characteristics of one form or another, steady-state errors can be reduced but
never completely eliminated.

7-7  BASIC CONTROL SYSTEMS AND
EFFECTS OF ADDING POLES AND ZEROS TO
TRANSFER FUNCTIONS

In all previous examples of control systems we have discussed thus far, the
controller has been typically a simple amplifier with a constant gain K. This
type of control action is formally known as proportional control because the
control signal at the output of the controller is simply related to the input of
the controller by a proportional constant.

Intuitively, one should also be able to use the derivative or integral of the
input signal, in addition to the proportional operation. Therefore, we can
consider a more general continuous-data controller to be one that contains
such components as adders or summers (addition or subtraction), amplifiers,
attenuators, differentiators, and integrators—see Sec. 6-1 and Chap. 11 for
more details. For example, one of the best-known controllers used in practice
is the PID controller, which stands for proportional, integral, and
derivative. The integral and derivative components of the PID controller
have individual performance implications, and their applications require an
understanding of the basics of these elements.

All in all, what these controllers do is add additional poles and zeros to the
open- or closed-loop transfer function of the overall system. As a result, it is
important to appreciate the effects of adding poles and zeros to a transfer
function first. We show that—although the roots of the characteristic
equation of the system, which are the poles of the closed-loop transfer
function, affect the transient response of linear time-invariant control
systems, particularly the stability—the zeros of the transfer function are also
important. Thus, the addition of poles and zeros and/or cancellation of
undesirable poles and zeros of the transfer function often are necessary in
achieving satisfactory time-domain performance of control systems.

In this section, we show that the addition of poles and zeros to forward-
path and closed-loop transfer functions has varying effects on the transient



response of the closed-loop system.

7-7-1   Addition of a Pole to the Forward-Path Transfer
Function: Unity-Feedback Systems

To study the general effect of the addition of a pole, and its relative
location, to a forward-path transfer function of a unity-feedback system,
consider the transfer function

The pole at s = –1/Tp is considered to be added to the prototype second-
order transfer function. The closed-loop transfer function is written as

Table 7-7 shows the poles of the closed-loop system when ωn = 1, ζ = 1
and Tp = 0, 1, 2, and 5. As the value of Tp increases, the open loop added pole
at –1/Tp moves closer to the origin in the s-plane, causing the closed-loop
system to have a pair of complex conjugate poles that move toward the
origin. Figure 7-37 illustrates the unit-step responses of the closed-loop
system. As the value of Tp increases, the open loop added pole at –1/Tp moves
closer to the origin in the s-plane, and the maximum overshoot increases.
These responses also show that the added pole increases the rise time of the
step response.

TABLE 7-7 The Poles of the Closed-Loop System in Eq. (7-129) when
ωn = 1, ζ = 1 and Tp = 0, 1, 2, and 5



Figure 7-37   Unit-step responses of the system with the closed-loop
transfer function in Eq. (7-129): ζ = 1, ωn = 1 and Tp = 0, 1, 2, and 5.

The same conclusion can be drawn from the unit-step responses of Fig. 7-
38, which are obtained for ωn = 1, ζ = 0.25 and Tp = 0, 0.2, 0.667, and 1.0. In
this case, when Tp is greater than 0.667, the amplitude of the unit-step
response increases with time, and the system is unstable.



Figure 7-38   Unit-step responses of the system with the closed-loop
transfer function in Eq. (7-129): ζ = 0.25, ωn = 1 and Tp = 0, 0.2, 0.667, and
1.0.

In general, addition of a pole to the forward-path transfer function
generally has the effect of increasing the maximum overshoot of the closed-
loop system.

For a more detailed treatment of this subject, please refer to the Case Study
in Sec. 7-9.

Toolbox 7-7-1
The corresponding responses for Fig. 7-37 are obtained by the



following sequence of MATLAB functions:

The corresponding responses for Fig. 7-38 are obtained by the following
sequence of MATLAB functions

7-7-2   Addition of a Pole to the Closed-Loop Transfer
Function

Because the poles of the closed-loop transfer function are roots of the
characteristic equation, they control the transient response of the system
directly. Consider the closed-loop transfer function



where the term (1 + Tps) is added to a prototype second-order transfer
function. Table 7-8 shows the poles of the closed-loop system when ωn = 1, ζ
= 1 and Tp = 0, 0.5, 1, 2, and 5. As the value of Tp increases, the closed-loop
added pole at –1/Tp moves closer to the origin in the s-plane. Figure 7-39
illustrates the unit-step response of the system. As the pole at s = –1/Tp is
moved toward the origin in the s-plane, the rise time increases and the
maximum overshoot decreases. Thus, as far as the overshoot is concerned,
adding a pole to the closed-loop transfer function has just the opposite effect
to that of adding a pole to the forward-path transfer function.

TABLE 7-8   The Poles of the Closed-Loop System in Eq. (7-130) when
ωn = 1, ζ = 1 and Tp = 0, 0.5, 1, 2, and 5



Figure 7-39   Unit-step responses of the system with the closed-loop
transfer function in Eq. (7-130): ζ = 0.5, ωn = 1 and Tp = 0, 0.5, 1.0, 2.0, and
4.0.

For Tp < 2, the real pole value is less than the real portion of the complex
conjugate poles. While for Tp > 2, it is closer to origin than the complex poles.
As we will discuss later in Sec. 7-8, in the latter case the real pole is less
dominant than the complex poles, while in the former case it overpowers the
response causing the overshoot to diminish.

Toolbox 7-7-2
The corresponding responses for Fig. 7-39 are obtained by the

following sequence of MATLAB functions:



7-7-3   Addition of a Zero to the Closed-Loop Transfer
Function

Consider the following closed-loop transfer function with an added zero:

Table 7-9 shows the roots of the system when ωn = 1, ζ = 0.5 and Tz = 0, 1,
2, 3, 6, and 10. As the value of Tz increases, the closed-loop added zero at –
1/Tz moves closer to the origin in the s-plane. Figure 7-40 shows the unit-
step responses of the closed-loop system. In this case, we see that adding a
zero to the closed-loop transfer function decreases the rise time and
increases the maximum overshoot of the step response.

TABLE 7-9   The Roots of the Closed-Loop System in Eq. (7-131)
when ωn = 1, ζ = 0.5 and Tz = 0, 1, 2, 3, 6, and 10



Figure 7-40   Unit-step responses of the system with the closed-loop



transfer function in Eq. (7-131): Tz = 0, 1, 2, 3, 6, and 10.

For Tz < 1, the zero value is less than the real portion of the complex
conjugate poles. While for Tz > 1, it is closer to origin than the complex poles.
As in the previous section, in the latter case the zero is less dominant than the
complex poles, while in the former case it overpowers the response causing
more overshoot.

We can analyze the general case by writing Eq. (7-131) as

For a unit-step input, let the output response that corresponds to the first
term of the right side of Eq. (7-132) be y1(t). Then, the total unit-step response
is

Figure 7-41 shows why the addition of the zero at s = –1/Tc reduces the rise
time and increases the maximum overshoot, according to Eq. (7-133). In fact,
as Tz approaches infinity, the maximum overshoot also approaches infinity,
and yet the system is still stable as long as the overshoot is finite and ζ is
positive.



Figure 7-41   Unit-step responses showing the effect of adding a zero to
the closed-loop transfer function.

7-7-4   Addition of a Zero to the Forward-Path Transfer
Function: Unity-Feedback Systems

Let us consider that a zero at –1/Tz is added to the forward-path transfer
function of a third-order system, so

The closed-loop transfer function is

The difference between this case and that of adding a zero to the closed-
loop transfer function is that, in the present case, not only the term (1 + Tzs)
appears in the numerator of M(s), but the denominator of M(s) also contains
Tz. The term (1 + Tzs) in the numerator of M(s) increases the maximum



overshoot, but Tz appears in the coefficient of the s term in the denominator,
which has the effect of improving damping, or reducing the maximum
overshoot. Figure 7-42 illustrates the unit-step responses when Tz = 0, 0.2,
0.5, 2.0, 5.0, and 10.0. Notice that, when Tz = 0, the closed-loop system is on
the verge of becoming unstable. When Tz = 0.2 and 0.5, the maximum
overshoots are reduced, mainly because of the improved damping. As Tz

increases beyond 2.0, although the damping is still further improved, the (1 +
Tzs) term in the numerator becomes more dominant, so the maximum
overshoot actually becomes greater as Tz is increased further.

Figure 7-42   Unit-step responses of the system with the closed-loop
transfer function in Eq. (7-135): Tz = 0, 0.2, 0.5, 2.0, 5.0, and 10.0.

An important finding from these discussions is that, although the
characteristic equation roots are generally used to study the relative damping
and relative stability of linear control systems, the zeros of the transfer
function should not be overlooked in their effects on the transient



performance of the system. See Example 7-7-1 in the following section for
another treatment of this case.

Toolbox 7-7-3
The corresponding responses for Fig. 7-42 are obtained by the

following sequence of MATLAB functions:

7-7-5   Addition of Poles and Zeros: Introduction to Control
of Time Response

In practice we can control the response of a system by adding poles and
zeros or a simple amplifier with a constant gain K to its transfer function. So
far in this chapter, we have discussed the effect of adding a simple gain in the
time response—that is, proportional control. In this section, we look at
controllers that include derivative or integral of the input signal in addition to
the proportional operation.

EXAMPLE 7-7-1  Consider the second-order model

where ωn = 1.414 rad/s and ζ = 0.707. The forward-



path transfer function has two poles at 0 and –2. Figure 7-
43 shows the block diagram of the system. The series
controller, which adds a zero to the forward path transfer
function, is a proportional-derivative (PD) type with the
transfer function

Figure 7-43   Control system with PD controller.

In this case, the forward-path transfer function of the
compensated system is

which shows that the PD control is equivalent to
adding a simple zero at s = –Kp/KD to the forward-path
transfer function. Note that this controller does not affect
the system type, and it only alters the transient response
of the system.

Rewriting the transfer function of the PD controller as

where



The forward-path transfer function of the system
becomes

The closed-loop transfer function is

We should quickly point out that Eq. (7-142) no longer
represents a prototype second-order system, since the
transient response is also affected by the zero of the
transfer function at s = –Kp/KD —refer to Sec. 7-7-4 for
more discussions.

Let us now examine how the controller gains KP and KD affect the response
of the system. Obviously, because there are two controller gains that we can
vary, this process is not unique. In Chap. 11, we discuss this subject in more
depth. In this example, we provide a simple approach by examining the how
KP and KD affect the poles and zero of the system. Let’s fix the value of the
zero at an arbitrary location to the left of forward-path transfer function poles
at 0 and −2. If Tz is too small, the system in Eq. (7-142) converges to a
prototype second-order transfer function. That is

This is simply saying a large negative zero, will have a minimal effect on
the system transient response. In order to better examine the effect of the
zero, let’s choose the zero s = –1/Tz = –2.5, implying Tz = 0.4. The poles may
be obtained from the characteristic equation:



or

Hence, addition of a zero to the forward path transfer function
impacted the overshoot and rise time of the system. If the zero is more
dominant than the poles, the overshoot increases, despite a decrease in
the oscillations, while the rise time also decreases. If we select the zero
farther to the left of the s-plane, its effect will become less dominant.

Table 7-10 shows selected pole values when KP varies from 0 to 7. The
results are also plotted in the s-plane in a graph that is better known as the
root locus of the system—see Fig. 7-44. The root locus is essentially the
graphical representation of the system zero and roots of Eq. (7-145) for all KP

values. As shown, as KP varies the poles of the system move together and
meet at s = −1.38 for KP = 0.9549. Then the poles become complex and
encircle the zero at −2.5. They meet again at s = −3.64 for KP = 6.5463.
Beyond this point, one pole moves toward the zero at −2.5 while the other
one moves to the left. Finally, as Kp → ∞, s1 → ∞, and s2 → –2.5.

TABLE 7-10   The Roots of the Closed-Loop System in Eq. (7-142)
when Tz = 0.4 and KP varies from 0 to 7



Figure 7-44   The root locus representing the zero and poles of Eq. (7-142)
for KP varying from 0 to ∞ and Tz = 0.4.



By looking at the root locus, and based on the previous discussions, at KP =
0.9549, the two poles at −1.38 dominate the effect of the zero at −2.5, and we
expect to observe a critically damped type response. At KP = 6.5463,
however, the zero at −2.5 dominates the two poles at −3.64. As a result, we
expect to see more overshoot and a faster rise time—see Secs. 7-7-3 and 7-7-
4. Between these values, the system can exhibit oscillatory response,
depending on the effect of the zero at −2.5. Examining the unit-step response
of the system in Eq. (7-142) for selected values of KP = 0.9549, 1, and 6.5463
confirms our s-plane assessment. It is important to note that the zero’s effect
in this case appears significant enough to suppress the oscillatory nature of
the system even when the poles are complex.

Toolbox 7-7-4
The corresponding responses for Fig. 7-45 are obtained by the

following sequence of MATLAB functions:



Figure 7-45   Unit-step response of Eq. (7-142) for Tz = 0.4 and three KP

values.

EXAMPLE 7-7-2  Consider the following second-order plant

Figure 7-46 illustrates the block diagram of the system
with a series PI controller. Using the circuit elements
given in Table 7-1 in Chap. 6, the transfer function of the
PI controller is



Figure 7-46   Control system with PI controller.

which adds a zero and a pole to the forward path
transfer function. The addition of a pole at s = 0, changes
the system to a type 1 system, and as a result, eliminates
the steady-state error to a step input. The forward-path
transfer function of the compensated system is

Our design criteria in this case are zero steady error
and a PO of 4.33 to a unit step input.

The closed-loop transfer function is

where the characteristic equation of the closed-loop
system is

From Routh-Hurwitz stability test, the system is stable



for 0 < KI/Kp < 13.5. This means that the zero of G(s) at s
= –KI/Kp cannot be placed too far to the left in the left-half
s-plane, or the system will be unstable (see Fig. 7-47 for
controller pole and zero locations). Hence, when a type 0
system is converted to type 1 using a PI controller, the
steady-state error due to a step input is always zero if the
closed-loop system is stable.

Figure 7-47   Pole-zero configuration of a PI controller.

A viable method of designing the PI control is to select the zero at s =
–KI/Kp so that it is relatively close to the origin and away from the most
significant poles of the process; the values of KP and KI should be
relatively small.

The system in Fig. 7-46, with the forward-path transfer
function in Eq. (7-148), will now have a zero steady-state
error when the reference input is a step function.
However, because the system is now third order, it may
be less stable than the original second-order system or
even it may become unstable if the parameters KP and KI



are not properly chosen. The problem is then to choose
the proper combination of KP and KI so that the transient
response is satisfactory.

Let us place the zero of the controller at –KI/Kp

relatively close to the origin. For the present case, the
most significant pole of Gp(s) is at –1. Thus, KI/KP should
be chosen so that the following condition is satisfied:

As a start point in designing of the controller,
considering the condition in Eq. (7-151), Eq. (7-149) may
loosely be approximated by

where the term KI/KP in the numerator and KI in the
denominator are neglected.

As a design criterion, we require a desired percent maximum overshoot
value of 4.3 for a unit-step input, which utilizing Eq. (7-40) results in a
relative damping ratio of 0.707. From the denominator of Eq. (7-152)
compared with a prototype second-order system, we get the natural frequency
value of ωn = 2.1213 rad/s and the required proportional gain of Kp = 1.25 —
see Fig. 7-48 for the time response. Using Kp = 1.25, let us now examine the
time response of the third-order system in Eq. (7-149). As shown in Fig. 7-
48, if KI is too small, 0.625 in this case, the system time response is slow and
the desired zero steady-state error requirement is not met fast enough. Upon
increasing KI to 1.125, the desired response is met, as shown in Fig. 7-48. In
this case, the controller zero still meets the condition in Eq. (7-151).



Figure 7-48   Unit-step response of Eq. (7-149) for three KI values, when
KP = 1.25.

Hence, in this case addition of a controller pole at s = 0
eliminated the steady-state error, while the controller zero
impacted the transient response to meet the desired PO
requirement.

Toolbox 7-7-5
The corresponding responses for Fig. 7-48 are obtained by the

following sequence of MATLAB functions:



7-8  DOMINANT POLES AND ZEROS OF
TRANSFER FUNCTIONS

From the discussions given in the preceding sections, it becomes apparent
that the location of the poles and zeros of a transfer function in the s-plane
greatly affects the transient response of the system. For analysis and design
purposes, it is important to sort out the poles that have a dominant effect on
the transient response and call these the dominant poles.

Because most control systems in practice are of orders higher than two, it
would be useful to establish guidelines on the approximation of high-order
systems by lower-order ones insofar as the transient response is concerned. In
design, we can use the dominant poles to control the dynamic performance of
the system, whereas the insignificant poles are used for the purpose of
ensuring that the controller transfer function can be realized by physical
components.

For all practical purposes, we can divide the s-plane into regions in which
the dominant and insignificant poles can lie, as shown in Fig. 7-40. We
intentionally do not assign specific values to the coordinates, since these are
all relative to a given system.

The poles that are close to the imaginary axis in the left-half s-plane give



rise to transient responses that will decay relatively slowly, whereas the poles
that are far away from the axis (relative to the dominant poles) correspond to
fast-decaying time responses. The distance D between the dominant region
and the least significant region shown in Fig. 7-49 will be subject to
discussion. The question is: How large a pole is considered to be really large?
It has been recognized in practice and in the literature that if the magnitude of
the real part of a pole is at least 5 to 10 times that of a dominant pole or a pair
of complex dominant poles, then the pole may be regarded as insignificant
insofar as the transient response is concerned. The zeros that are close to the
imaginary axis in the left-half s-plane affect the transient responses more
significantly, whereas the zeros that are far away from the axis (relative to the
dominant poles) have a smaller effect on the time response.

Figure 7-49   Regions of dominant and insignificant poles in the s-plane.

We must point out that the regions shown in Fig. 7-49 are selected merely
for the definitions of dominant and insignificant poles. For controller design
purposes, such as in pole-placement design, the dominant poles and the
insignificant poles should most likely be located in the tinted regions in Fig.
7-50. Again, we do not show any absolute coordinates, except that the desired



region of the dominant poles is centered around the line that corresponds to ζ
= 0.707. It should also be noted that, while designing, we cannot place the
insignificant poles arbitrarily far to the left in the s-plane or these may require
unrealistic system parameter values when the pencil-and-paper design is
implemented by physical components.

Figure 7-50   Regions of dominant and insignificant poles in the s-plane
for design purposes.

7-8-1   Summary of Effects of Poles and Zeros
Based on previous observations, we can summarize the following:

1.    Complex-conjugate poles of the closed-loop transfer function lead
to a step response that is underdamped. If all system poles are real, the
step response is overdamped. However, zeros of the closed-loop transfer
function may cause overshoot even if the system is overdamped.
2.    The response of a system is dominated by those poles closest to the
origin in the s-plane. Transients due to those poles, which are farther to
the left, decay faster.



3.    The farther to the left in the s-plane the system’s dominant poles
are, the faster the system will respond and the greater its bandwidth will
be.
4.    The farther to the left in the s-plane the system’s dominant poles
are, the more expensive it will be and the larger its internal signals will
be. While this can be justified analytically, it is obvious that striking a
nail harder with a hammer drives the nail in faster but requires more
energy per strike. Similarly, a sports car can accelerate faster, but it uses
more fuel than an average car.
5.    When a pole and zero of a system transfer function nearly cancel
each other, the portion of the system response associated with the pole
will have a small magnitude.

7-8-2   The Relative Damping Ratio
When a system is higher than the second order, we can no longer strictly

use the damping ratio ζ and the natural undamped frequency ωn, which are
defined for the prototype second-order systems. However, if the system
dynamics can be accurately represented by a pair of complex-conjugate
dominant poles, then we can still use ζ and ωn to indicate the dynamics of the
transient response, and the damping ratio in this case is referred to as the
relative damping ratio of the system. For example, consider the closed-loop
transfer function

The pole at s = –10 is 10 times the real part of the complex conjugate
poles, which are at –1 ± j1. We can refer to the relative damping ratio of the
system as 0.707.

7-8-3   The Proper Way of Neglecting the Insignificant Poles
with Consideration of the Steady-State Response

Thus far, we have provided guidelines for neglecting insignificant poles of
a transfer function from the standpoint of the transient response. However,
going through with the mechanics, the steady-state performance must also be



considered. Let us consider the transfer function in Eq. (7-153); the pole at
−10 can be neglected from the transient standpoint. To do this, we should
first express Eq. (7-153) as

Then we reason that |s/10| ≪ 1 when the absolute value of s is much
smaller than 10 because of the dominant nature of the complex poles. The
term s/10 can be neglected when compared with 1. Then, Eq. (7-154) is
approximated by

This way, the steady-state performance of the third-order system will not
be affected by the approximation. In other words, the third-order system
described by Eq. (7-153) and the second-order system approximated by Eq.
(7-155) all have a final value of unity when a unit-step input is applied. On
the other hand, if we simply throw away the term (s + 10) in Eq. (7-153), the
approximating second-order system will have a steady-state value of 5 when
a unit-step input is applied, which is incorrect.

7-9  CASE STUDY: TIME-DOMAIN ANALYSIS
OF A POSITION-CONTROL SYSTEM

Due to the requirements of improved response and reliability, the surfaces
of modern aircraft are controlled by electric actuators with electronic
controls. Consider the system in Fig. 7-51. The purpose of the system
considered here is to control the positions of the fins of an airplane. The so-
called fly-by-wire control system implies that the attitude of aircraft is no
longer controlled by mechanical linkages. Figure 7-51 illustrates the
controlled surfaces and the block diagram of one axis of such a position-
control system. Figure 7-52 shows the analytical block diagram of the system
using the dc-motor model given in Fig. 7-51. The system is simplified to the
extent that saturation of the amplifier gain and motor torque, gear backlash,



and shaft compliances have all been neglected. (When you get into the real
world, some of these nonlinear effects should be incorporated into the
mathematical model to come up with a better controller design that works in
reality.)

Figure 7-51   Block diagram of an attitude-control system of an aircraft.



Figure 7-52   Transfer-function block diagram of the system shown in Fig.
7-51.

The objective of the system is to have the output of the system, θy(t),
follow the input, θr(t). The following system parameters are given initially:



Because the motor shaft is coupled to the load through a gear train with a
gear ratio of N, θy = Nθm, the total inertia and viscous-friction coefficient seen
by the motor are

respectively. The forward-path transfer function of the unity-feedback
system is written from Fig. 7-52 by applying the SFG gain formula:

The system is of the third order, since the highest-order term in G(s) is s3.



The electrical time constant of the amplifier-motor system is

The mechanical time constant of the motor-load system is

Because the electrical time constant is much smaller than the mechanical
time constant, on account of the low inductance of the motor, we can perform
an initial approximation by neglecting the armature inductance La. The result
is a second-order approximation of the third-order system. Later we will
show that this is not the best way of approximating a high-order system by a
low-order one. The forward-path transfer function is now

Substituting the system parameters in the last equation, we get

The closed-loop transfer function of the unity-feedback control system is



Comparing Eq. (7-162) with the prototype second-order transfer function
of Eq. (7-18), we have

Thus, we see that the natural frequency ωn is proportional to the square root
of the amplifier gain K, whereas the damping ratio ζ is inversely proportional
to .

7-9-1   Unit-Step Transient Response
For the characteristic equation of Eq. (7-162), the roots are

For K = 7.24808, 14.5, and 181.2, the roots of the characteristic equation
are tabulated as follows:

These roots are marked as shown in Fig. 7-30. The trajectories of the two
characteristic equation roots when K varies continuously from –∞ to ∞ are
also shown in Fig. 7-30. These root trajectories are called the root loci of Eq.
(7-135) and are used extensively for the analysis and design of linear control
systems.

From Eqs. (7-163) and (7-164), we see that the two roots are real and
negative for values of K between 0 and 7.24808. This means that the system



is overdamped, and the step response will have no overshoot for this range of
K. For values of K greater than 7.24808, the natural undamped frequency will
increase with . When K is negative, one of the roots is positive, which
corresponds to a time response that increases monotonically with time, and
the system is unstable. The dynamic characteristics of the transient step
response as determined from the root loci of Fig. 7-53 are summarized as
follows:





Figure 7-53   Root loci of the characteristic equation in Eq. (7-162) as K
varies.

Using a test unit-step input, we can characterize the time-domain
performance of the system in terms of the maximum overshoot, rise time,
delay time, and settling time. Let the reference input be a unit-step function
θr(t) = us(t) rad; then Θr(s) = 1/s. The output of the system with zero initial
conditions, for the three values of K indicated, is

The three responses are plotted as shown in Fig. 7-54. Table 7-11 gives the
comparison of the characteristics of the three unit-step responses for the three
values of K used. When K = 181.17, ζ = 0.2, the system is lightly damped,



and the maximum overshoot is 52.7 percent, which is excessive. When the
value of K is set at 7.248, ζ is very close to 1.0, and the system is almost
critically damped. The unit-step response does not have any overshoot or
oscillation. When K is set at 14.5, the damping ratio is 0.707, and the
overshoot is 4.3 percent.

Figure 7-54   Unit-step responses of the attitude-control system in Fig. 7-
52; La = 0.

TABLE 7-11   Comparison of the Performance of the Second-Order
Position-Control System with the Gain K Values



Toolbox 7-9-1
Figure 7-54 responses may be obtained by the following sequence of

MATLAB functions:

7-9-2   The Steady-State Response
Because the forward-path transfer function in Eq. (7-161) has a simple

pole at s = 0, the system is of type 1. This means that the steady-state error of
the system is zero for all positive values of K when the input is a step
function. Substituting Eq. (7-161) into Eq. (7-115), the step-error constant is

Thus, the steady-state error of the system due to a step input, as given by
Eq. (7-116), is zero. The unit-step responses in Fig. 7-54 verify this result.



The zero-steady-state condition is achieved because only viscous friction is
considered in the simplified system model. In the practical case, Coulomb
friction is almost always present, so the steady-state positioning accuracy of
the system can never be perfect.

7-9-3   Time Response of a Third-Order System—Electrical
Time Constant Not Neglected

In the preceding section, we have shown that the prototype second-order
system, obtained by neglecting the armature inductance, is always stable for
all positive values of K. It is not difficult to prove that, in general, all second-
order systems with positive coefficients in the characteristic equations are
stable.

Let us investigate the performance of the position-control system with the
armature inductance La = 0.003 H. The forward-path transfer function of Eq.
(7-160) becomes

The closed-loop transfer function is

The system is now of the third order, and the characteristic equation is

By using the Routh-Hurwitz criterion to Eq. (7-171), we can see that at K =
273.57, the third-order system becomes marginally stable with two poles at
s1,2 = ±1097.3. This is a clear difference with the second-order system
approximation in Eq. (7-162), which is stable for all positive K values. As a
result, as discussed in detail in the next section, we do expect for some values



of K the negligible electrical time constant approximation not to be valid.

7-9-4   Unit-Step Transient Response
The roots of the characteristic equation are tabulated for the three values of

K used earlier for the second-order system:

Comparing these results with those of the approximating second-order
system, we see that, when K = 7.428, the second-order system is critically
damped, whereas the third-order system has three distinct real roots, and the
system is slightly overdamped. The root at s3 = -3021.8 corresponds to a time
constant of τ = 1/s3 = 0.33 ms, which is more than 13 times faster than the
next fastest time constant because of the pole at –230.33. Thus, the transient
response due to the pole at –3021.8 decays rapidly, and the pole can be
neglected from the transient standpoint. The output transient response is
dominated by the two roots at –156.21 and –230.33. This analysis is verified
by writing the transformed output response as

Taking the inverse Laplace transform of the last equation, we get

The last term in Eq. (7-173), which is due to the root at –3021.8, decays to
zero very rapidly. Furthermore, the magnitude of the term at t = 0 is very
small compared to the other two transient terms. This simply demonstrates
that, in general, the contribution of roots that lie relatively far to the left in the
s-plane to the transient response will be small. The roots that are closer to the
imaginary axis will dominate the transient response, and these are defined as
the dominant roots of the characteristic equation or of the system. In this



case, the second-order system in Eq. (7-162) is a good approximation of the
third-order system in Eq. (7-170).

When K = 14.5, the second-order system has a damping ratio of 0.707
because the real and imaginary parts of the two characteristic equation roots
are identical. For the third-order system, recall that the damping ratio is
strictly not defined. However, because the effect on transient of the root at –
3021.8 is negligible, the two roots that dominate the transient response
correspond to a damping ratio of 0.697. Thus, for K = 14.5, the second-order
approximation by setting La to zero is not a bad one. It should be noted,
however, that the fact that the second-order approximation is justified for K =
14.5 does not mean that the approximation is valid for all values of K.

When K = 181.2, the two complex-conjugate roots of the third-order
system again dominate the transient response, and the equivalent damping
ratio due to the two roots is only 0.0633, which is much smaller than the
value of 0.2 for the second-order system. Thus, we see that the justification
and accuracy of the second-order approximation diminish as the value of K is
increased.

Figure 7-55 illustrates the root loci of the third-order characteristic
equation of Eq. (7-171) as K varies. When K = 181.2, the real root at –3293.3
still contributes little to the transient response, but the two complex-conjugate
roots at –57.49 ± j906.6 are much closer to the jω-axis than those of the
second-order system for the same K, which are at –180.6 ± j884.75. This
explains why the third-order system is a great deal less stable than the
second-order system when K = 181.2.





Figure 7-55   Root loci of the third-order attitude-control system.

From the Routh-Hurwitz criterion, the marginal value of K for stability is
found to be 273.57. With this critical value of K, the closed-loop transfer
function becomes

The roots of the characteristic equation are at s = –3408.3, –j1097.3, and
j1097.3. These points are shown on the root loci in Fig. 7-55.

The unit-step response of the system when K = 273.57 is

The steady-state response is an undamped sinusoid with a frequency of
1097.3 rad/s, and the system is said to be marginally stable. When K is
greater than 273.57, the two complex-conjugate roots will have positive real
parts, the sinusoidal component of the time response will increase with time,
and the system is unstable. Thus, we see that the third-order system is
capable of being unstable, whereas the second-order system obtained with La

= 0 is stable for all finite positive values of K.
Figure 7-56 shows the unit-step responses of the third-order system for the

three values of K used. The responses for K = 7.248 and K = 14.5 are very
close to those of the second-order system with the same values of K that are
shown in Fig. 7-54. However, the two responses for K = 181.2 are quite
different.



Figure 7-56   Unit-step responses of the third-order attitude-control
system.

Toolbox 7-9-2
The root locus plot in Fig. 7-56 is obtained by the following

MATLAB commands:



Final Thoughts
When the motor inductance is restored, the system is of the third order, and

its apparent effect is addition of a pole to the forward-path transfer function.
For small K values, the additional pole of the third-order system is far to the
left of the s-plane, so its effect is small. However, as the value of K gets
larger, the new pole of G(s) essentially “pushes” and “bends” the complex-
conjugate portion of the root loci of the second-order system toward the
right-half s-plane. The third-order system can now become unstable for large
amplifier gain K values.

7-9-5   Steady-State Response
From Eq. (7-169), we see that, when the inductance is restored, the third-

order system is still of type 1. The value of Kp is still the same as that given in
Eq. (7-168). Thus, the inductance of the motor does not affect the steady-state
performance of the system, provided that the system is stable. This is
expected, since La affects only the rate of change and not the final value of the
motor current.

7-10  THE CONTROL LAB: INTRODUCTION
TO LEGO MINDSTORMS NXT MOTOR—
POSITION CONTROL

Continuing our work from Sec. 6-6, now that the motor parameters have
been measured, they can be further fine-tuned by comparing the simulated
position response to the actual position response of the motor. See App. D for
more details.



No-Load Position Response
Hence, using the simplified closed-loop transfer function, similar to

Example 7-5-1,

where Ks is the sensor gain, calibrated to Ks = 1 (i.e., 1 V = 1 rad). The
closed-loop position response of the motor with no load is simulated for a
step input of 160 degrees or 5.585 rad. The results are shown below in Fig. 7-
57 for multiple proportional control gains, KP.

Figure 7-57   Simulated no-load closed-loop position response results for
multiple KP gains.



Next, the closed-loop position response of the NXT motor is found. The
results are shown in Fig. 7-58 for multiple KP gains.

Figure 7-58   NXT motor no-load closed-loop position response results for
multiple KP gains.

Both the model response and actual motor response performance
specifications are measured and tabulated in Table 7-12. By analyzing the
results in Table 7-12, the system model matches the behavior of the actual
motor, and no further fine tuning is necessary.

TABLE 7-12   No-Load Closed-Loop Position Response Performance
Specifications Comparison



Robotic Arm Position Response
Next, the closed-loop position response of the NXT motor with the robotic

arm and payload is found. The results are shown in Fig. 7-59 for multiple KP
gains. Note because of the backlash in the gearbox, the final value is not
always 160 degrees.



Figure 7-59   Robotic arm with payload closed-loop position response
results for multiple KP gains.

The measured parameter values when the robotic arm is attached to the
motor are shown in Table 7-13. Notice that the total inertia and viscous
damping coefficient are higher than the no-load case found in Sec. 6-6. Next,
the closed-loop position response of the motor with the robotic arm and
payload is simulated for KP = 3. Note that the voltage is saturated to half its
maximum value (~±2.25 V) to slow down the robotic arm in all the following
tests. The simulation result is compared to the corresponding experimental
response, as shown in Fig. 7-59.

TABLE 7-13   Robotic Arm and Payload Experimental Parameters

Comparing the two responses, as shown in Fig. 7-60, it is clear that the
arm/payload model requires some fine tuning. In order to improve model
accuracy, the system overshoot, rise time and settling time must all decrease.
To achieve this task, let us examine the mathematical model of the system.
Note that the parameter identification discussed in this section assumes a
second-order model for the position response because the motor electric-time
constant τe = La/Ra = 0.002 sec is very small. Hence, similar to Example 7-5-1,
the simplified closed-loop transfer function is



Figure 7-60   Comparison of simulated and experimental robotic arm with
payload closed-loop position response for KP = 3.

where Ks is the sensor gain, calibrated to Ks = 1. Since Eq. (7-177) is a
second-order system, we have



Combining Eqs. (7-177) and (7-178), we get

The system poles are

Considering Eqs. (7-178) through (7-180), and using the parameter values
in Table 7-8 and KP = 3, we have

Further, upon examining Fig. 7-18, which describes the effects of moving
a second-order system poles (in the s-plane) on its time response
performance, moving the two poles in Eq. (7-180) horizontally to the left
should increase ζ while reducing system overshoot, rise time, and settling
time. To do so the first term in Eq. (7-180) should increase while the second
term should be held a constant. Having these two conditions met
simultaneously may be a tedious task. So without bothering with rigorous
mathematical expressions, we resort to trial and error and reduce the value of
Jtotal while checking the overall response. Alternatively, you can vary B or both
Jtotal and B, simultaneously. Variation of Jtotal seems to be the best choice for
fine tuning, as our confidence levels for Jtotal was not high, see discussions in
Secs. 6-6-3 and 6-6-4.

The best response for KP = 3 may be achieved for Jtotal = 0.00273 kg ⋅ m2, as
shown in Fig. 7-61. For this parameter choice from Eqs. (7-181) to (7-183),
we have



Figure 7-61   Simulated robotic arm with payload closed-loop position
response results for multiple KP gains.

Where the poles in Eq. (7-186), in comparison to Eq. (7-183) have moved
to the left while both z and ωn have increased. From Eq. (7-42), the PO is
expected to decrease. Also from Eqs. (7-46) and (7-50), the rise time and
settling times are also expected to decrease. For the second-order model
using performance specification formulas, we get



The performance specifications of the system, shown in Table 7-14, for KP

= 3 are in line with these expectations. The minor discrepancies between the
calculated values, Eqs. (7-188) and (7-189), and the simulation measurements
in Table 7-14 are obviously attributed to the differences between the second-
and third-order models—the simulation software used here (Simulink; see
App. D) considers the third-order model. Note also since our system is
nonlinear in reality, we should not expect the simulation response to closely
match that of the experiment for other controller gain values. From Table 7-
14, we see this is in fact the case.

TABLE 7-14 Robotic Arm Closed-Loop Position Response
Performance Specification Comparison

Do not forget that the PO for the experimental system is measured from the



response final value, using Eq. (7-41). For example for KP = 2, the NXT
motor (with arm and payload) response final and peak values are at 164 and
167 degrees, respectively. So

At this point you may wish to further fine tune system parameters, or
decide that the model is good enough. For all practical purposes, the
parameter values shown in Table 7-15 appear reasonable, and we should stop
the fine tuning process.

TABLE 7-15   Fine-Tuned Robotic Arm and Payload Experimental
Parameters

In the end, now that we have a good enough model of the system, we can
design different type of controllers for this system. In App. D, we will
provide labs that allow you to further compare the real-life motor
characteristics with simulation using MATLAB and Simulink software.

7-11  SUMMARY
This chapter was devoted to the time-domain analysis of linear continuous-



data control systems. The time response of control systems is divided into the
transient and the steady-state responses. The transient response is
characterized by such criteria as the maximum overshoot, rise time, delay
time, and settling time, and such parameters as damping ratio, natural
undamped frequency, and time constant. The analytical expressions of these
parameters can all be related to the system parameters simply if the transfer
function is of the second-order prototype. For other type second-order
systems or for higher-order systems, the analytical relationships between the
transient parameters and the system constants are more difficult to determine.
Computer simulations are recommended for these systems. Examples of
speed response and position control of a motor were used to better
demonstrate the topic.

The steady-state error is a measure of the accuracy of the system as time
approaches infinity. When the system has unity feedback for the step, ramp,
and parabolic inputs, the steady-state error is characterized by the error
constants Kp, Kv, and Ka, respectively, as well as the system type. When
applying the steady-state error analysis, the final-value theorem of the
Laplace transform is the basis; it should be ascertained that the closed-loop
system is stable or the error analysis will be invalid. The error constants are
not defined for systems with nonunity feedback. For nonunity-feedback
systems, a method of determining the steady-state error was introduced by
using the closed-loop transfer function. Examples of speed control of a motor
were used to better demonstrate the topic.

Time-domain analysis of a position-control case system was conducted.
The transient and steady-state analyses were carried out first by
approximating the system as a second-order system. The effect of varying the
amplifier gain K on the transient and steady-state performance was
demonstrated. The concept of the root-locus technique was introduced, and
the system was then analyzed as a third-order system. It was shown that the
second-order approximation was accurate only for low values of K.

The effects of adding poles and zeros to the forward-path and closed-loop
transfer functions were demonstrated. The dominant poles of transfer
functions were also discussed. This established the significance of the
location of the poles of the transfer function in the s-plane and under what
conditions the insignificant poles (and zeros) could be neglected with regard
to the transient response.

Later in the chapter, simple controllers—namely the PD, PI, and PID—



were introduced. Designs were carried out in the time-domain (and s-
domain). The time-domain design may be characterized by specifications
such as the relative damping ratio, maximum overshoot, rise time, delay time,
settling time, or simply the location of the characteristic-equation roots,
keeping in mind that the zeros of the system transfer function also affect the
transient response. The performance is generally measured by the step
response and the steady-state error.

REFERENCES
1.   J. C. Willems and S. K. Mitter, “Controllability, Observability, Pole

Allocation, and State Reconstruction,” IEEE Trans. Automatic
Control, Vol. AC-16 pp. 582–595, Dec. 1971.

2.   H. W. Smith and E. J. Davison, “Design of Industrial Regulators,” Proc.
IEE (London), Vol. 119, PP. 1210–1216, AUG. 1972.

3.   F. N. Bailey and S. Meshkat, “Root Locus Design of a Robust Speed
Control,” Proc. Incremental Motion Control Symposium, pp. 49–54,
June 1983.

4.   M. Vidyasagar, “On Undershoot and Nonminimum Phase Zeros,” IEEE
Trans. Automatic Control, Vol. AC-31, p. 440, May 1986.

5.   T. Norimatsu and M. Ito, “On the Zero Non-Regular Control System,” J.
Inst. Elec. Eng. Japan, Vol. 81, pp. 567–575, 1961.

6.   K. Ogata, Modern Control Engineering, 4th Ed., Prentice Hall, NJ, 2002.
7.   G. F. Franklin and J. D. Powell, Feedback Control of Dynamic Systems,

5th Ed., Prentice-Hall, NJ, 2006.
8.   J. J. Distefano, III, A. R. Stubberud, and I. J. Williams, Schaum’s Outline

of Theory and Problems of Feedback and Control Systems, 2nd Ed.
New York; McGraw-Hill, 1990.

9.   F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th Ed. 2009.
10.   Retrieved February 24, 2012, from

http://www.philohome.com/nxtmotor/nxtmotor.htm.
11.   LEGO Education. (n.d.) LEGO® MINDSTORMS Education NXT User

Guide. Retrieved March 07, 2012, from
http://education.lego.com/downloads/?q={02FB6AC1-07B0-4E1A-
862D-7AE2DBC88F9E}.

http://www.philohome.com/nxtmotor/nxtmotor.htm
http://education.lego.com/downloads/


12.   Paul Oh. (n.d.) NXT Motor Characteristics: Part 2—Electrical
Connections. Retrieved March 07, 2012, from
http://www.pages.drexel.edu/~pyo22/mem380Mechatronics2Spring2010-
2011/week09/lab/mechatronics2-LabNxtMotorCharacteristics-
Part02.pdf

13.   Mathworks In. (n.d.) Simulink Getting Started Guide. Retrieved April 1,
2012, from
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_gs.pdf

PROBLEMS
In addition to using the conventional approaches, use MATLAB to solve

the problem in this chapter.

7-1.    A pair of complex-conjugate poles in the s-plane is required to meet
the various specifications that follow. for each specification, sketch the region
in the s-plane in which the poles should be located.

7-2.    Determine the type of the following unity-feedback systems for
which the forward-path transfer functions are given.

(a)   

(b)   

(c)   

(d)   

http://www.pages.drexel.edu/~pyo22/mem380Mechatronics2Spring2010-2011/week09/lab/mechatronics2-LabNxtMotorCharacteristics-Part02.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/simulink/sl_gs.pdf


(e)   

(f)   

(g)   

(h)   

7-3.    Determine the step, ramp, and parabolic error constants of the
following unity-feedback control systems. The forward-path transfer
functions are given.

(a)   

(b)   

(c)   

(d)   

(e)   

(f)   

7-4.    For the unity-feedback control systems described in Prob. 7-2,
determine the steady-state error for a unit-step input, a unit-ramp input, and a
parabolic input, (t2/2)us(t). Check the stability of the system before applying
the final-value theorem.



7-5.    The following transfer functions are given for a single-loop
nonunity-feedback control system. Find the steady-state errors due to a unit-
step input, a unit-ramp input, and a parabolic input (t2/2)us(t).

(a)   

(b)   

(c)   

(d)   

7-6.    Find the steady-state errors of the following single-loop control
systems for a unit-step input, a unit-ramp input, and a parabolic input,
(t2/2)us(t). For systems that include a parameter K, find its value so that the
answers are valid.

(a)   

(b)   

(c)   

(d)   

7-7.    The output of the system shown in Fig. 7P-8 has a transfer function
Y/X. Find the poles and zeros of the closed-loop system and the system type.

7-8.    Find the position, velocity, and acceleration error constants for the



system given in Fig. 7P-8.

Figure 7P-8

7-9.    Find the steady-state error for Prob. 7-8 for (a) a unit-step input, (b)
a unit-ramp input, and (c) a unit-parabolic input.

7-10.    Repeat Prob. 7-8 for the system given in Fig. 7P-10.

Figure 7P-10

7-11.    Find the steady-state error of the system given in Prob. 7-10 when
the input is

7-12.    Find the rise time of the following first-order system:

7-13.    The block diagram of a control system is shown in Fig. 7P-13. Find
the step-, ramp-, and parabolic-error constants. The error signal is defined to
be e(t). Find the steady-state errors in terms of K and Kt when the following
inputs are applied. Assume that the system is stable.

(a)   r(t) = us(t)
(b)   r(t) = tus(t)



(c)   r(t) = (t2/2)us(t)

Figure 7P-13

7-14.    Repeat Prob. 7-13 when the transfer function of the process is,
instead,

What constraints must be made, if any, on the values of K and Kt so that
the answers are valid? Determine the minimum steady-state error that can be
achieved with a unit-ramp input by varying the values of K and Kt.

7-15.    For the position-control system shown in Fig. 3P-7, determine the
following.

(a)  Find the steady-state value of the error signal θe(t) in terms of the
system parameters when the input is a unit-step function.

(b)  Repeat part (a) when the input is a unit-ramp function. Assume that the
system is stable.

7-16.    The block diagram of a feedback control system is shown in Fig.
7P-16. The error signal is defined to be e(t).

(a)  Find the steady-state error of the system in terms of K and Kt when the
input is a unit-ramp function. Give the constraints on the values of K and Kt

so that the answer is valid. Let n(t) = 0 for this part.
(b)  Find the steady-state value of y(t) when n(t) is a unit-step function. Let

r(t) = 0. Assume that the system is stable.



Figure 7P-16

7-17.    The block diagram of a linear control system is shown in Fig. 7P-
17, where r(t) is the reference input and n(t) is the disturbance.

(a)  Find the steady-state value of e(t) when n(t) = 0 and r(t) = tus(t). Find
the conditions on the values of α and K so that the solution is valid.

(b)  Find the steady-state value of y(t) when r(t) = 0 and n(t) = us(t).

Figure 7P-17

7-18.    The unit-step response of a linear control system is shown in Fig.
7P-18. Find the transfer function of a second-order prototype system to
model the system.



Figure 7P-18

7-19.    For the control system shown in Fig. 7P-13, find the values of K
and Kt so that the maximum overshoot of the output is approximately 4.3
percent and the rise time tr is approximately 0.2 s. Use Eq. (7-98) for the rise-
time relationship. Simulate the system with any time-response simulation
program to check the accuracy of your solutions.

7-20.    Repeat Prob. 7-19 with a maximum overshoot of 10 percent and a
rise time of 0.1 s.

7-21.    Repeat Prob. 7-19 with a maximum overshoot of 20 percent and a
rise time of 0.05 s.

7-22.    For the control system shown in Fig. 7P-13, find the values of K
and Kt so that the maximum overshoot of the output is approximately 4.3
percent and the delay time td is approximately 0.1 s. Use Eq. (7-96) for the
delay-time relationship. Simulate the system with a computer program to
check the accuracy of your solutions.

7-23.    Repeat Prob. 7-22 with a maximum overshoot of 10 percent and a
delay time of 0.05 s.

7-24.    Repeat Prob. 7-22 with a maximum overshoot of 20 percent and a
delay time of 0.01 s.

7-25.    For the control system shown in Fig. 7P-13, find the values of K
and Kt so that the damping ratio of the system is 0.6 and the settling time of
the unit-step response is 0.1 s. Use Eq. (7-102) for the settling time
relationship. Simulate the system with a computer program to check the
accuracy of your results.



7-26.    (a) Repeat Prob. 7-25 with a maximum overshoot of 10 percent and
a settling time of 0.05 s. (b) Repeat Prob. 7-25 with a maximum overshoot of
20 percent and a settling time of 0.01 s.

7-27.    Repeat Prob. 7-25 with a damping ratio of 0.707 and a settling time
of 0.1 s. Use Eq. (7-103) for the settling time relationship.

7-28.    The forward-path transfer function of a control system with unity
feedback is

where a and K are real constants.
(a)  Find the values of a and K so that the relative damping ratio of the

complex roots of the characteristic equation is 0.5 and the rise time of the
unit-step response is approximately 1 s. Use Eq. (7-98) as an approximation
of the rise time. With the values of a and K found, determine the actual rise
time using computer simulation.

(b)  With the values of a and K found in part (a), find the steady-state
errors of the system when the reference input is (i) a unit-step function and
(ii) a unit-ramp function.

7-29.    The block diagram of a linear control system is shown in Fig. 7P-
29.

(a)  By means of trial and error, find the value of K so that the
characteristic equation has two equal real roots and the system is stable. You
may use any root-finding computer program to solve this problem.

(b)  Find the unit-step response of the system when K has the value found
in part (a). Use any computer simulation program for this. Set all the initial
conditions to zero.

(c)  Repeat part (b) when K = –1. What is peculiar about the step response
for small t, and what may have caused it?



Figure 7P-29

7-30.    A controlled process is represented by the following dynamic
equations:

The control is obtained through state feedback with

where k1 and k2 are real constants, and r(t) is the reference input.

(a)  Find the locus in the k1-versus-k2 plane (k1 = vertical axis) on which the
overall system has a natural undamped frequency of 10 rad/s.

(b)  Find the locus in the k1-versus-k2 plane on which the overall system has
a damping ratio of 0.707.

(c)  Find the values of k1 and k2 such that ζ = 0.707 and ωn = 10 rad/sec.
(d)  Let the error signal be defined as e(t) = r(t) – y(t). Find the steady-state

error when r(t) = us(t) and k1 and k2 are at the values found in part (c).
(e)  Find the locus in the k1-versus-k2 plane on which the steady-state error

due to a unit-step input is zero.

7-31.    The block diagram of a linear control system is shown in Fig. 7P-
31. Construct a parameter plane of Kp versus Kd (Kp is the vertical axis), and
show the following trajectories or regions in the plane.

(a)  Unstable and stable regions
(b)  Trajectories on which the damping is critical (ζ = 1)
(c)  Region in which the system is overdamped (ζ = 1)
(d)  Region in which the system is underdamped (ζ = 1)
(e)  Trajectory on which the parabolic-error constant Ka is 1000 s-2



(f)  Trajectory on which the natural undamped frequency ωn is 50 rad/s
(g)  Trajectory on which the system is either uncontrollable or

unobservable (hint: look for pole-zero cancellation)

Figure 7P-31

7-32.    The block diagram of a linear control system is shown in Fig. 7P-
32. The fixed parameters of the system are given as T = 0.1, J = 0.01, and Ki

= 10.
(a)  When r(t) = tus(t) and Td(t) = 0, determine how the values of K and Kt

affect the steady-state value of e(t). Find the restrictions on K and Kt so that
the system is stable.

(b)  Let r(t) = 0. Determine how the values of K and Kt affect the steady-
state value of y(t) when the disturbance input Td(t) = us(t).

(c)  Let Kt = 0.01 and r(t) = 0. Find the minimum steady-state value of y(t)
that can be obtained by varying K, when Td(t) is a unit-step function. Find the
value of this K. From the transient standpoint, would you operate the system
at this value of K? Explain.

(d)  Assume that it is desired to operate the system with the value of K as
selected in part (c). Find the value of Kt so that the complex roots of the
characteristic equation will have a real part of −2.5. Find all three roots of the
characteristic equation.



Figure 7P-32

7-33.    Consider a second-order unity-feedback system with ζ = 0.6 and ωn

= 5 rad/s. Calculate the rise time, peak time, maximum overshoot, and
settling time when a unit-step input is applied to the system.

7-34.    Figure 7P-34 shows the block diagram of a servomotor. Assume J
= 1 kg-m2 and B = 1 N ⋅ m/rad/s. If the maximum overshoot of the unit-step
input and the peak time are 0.2 and 0.1 s, respectively,

(a)  Find its damping ratio and natural frequency.
(b)  Find the gain K and velocity feedback Kf . Also, calculate the rise time

and settling time.

Figure 7P-34

7-35.    Find the unit-step response of the following systems assuming zero
initial conditions:



(a)   

(b)   

(c)   

7-36.    Use MATLAB to solve Prob. 7-35.
7-37.    Find the impulse response of the given systems in Prob. 7-35.
7-38.    Use MATLAB to solve Prob. 7-37.
7-39.    Figure 7P-39 shows a mechanical system.
(a)  Find the differential equation of the system.
(b)  Use MATLAB to find the unit-step input response of the system.



Figure 7P-39

7-40.    The dc-motor control system for controlling a printwheel described
in Prob. 4-49 has the forward-path transfer function

where Ki = 9 oz-in./A, Kb = 0.636 V/rad/s, Ra = 5 Ω, La = 1 mH, Ks = 1
V/rad, n = 1/10, Jm = JL = 0.001 oz·in·s2, and Bm ≅ 0. The characteristic
equation of the closed-loop system is

Δ(s) + nKsKiKLK = 0



(a)  Let KL = 10,000 oz·in·rad. Write the forward-path transfer function
G(s) and find the poles of G(s). Find the critical value of K for the closed-
loop system to be stable. Find the roots of the characteristic equation of the
closed-loop system when K is at marginal stability.

(b)  Repeat part (a) when KL = 1000 oz·in/rad.
(c)  Repeat part (a) when KL = ∞; that is, the motor shaft is rigid.
(d)  Compare the results of parts (a), (b), and (c), and comment on the

effects of the values of KL on the poles of G(s) and the roots of the
characteristic equation.

7-41.    The block diagram of the guided-missile attitude-control system
described in Prob. 4-20 is shown in Fig. 7P-41. The command input is r(t),
and d(t) represents disturbance input. The objective of this problem is to
study the effect of the controller Gc(s) on the steady state and transient
responses of the system.

(a)  Let Gc(s) = 1. Find the steady-state error of the system when r(t) is a
unit-step function. Set d(t) = 0.

(b)  Let Gc(s) = (s + α)/s. Find the steady-state error when r(t) is a unit-step
function.

(c)  Obtain the unit-step response of the system for 0 ≤ t ≤ 0.5 s with Gc(s)
as given in part (b) and a = 5.50, and 500. Assume zero initial conditions.
Record the maximum overshoot of y(t) for each case. Use any available
computer simulation program. Comment on the effect of varying the value of
α of the controller on the transient response.

(d)  Set r(t) = 0 and Gc(s) = 1. Find the steady-state value of y(t) when d(t)
= us(t).

(e)  Let Gc(s) = (s + α)/s. Find the steady-state value of y(t) when d(t) =
us(t).

(f)  Obtain the output response for 0 ≤ t ≤ 0.5 s, with Gc(s) as given in part
(e) when r(t) = 0 and d(t) = us(t); α = 5.50, and 500. Use zero initial
conditions.

(g)  Comment on the effect of varying the value of α of the controller on
the transient response of y(t) and d(t).



Figure 7P-41

7-42.    The block diagram shown in Fig. 7P-42 represents the liquid-level
control system described in Prob. 7-19. The liquid level is represented by
h(t), and N denotes the number of inlets.

(a)  Because one of the poles of the open-loop transfer function is
relatively far to the left on the real axis of the s-plane at s = –10, it is
suggested that this pole can be neglected. Approximate the system by a
second-order system be neglecting the pole of G(s) at s = –10. The
approximation should be valid for both the transient and the steady-state
responses. Apply the formulas for the maximum overshoot and the peak time
tmax to the second-order model for N = 1 and N = 10.

(b)  Obtain the unit-step response (with zero initial conditions) of the
original third-order system with N = 1 and then with N = 10. Compare the
responses of the original system with those of the second-order
approximating system. Comment on the accuracy of the approximation as a
function of N.

Figure 7P-42



7-43.    The forward-path transfer function of a unity-feedback control
system is

Compute and plot the unit-step responses of the closed-loop system for Tz

= 0, 0.5, 1.0, 10.0, and 50.0. Assume zero initial conditions. Use any
computer simulation program that is available. Comment on the effects of the
various values of Tz on the step response.

7-44.    The forward-path transfer function of a unity-feedback control
system is

Compute and plot the unit-step responses of the closed-loop system for Tp

= 0, 0.5, and 0.707. Assume zero initial conditions. Use any computer
simulation program. Find the critical value of Tp so that the closed-loop
system is marginally stable. Comment on the effects of the pole at s = –1/Tp in
G(s).

7-45.    Compare and plot the unit-step responses of the unity-feedback
closed-loop systems with the forward-path transfer functions given. Assume
zero initial conditions. Use the timetool program.

(a)   

(b)   

(c)   



(d)   

(e)   
(i)    For K = 5
(ii)   For K = 10
(iii)  For K = 30

(f)   
(i)    For K = 5
(ii)   For K = 10
(iii)  For K = 30

7-46.    Figure 7P-46 shows the block diagram of a servomotor with
tachometer feedback.

(a)  Find the error signal E(s) in the presence of the reference input X(s)
and disturbance input D(s).

(b)  Calculate the steady-state error of the system when X(s) is a unit ramp
and D(s) is a unit-step.

(c)  Use MATLAB to plot the response of the system for part (b).
(d)  Use MATLAB to plot the response of the system when X(s) is a unit-

step input and D(s) is a unit impulse input.



Figure 7P-46

7-47.    The feedforward transfer function of a stable unity-feedback
system is G(s). If the closed-loop transfer function can be rewritten as

(a)  Find the  when e(t) is the error in the unit-step response.

(b)  Calculate 

7-48.     If the maximum overshoot and 1-percent settling time of the unit-
step response of the closed-loop system shown in Fig. 7P-48 are no more that
25 percent and 0.1 s, find the gain K and pole location P of the compensator.
Also, Use MATLAB to plot the unit-step input response of the system and
verify your controller design.



Figure 7P-48

7-49.    If a given second-order system is required to have a peak time less
than t, find the region in the s-plane corresponding to the poles that meet this
specification.

7-50.    A unity-feedback control system shown in Fig. 7P-50a is designed
so that its closed-loop poles lie within the region shown in Fig. 7P-50b.

(a)  Find the values for ωn and ζ.
(b)  If Kp = 2 and P = 2, then find the values for K and KI.
(c)  Show that, regardless of values Kp and P, the controller can be

designed to place the poles anywhere in the left side of the s-plane.



Figure 7P-50

7-51.    The motion equation of a dc motor is given by

Assuming Jm = 0.02 kg ⋅ m2, B = 0.002 N ⋅ m ⋅ s, K1 = 0.04 N ⋅ m/A, K2 =
0.04 V ⋅ s, and R = 20 Ω.

(a)  Find the transfer function between the applied voltage and the motor
speed.

(b)  Calculate the steady-state speed of the motor after applying a voltage
of 10 V.

(c)  Determine the transfer function between the applied voltage and the
shaft angle θm.

(d)  Including a closed-loop feedback to part (c) such that v = K(θp – θm),
where K is the feedback gain, obtain the transfer function between θp and θm.

(e)  If the maximum overshoot is less than 25 percent, determine K.



(f)  If the rise time is less than 3 s, determine K.
(g)  Use MATLAB to plot the step response of the position servo system

for K = 0.5, 1.0, and 2.0. Find the rise time and overshoot.
7-52.    In the unity-feedback closed-loop system in a configuration similar

to that in Fig. 7P-48, the plant transfer function is 
and the controller transfer function is

Design the controller parameters so that the closed-loop system has a 10
percent overshoot far a unit step input and a 1-percent settling time of 1.5 s.

7-53.    An autopilot is designed to maintain the pitch attitude α of an
airplane. The transfer function between pitch angle α and elevator angle β are
given by

The autopilot pitch controller uses the pitch error e to adjust the elevator as

Use MATLAB to find K with an overshoot of less than 10 percent and a
rise time faster than 0.5 s for a unit-step input. Explain controller design
difficulties for complex systems.

7-54.    The block diagram of a control system with a series controller is
shown in Fig. 7P-54. Find the transfer function of the controller Gc(s) so that
the following specifications are satisfied:

(a)  The ramp-error constant Kv is 5.
(b)  The closed-loop transfer function is of the form

where K and a are real constants. Use MATLAB to find the values of K
and a.



The design strategy is to place the closed-loop poles at –10 + j10 and –10 –
j10, and then adjust the values of K and a to satisfy the steady-state
requirement. The value of a is large so that it will not affect the transient
response appreciably. Find the maximum overshoot of the designed system.

Figure 7P-54

7-55.    Repeat Prob. 7-54 if the ramp-error constant is to be 9. What is the
maximum value of Kv that can be realized? Comment on the difficulties that
may arise in attempting to realize a very large Kv.

7-56.    A control system with a PD controller is shown in Fig. 7P-56. Use
MATLAB to

(a)   Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 0:5.

(b)   Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 0.707.

(c)   Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 1.0.

Figure 7P-56

7-57.    For the control system shown in Fig. 7P-56, set the value of KP so
that the ramp-error constant is 1000. Use MATLAB to



(a)  Vary the value of KD from 0.2 to 1.0 in increments of 0.2 and
determine the values of rise time and maximum overshoot of the system.

(b)  Vary the value of KD from 0.2 to 1.0 in increments of 0.2 and find the
value of KD so that the maximum overshoot is minimum.

7-58.    Consider the second-order model of the aircraft attitude control
system shown in Fig. 7-29. The transfer function of the process is 

. Use MATLAB to design a series PD controller with the
transfer function Gc(s) = KD + Kps so that the following performance
specifications are satisfied:

Steady-state error due to a unit-ramp input ≤ 0.001

Maximum overshoot ≤ 5%

Rise time tr ≤ 0.005 sec

Setting time ts ≤ 0.005 sec
7-59.    Figure 7P-59 shows the block diagram of the liquid-level control

system described in Prob. 7-42. The number of inlets is denoted by N. Set N
= 20. Use MATLAB to design the PD controller so that with a unit-step input
the tank is filled to within 5 percent of the reference level in less than 3 s
without overshoot.

Figure 7P-59

7-60.    For the liquid-level control system described in Prob. 7-59, set KP

so that the ramp-error constant is 1. Use MATLAB to vary KD from 0 to 0.5
and determine the values of rise time and maximum overshoot of the system.

7-61.    A control system with a type 0 process Gp(s) and a PI controller is
shown in Fig. 7P-61. Use MATLAB to



(a)  Find the value of KI so that the ramp-error constant Kv is 10.
(b)  Find the value of KP so that the magnitude of the imaginary parts of the

complex roots of the characteristic equation of the system is 15 rad/s. Find
the roots of the characteristic equation.

(c)  Sketch the root contours of the characteristic equation with the value of
KI as determined in part (a) and for 0 ≤ Kp < ∞.

Figure 7P-61

7-62.    For the control system described in Prob. 7-61, set KI so that the
ramp-error constant is 10. Use MATLAB to vary KP and determine the values
of rise time and maximum overshoot of the system.

7-63.    For the control system shown in Fig. 7P-61, use MATLAB to
perform the following:

(a)  Find the value of KI so that the ramp-error constant Kv is 100.
(b)  With the value of KI found in part (a), find the critical value of KP so

that the system is stable. Sketch the root contours of the characteristic
equation for 0 ≤ Kp < ∞.

(c)  Show that the maximum overshoot is high for both large and small
values of KP. Use the value of KI found in part (a). Find the value of KP when
the maximum overshoot is a minimum. What is the value of this maximum
overshoot?

7-64.    Repeat Prob. 7-63 for Kp = 10.

7-65.    A control system with a type 0 process and a PID controller is
shown in Fig. 7P-65. Use MATLAB to design the controller parameters so
that the following specifications are satisfied:

Ramp-error constant Kv = 100



Rise time tr ≤ 0.01 sec

Maximum overshoot ≤ 2%

Plot the unit-step response of the designed system.

Figure 7P-65

7-66.    Consider the quarter-car model of vehicle suspension systems in
Prob. 2-8, for the following system parameters:

the equation of motion of the system is defined as follows:

which can be simplified by substituting the relation z(t) = x(t) − y(t) and
nondimensionalizing the coefficients to the form

The Laplace transform between the base acceleration and displacement is
given by



(a)  It is desired to design a proportional controller. Use MATLAB to
design the controller parameters where the rise time is no more than 0.05 s
and the overshoot is no more than 3 percent. Plot the unit-step response of the
designed system.

(b)  It is desired to design a PD controller. Use MATLAB to design the
controller parameters where the rise time is no more than 0.05 s and the
overshoot is no more than 3 percent. Plot the unit-step response of the
designed system.

(c)  It is desired to design a PI controller. Use MATLAB to design the
controller parameters where the rise time is no more than 0.05 s and the
overshoot is no more than 3 percent. Plot the unit-step response of the
designed system.

(d)  It is desired to design a PID controller. Use MATLAB to design the
controller parameters where the rise time is no more than 0.05 s and the
overshoot is no more than 3 percent. Plot the unit-step response of the
designed system.

7-67.    Consider the spring-mass system shown in Fig. 7P-67.
Its transfer function is given by .
Repeat Prob. 7-66, where M = 1 kg, B = 10 N ⋅ s/m, K = 20 N/m.

Figure 7P-67

7-68.    Consider the vehicle suspension system hitting a bump described in
Prob. 4-3. Use MATLAB to design a proportional controller where the 1-
percent settling time is less than 0.1 s and the overshoot is no more than 2-



percent. Assume m = 25 kg, J = 5 kg·m2, K = 100 N/m, and r = 0.35 m. Plot
the impulse response of the system.

7-69.    Consider the train system described in Prob. 4-6. Use MATLAB to
design a proportional controller where the peak time is less than 0.05 s and
the overshoot is no more than 4 percent. Assume M = 1 kg, m = 0.5 kg, k = 1
N/m, μ = 0.002 s/m, and g = 9.8 m/s2.

7-70.    Consider the inverted pendulum described in Prob. 4-9, where M =
1 kg, m = 0.2 kg, μ = 0.1 N/m/s (friction of the cart), I = 0.006 kg·m2, g = 9.8
m/s2, and 1 = 0.3 m.

Use MATLAB to design a PD controller where the rise time is less than
0.2 s and the overshoot is no more than 10 percent.



CHAPTER 8



State-Space Analysis and Controller
Design

8-1  STATE-VARIABLE ANALYSIS
In Chaps. 2 and 3, we presented the concept and definition of state

variables and state equations for linear continuous-data dynamic systems. In
Chap. 4, we used block diagrams and signal-flow graphs (SFGs) to obtain the
transfer function of linear systems. We further extended the SFG concept to
the modeling of the state equations, and the result was the state diagram. In
contrast to the transfer-function approach to the analysis and design of linear
control systems, the state-variable method is regarded as modern, and it is the
basis for optimal control design. The basic characteristic of the state-variable
formulation is that linear and nonlinear systems, time-invariant and time-
varying systems, and single-variable and multivariable systems can all be
modeled in a unified manner. Transfer functions, on the other hand, are
defined only for linear time-invariant systems.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Gain a working knowledge of the state-space approach.
2.  Use transformations that are used to facilitate the analysis and design
of linear control systems in the state-variable domain.
3.  Establish relationships between the conventional transfer functions
and the state variables.
4.  Utilize controllability and observability of linear systems and their
applications.
5.  Gain a practical sense of real life control problems, through the use



of LEGO MINDSTORMS, and MATLAB tools.

The objective of this chapter is to introduce the basic methods of state
variables and state equations so that the reader can gain a working knowledge
of the subject for further studies when the state-space approach is used for
modern and optimal control design. Specifically, the closed-form solutions of
linear time-invariant state equations are presented. Various transformations
that may be used to facilitate the analysis and design of linear control systems
in the state-variable domain are introduced. The relationship between the
conventional transfer-function approach and the state-variable approach is
established so that the analyst will be able to investigate a system problem
with various alternative methods. The controllability and observability of
linear systems are defined and their applications investigated. In the end, we
provide state-space controller design problems, followed by a case study
involving the LEGO MINDSTORMS NXT set that was earlier studied in
Chaps. 2 and 7. At the end of the chapter, we also present our MATLAB
Automatic Control Systems (ACSYS) State Tool that can help you solve
most state-space problems.

8-2  BLOCK DIAGRAMS, TRANSFER
FUNCTIONS, AND STATE DIAGRAMS

8-2-1  Transfer Functions (Multivariable Systems)
The definition of a transfer function is easily extended to a system with

multiple inputs and outputs. A system of this type is often referred to as a
multivariable system. As discussed in Chap. 3, in a multivariable system, a
differential equation of the form of Eq. (8-1) may be used to describe the
relationship between a pair of input and output variables, when all other
inputs are set to zero.



The coefficients a0, a1, …, an-1 and b0, b1, …, bm are real constants. Because
the principle of superposition is valid for linear systems, the total effect on
any output due to all the inputs acting simultaneously is obtained by adding
up the outputs due to each input acting alone.

In general, if a linear system has p inputs and q outputs, the transfer
function between the jth input and the ith output is defined as

with . Note that Eq. (8-2) is defined with
only the jth input in effect, whereas the other inputs are set to zero. When all
the p inputs are in action, the ith output transform is written

It is convenient to express Eq. (8-3) in matrix-vector form:

where

is the q × 1 transformed output vector,



is the p × 1 transformed input vector, and

is the q × p transfer-function matrix.

8-2-2  Block Diagrams and Transfer Functions of
Multivariable Systems

In this section, we illustrate the block diagram and matrix representations
of multivariable systems. Two block-diagram representations of a
multivariable system with p inputs and q outputs are shown in Fig. 8-1a and
b. In Fig. 8-1a, the individual input and output signals are designated,
whereas in the block diagram of Fig. 8-1b, the multiplicity of the inputs and
outputs is denoted by vectors. The case of Fig. 8-1b is preferable in practice
because of its simplicity.



Figure 8-1   Block diagram representations of a multivariable system.

Figure 8-2 shows the block diagram of a multivariable feedback control
system. The transfer function relationships of the system are expressed in
vector-matrix form (see Sec. 8-3 for more detail):

Figure 8-2   Block diagram of a multivariable feedback control system.



where Y(s) is the q × 1 output vector; U(s), R(s), and B(s) are all p × 1
vectors; and G(s) and H(s) are q × p and p × q transfer-function matrices,
respectively. Substituting Eq. (8-9) into Eq. (8-8) and then from Eq. (8-8) to
Eq. (8-10), we get

Solving for Y(s) from Eq. (8-11) gives

provided that I+G(s)H(s) is nonsingular. The closed-loop transfer matrix is
defined as

Then Eq. (8-12) is written

EXAMPLE 8-2-1  Consider that the forward-path transfer function matrix
and the feedback-path transfer function matrix of the
system shown in Fig. 8-2 are

respectively. The closed-loop transfer function matrix
of the system is given by Eq. (8-14) and is evaluated as
follows:



The closed-loop transfer function matrix is

where

Thus,

8-3  SYSTEMS OF FIRST-ORDER
DIFFERENTIAL EQUATIONS: STATE
EQUATIONS

As discussed in Chap. 3, state equations provide an alternative to the
transfer function approach, discussed earlier, to study differential equations.
This technique particularly provides a powerful means to treat and analyze



higher-order differential equations, and is highly utilized in modern control
theory and more advanced topics in control systems, such as optimal control
design.

In general, an nth-order differential equation can be decomposed into n
first-order differential equations. Because, in principle, first-order differential
equations are simpler to solve than higher-order ones, first-order differential
equations are used in the analytical studies of control systems.

For Eq. (8-1), if we define

then the nth-order differential equation is decomposed into n first-order
differential equations:

Notice that the last equation is obtained by equating the highest-ordered
derivative term in Eq. (8-1) to the rest of the terms. In control systems theory,
the set of first-order differential equations in Eq. (8-21) is called the state
equations, and x1, x2,…, xn are called the state variables. Finally, the
minimum number of state variables needed is usually the same as the order n
of the differential equation of the system.



8-3-1  Definition of State Variables
The state of a system refers to the past, present, and future conditions of

the system. From a mathematical perspective, it is convenient to define a set
of state variables and state equations to model dynamic systems. As stated
earlier, the variables x1(t), x2(t),…, xn(t) defined in Eq. (8-20) are the state
variables of the nth-order system described by Eq. (8-1), and the n first-order
differential equations, in Eq. (8-21), are the state equations. In general, there
are some basic rules regarding the definition of a state variable and what
constitutes a state equation. The state variables must satisfy the following
conditions:

The minimum number of state variables needed to represent a
differential equation, is usually the same as the order of the differential
equation of the system.

•   At any initial time t = t0, the state variables x1(t0), x2(t0),…, xn(t0) define
the initial states of the system.

•   Once the inputs of the system for t ≥ t0 and the initial states just
defined are specified, the state variables should completely define the
future behavior of the system.

The state variables of a system are defined as a minimal set of variables,
x1(t), x2(t),…, xn(t), such that knowledge of these variables at any time t0 and
information on the applied input at time t0 are sufficient to determine the state
of the system at any time t ≥ t0. Hence, the state-space form for n state
variables is

where x(t) is the state vector having n rows,



and u(t) is the input vector with p rows,

The coefficient matrices A and B are defined as

8-3-2  The Output Equation
One should not confuse the state variables with the outputs of a system. An

output of a system is a variable that can be measured, but a state variable
does not always need to satisfy this requirement. For instance, in an electric



motor, such state variables as the winding current, rotor velocity, and
displacement can be measured physically, and these variables all qualify as
output variables. On the other hand, magnetic flux can also be regarded as a
state variable in an electric motor because it represents the past, present, and
future states of the motor, but it cannot be measured directly during operation
and therefore does not ordinarily qualify as an output variable. In general, an
output variable can be expressed as an algebraic combination of the state
variables. For the system described by Eq. (8-1), if y(t) is designated as the
output, then the output equation is simply y(t) = x1(t). In general,

We will utilize these concepts in the modeling of various dynamical
systems next.

EXAMPLE 8-3-1  Consider the second-order differential equation, which
was also studied in Example 3-4-1,



If we let

then Eq. (8-30) is decomposed into the following two
first-order differential equations:

where x1(t), x2(t) are the state variables, and u(t) is the
input, we can—at this point arbitrarily—define y(t) as the
output represented by

In this case we are simply interested in state variable
x1(t) to be our output. As a result,



8-4  VECTOR-MATRIX REPRESENTATION
OF STATE EQUATIONS

Let the n state equations of an nth-order dynamic system be represented as

where i =1,2,....,n. The ith state variable is represented by xi(t); uj(t) denotes
the jth input for j = 1, 2,...,p; and wk(37) denotes the kth disturbance input,
with k = 1, 2,...,v.

Let the variables y1(t),y2 (t),....,yqbe the q output variables of the system. In
general, the output variables are functions of the state variables and the input
variables. The output equations can be expressed as

where j = 1, 2, …, q.
The set of n state equations in Eq. (8-36) and q output equations in Eq. (8-

37) together form the dynamic equations. For ease of expression and
manipulation, it is convenient to represent the dynamic equations in vector-
matrix form. Let us define the following vectors:

State vector:

Input vector:



Output vector:

Disturbance vector:

Note: In most textbooks on this subject, the disturbance vector is
considered as—and for simplicity it is absorbed into—the input vector.

By using these vectors, the n state equations of Eq. (8-36) can be written

where f denotes an n × 1 column matrix that contains the functions f1,f2,....fn

as elements. Similarly, the q output equations in Eq. (8-37) become



where g denotes a q × 1 column matrix that contains the functions g1, g2,
…, gq as elements.

For a linear time-invariant system, the dynamic equations are written as
State equations:

Output equations:

where



8-5  STATE-TRANSITION MATRIX
Once the state equations of a linear time-invariant system are expressed in

the form of Eq. (8-44), the next step often involves the solutions of these
equations given the initial state vector x(t0), the input vector u(t), and the
disturbance vector w(t), for t ≥ t0. The first term on the right-hand side of Eq.
(8-44) is known as the homogeneous part of the state equation, and the last
two terms represent the forcing functions u(t) and w(t).

The state-transition matrix is defined as a matrix that satisfies the linear
homogeneous state equation:



Let ϕ (t) be the n × n matrix that represents the state-transition matrix; then
it must satisfy the equation

Furthermore, let x(0) denote the initial state at t = 0; then ϕ (t) is also
defined by the matrix equation

which is the solution of the homogeneous state equation for t ≥ 0.
One way of determining ϕ (t) is by taking the Laplace transform on both

sides of Eq. (8-52), we have

Solving for X(s) from Eq. (8-55), we get

where it is assumed that the matrix (sI − A) is nonsingular. Taking the
inverse Laplace transform on both sides of Eq. (8-56) yields

By comparing Eq. (8-54) with Eq. (8-57), the state-transition matrix is
identified to be

An alternative way of solving the homogeneous state equation is to assume
a solution, as in the classical method of solving linear differential equations.
We let the solution to Eq. (8-52) be

for t ≥ 0, where eAt represents the following power series of the matrix At,
and



It is easy to show that Eq. (8-59) is a solution of the homogeneous state
equation, since, from Eq. (8-60),

Therefore, in addition to Eq. (8-58), we have obtained another expression
for the state-transition matrix:

Equation (8-62) can also be obtained directly from Eq. (8-58). This is left
as an exercise for the reader (Prob. 8-5).

8-5-1  Significance of the State-Transition Matrix
Because the state-transition matrix satisfies the homogeneous state

equation, it represents the free response of the system. In other words, it
governs the response that is excited by the initial conditions only. In view of
Eqs. (8-58) and (8-62), the state-transition matrix is dependent only upon the
matrix A and, therefore, is sometimes referred to as the state-transition
matrix of A. As the name implies, the state-transition matrix ϕ (t) completely
defines the transition of the states from the initial time t = 0 to any time t
when the inputs are zero.

8-5-2  Properties of the State-Transition Matrix
The state-transition matrix ϕ (t) possesses the following properties:
1.    

Proof: Equation (8-63) follows directly from Eq. (8-62) by setting t = 0.
2.    

Proof: Postmultiplying both sides of Eq. (8-65) by e−At, we get



Then, pre-multiplying both sides of Eq. (8-65) by ϕ−1(t), we get

Thus,

An interesting result from this property of ϕ (t) is that Eq. (8-59) can be
rearranged to read

which means that the state-transition process can be considered as bilateral
in time. That is, the transition in time can take place in either direction.

3.    

Proof:

This property of the state-transition matrix is important because it implies
that a state-transition process can be divided into a number of sequential
transitions. Figure 8-3 illustrates that the transition from t = t0 to t = t2 is equal
to the transition from t0 to t1 and then from t1 to t2. In general, of course, the
state-transition process can be divided into any number of parts.



Figure 8-3   Property of the state-transition matrix.

Figure 8-4   State diagram for Eq. (8-81).

4.    

Proof:

8-6  STATE-TRANSITION EQUATION
The state-transition equation is defined as the solution of the linear



homogeneous state equation. The linear time-invariant state equation

can be solved using either the classical method of solving linear
differential equations or the Laplace transform method. The Laplace
transform solution is presented in the following equations.

Taking the Laplace transform on both sides of Eq. (8-73), we have

where x(0) denotes the initial-state vector evaluated at t = 0. Solving for
X(s) in Eq. (8-74) yields

The state-transition equation of Eq. (8-73) is obtained by taking the inverse
Laplace transform on both sides of Eq. (8-75):

The state-transition equation in Eq. (8-76) is useful only when the initial
time is defined to be at t = 0. In the study of control systems, especially
discrete-data control systems, it is often desirable to break up a state-
transition process into a sequence of transitions, so a more flexible initial
time must be chosen. Let the initial time be represented by t0 and the
corresponding initial state by x(t0), and assume that the input u(t) and the
disturbance w(t) are applied at t ≥ 0. We start with Eq. (8-76) by setting t = t0,
and solving for x(0), we get

where the property on ϕ(t) of Eq. (8-64) has been applied.
Substituting Eq. (8-77) into Eq. (8-76) yields



Now by using the property of Eq. (8-69) and combining the last two
integrals, Eq. (8-78) becomes

It is apparent that Eq. (8-79) reverts to Eq. (8-77) when t0 = 0.
Once the state-transition equation is determined, the output vector can be

expressed as a function of the initial state and the input vector simply by
substituting x(t) from Eq. (8-79) into Eq. (8-45). Thus, the output vector is

The following example illustrates the determination of the state-transition
matrix and equation.

EXAMPLE 8-6-1  Consider the state equation

Figure 8-6   Input voltage waveform for the network in Fig. 8-5.



The problem is to determine the state-transition matrix
ϕ (t) and the state vector x(t) for t ≥ 0 when the input is
u(t) = 1 for t ≥ 0. The coefficient matrices are identified
to be

Therefore,

The inverse matrix of (sI – A) is

The state-transition matrix of A is found by taking the
inverse Laplace transform of Eq. (8-84). Thus,

The state-transition equation for t ≥ 0 is obtained by
substituting Eq. (8-85), B, and u(t) into Eq. (8-76). We
have



or

As an alternative, the second term of the state-
transition equation can be obtained by taking the inverse
Laplace transform of (sI − A)−1BU(s). Thus, we have

8-6-1  State-Transition Equation Determined from the State
Diagram

Equations (8-75) and (8-76) show that the Laplace transform method of
solving the state equations requires obtaining the inverse of matrix (sI − A).
We shall now show that the state diagram and the SFG gain formula (Chap.
4) can be used to solve for the state-transition equation in the Laplace domain
of Eq. (8-75). Let the initial time be t0; then Eq. (8-75) is rewritten as



The last equation can be written directly from the state diagram using the
gain formula, with Xi(s), i = 1, 2,...,n, as the output nodes. The following
example illustrates the state-diagram method of finding the state-transition
equations for the system described in Example 8-2-1.

EXAMPLE 8-6-2  The state diagram for the system described by Eq. (8-81)
is shown in Fig. 8-4 with t0 as the initial time. The
outputs of the integrators are assigned as state
variables. Applying the gain formula to the state
diagram in Fig. 8-4, with X1(s) and X2(s) as output
nodes and x1(t0), x2(t0), and u(t), or U(s) in the s domain,
as input nodes, we have

where

After simplification, Eqs. (8-90) and (8-91) are
presented in vector-matrix form:

The state-transition equation for t ≥ t0 is obtained by
taking the inverse Laplace transform on both sides of Eq.
(8-93).

Consider that the input u(t) is a unit-step function
applied at t = t0. Then the following inverse Laplace-
transform relationships are identified:



Because the initial time is defined to be t0, the Laplace
transform expressions here do not have the delay factor e-
-t05. The inverse Laplace transform of Eq. (8-93) is

The reader should compare this result with that in Eq.
(8-87), which is obtained for t ≥ 0. 

EXAMPLE 8-6-3  In this example, we illustrate the utilization of the state-
transition method to a system with input discontinuity.
An RL network is shown in Fig. 8-5. The history of
the network is completely specified by the initial
current of the inductance, i(0) at t = 0. At time t = 0,
the voltage ein(t) with the profile shown in Fig. 8-6 is
applied to the network. The state equation of the
network for t ≥ 0 is



Figure 8-5   RL network.

Comparing the last equation with Eq. (8-44), the scalar
coefficients of the state equation are identified to be

The state-transition matrix is

The conventional approach of solving for i(t) for t ≥ 0
is to express the input voltage as

where us(t) is the unit-step function. The Laplace
transform of e(t) is

Then

By substituting Eq. (8-102) into Eq. (8-76), the state-
transition equation, the current for t ≥ 0 is obtained:



Using the state-transition approach, we can divide the
transition period into two parts: t = 0 to t = t1, and t = t1 to
t = ∞. First, for the time interval 0 ≤ t ≤ t1, the input is

Then

Thus, the state-transition equation for the time interval
0 ≤ t ≤ t1 is

Substituting t = t1 into Eq. (8-106), we get

The value of i(t) at t = t1 is now used as the initial state
for the next transition period of t1 ≤ t < ∞. The amplitude
of the input for the interval is 2Ein. The state-transition
equation for the second transition period is

where i(t1) is given by Eq. (8-107).
This example illustrates two possible ways of solving a

state-transition problem. In the first approach, the
transition is treated as one continuous process, whereas in
the second, the transition period is divided into parts over



which the input can be more easily presented. Although
the first approach requires only one operation, the second
method yields relatively simple results to the state-
transition equation, and it often presents computational
advantages. Notice that, in the second method, the state at
t = t1 is used as the initial state for the next transition
period, which begins at t1. 

8-7  RELATIONSHIP BETWEEN STATE
EQUATIONS AND HIGH-ORDER
DIFFERENTIAL EQUATIONS

In the preceding sections, we defined the state equations and their solutions
for linear time-invariant systems. Although it is usually possible to write the
state equations directly from the schematic diagram of a system, in practice
the system may have been described by a high-order differential equation or
transfer function. It becomes necessary to investigate how state equations can
be written directly from the high-order differential equation or the transfer
function. In Chap. 2, we illustrated how the state variables of an nth-order
differential equation in Eq. (2-97) are intuitively defined, as shown in Eq. (2-
105). The results are the n state equations in Eq. (2-106).

The state equations are written in vector-matrix form:

where



Notice that the last row of A contains the negative values of the
coefficients of the homogeneous part of the differential equation in ascending
order, except for the coefficient of the highest-order term, which is unity. B is
a column matrix with the last row equal to one, and the rest of the elements
are all zeros. The state equations in Eq. (8-109) with A and B given in Eqs.
(8-110) and (8-111) are known as the phase-variable canonical form
(PVCF), or the controllability canonical form (CCF).

The output equation of the system is written

where

We have shown earlier that the state variables of a given system are not
unique. In general, we seek the most convenient way of assigning the state
variables as long as the definition of state variables is satisfied. In Sec. 8-11,
we shall show that, by first writing the transfer function and then drawing the
state diagram of the system by decomposition of the transfer function, the
state variables and state equations of any system can be found very easily.

EXAMPLE 8-7-1  Consider the differential equation

Rearranging the last equation so that the highest-order
derivative term is set equal to the rest of the terms, we
have



Then the state equations are represented by the vector-
matrix equation

where x(t) is the 2 × 1 state vector, u(t) is the scalar
input, and

The output equation is

8-8  RELATIONSHIP BETWEEN STATE
EQUATIONS AND TRANSFER FUNCTIONS

We have presented the methods of modeling a linear time-invariant system
by transfer functions and dynamic equations. We now investigate the
relationship between these two representations.

Consider a linear time-invariant system described by the following
dynamic equations:



where
x(t) = n × 1 state vector
u(t) = p × 1 input vector
y(t) = q × 1 output vector
w(t) = v × 1 disturbance vector

and A, B, C, D, E, and H are coefficient matrices of appropriate
dimensions.

Taking the Laplace transform on both sides of Eq. (8-120) and solving for
X(s), we have

The Laplace transform of Eq. (8-121) is

Substituting Eq. (8-122) into Eq. (8-123), we have

Because the definition of a transfer function requires that the initial
conditions be set to zero, x(0) = 0; thus, Eq. (8-124) becomes

Let us define

where Gu(s) is a q × p transfer-function matrix between u(t) and y(t) when



w(t) = 0, and Gw(s) is a q × v transfer-function matrix between w(t) and y(t)
when u(t) = 0.

Then, Eq. (8-125) becomes

EXAMPLE 8-8-1  Consider that a multivariable system is described by the
differential equations

The state variables of the system are assigned as

These state variables are defined by mere inspection of
the two differential equations because no particular
reasons for the definitions are given other than that these
are the most convenient. Now equating the first term of
each of the equations of Eqs. (8-129) and (8-130) to the
rest of the terms and using the state-variable relations of
Eq. (8-131), we arrive at the following state equations
and output equations in vector-matrix form:



To determine the transfer-function matrix of the
system using the state-variable formulation, we substitute
the A, B, C, D, and E matrices into Eq. (8-125). First, we
form the matrix (sI – A):

The determinant of (sI – A) is

Thus,

The transfer-function matrix between u(t) and y(t) is



and that between w(t) and y(t) is

Using the conventional approach, we take the Laplace
transform on both sides of Eqs. (8-129) and (8-130) and
assume zero initial conditions. The resulting transformed
equations are written in vector-matrix form as

Solving for Y(s) from Eq. (8-139), we obtain

where

which will give the same results as in Eqs. (8-137) and
(8-138), respectively, when the matrix inverses are
carried out. 

8-9  CHARACTERISTIC EQUATIONS,



EIGENVALUES, AND EIGENVECTORS
Characteristic equations play an important role in the study of linear

systems. They can be defined with respect to differential equations, transfer
functions, or state equations.

8-9-1  Characteristic Equation from a Differential Equation
Consider that a linear time-invariant system is described by the differential

equation

where n > m. By defining the operator s as

Equation (8-143) is written

The characteristic equation of the system is defined as

which is obtained by setting the homogeneous part of Eq. (8-145) to zero.

EXAMPLE 8-9-1  Consider the differential equation in Eq. (8-114). The
characteristic equation is obtained by inspection,



8-9-2  Characteristic Equation from a Transfer Function
The transfer function of the system described by Eq. (8-143) is

The characteristic equation is obtained by equating the denominator
polynomial of the transfer function to zero.

EXAMPLE 8-9-2  The transfer function of the system described by the
differential equation in Eq. (8-114) is

The same characteristic equation as in Eq. (8-147) is
obtained by setting the denominator polynomial of Eq.
(8-149) to zero. 

8-9-3  Characteristic Equation from State Equations
From the state-variable approach, we can write Eq. (8-126) as

Setting the denominator of the transfer-function matrix Gu(s) to zero, we
get the characteristic equation

which is an alternative form of the characteristic equation but should lead
to the same equation as in Eq. (8-146). An important property of the
characteristic equation is that, if the coefficients of A are real, then the



coefficients of |sI–A| are also real.

EXAMPLE 8-9-3  The matrix A for the state equations of the differential
equation in Eq. (8-114) is given in Eq. (8-114). The
characteristic equation of A is

8-9-4  Eigenvalues
The roots of the characteristic equation are often referred to as the

eigenvalues of the matrix A.
Some of the important properties of eigenvalues are given as follows.

1.    If the coefficients of A are all real, then its eigenvalues are either
real or in complex-conjugate pairs.
2.    If λ1, λ2, …, λn are the eigenvalues of A, then

That is, the trace of A is the sum of all the eigenvalues of A.
3.    If λi, i = 1, 2, …, n, is an eigenvalue of A, then it is an eigenvalue of
A′.
4.    If A is nonsingular, with eigenvalues λi, i = 1, 2, …, n, then 1/λi, i =
1, 2, …, n, are the eigenvalues of A−1.

EXAMPLE 8-9-4  The eigenvalues or the roots of the characteristic equation
of the matrix A in Eq. (8-118) are obtained by solving
for the roots of Eq. (8-152). The results are



8-9-5  Eigenvectors
Eigenvectors are useful in modern control methods, one of which is the

similarity transformation, which will be discussed in a later section.
Any nonzero vector pi that satisfies the matrix equation

where λi, i = 1, 2, …, n, denotes the ith eigenvalue of A, called the
eigenvector of A associated with the eigenvalue λi. If A has distinct
eigenvalues, the eigenvectors can be solved directly from Eq. (8-155).

EXAMPLE 8-9-5  Consider that the state equation of Eq. (8-44) has the
coefficient matrices

The characteristic equation of A is

The eigenvalues are λ1 = 1 and λ2 = −1. Let the
eigenvectors be written as

Substituting λ1 = 1 and p1 into Eq. (8-155), we get

Thus, p21 = 0, and p11 is arbitrary, which in this case can
be set equal to 1.



Similarly, for λ2 = −1, Eq. (8-155) becomes

which leads to

The last equation has two unknowns, which means that
one can be set arbitrarily. Let p12 = 1, then p12 = 2. The
eigenvectors are

8-9-6  Generalized Eigenvectors
It should be pointed out that if A has multiple-order eigenvalues and is

nonsymmetric, not all the eigenvectors can be found using Eq. (8-155). Let
us assume that there are q(<n)distinct eigenvalues among the n eigenvalues of
A. The eigenvectors that correspond to the q distinct eigenvalues can be
determined in the usual manner from

where λi denotes the ith distinct eigenvalue, i = 1, 2, …, q. Among the
remaining high-order eigenvalues, let λj be of the mth order (m ≤ n – q). The
corresponding eigenvectors are called the generalized eigenvectors and can
be determined from the following m vector equations:



EXAMPLE 8-9-6  Given the matrix

The eigenvalues of A are λ1 = 2, λ2 = λ3 = 1. Thus, A is
a second-order eigenvalue at 1. The eigenvector that is
associated with λ1 = 2 is determined using Eq. (8-163).
Thus,

Because there are only two independent equations in
Eq. (8-166), we arbitrarily set p11 = 2, and we have p21 =
−1 and p31 = −2. Thus,

For the generalized eigenvectors that are associated
with the second-order eigenvalues, we substitute λ2 = 1
into the first equation of Eq. (8-164). We have



Setting p12 = 1 arbitrarily, we have 

 Thus,

Substituting λ3 = 1 into the second equation of Eq. (8-
164), we have

Setting p13 arbitrarily to 1, we have the generalized
eigenvector



8-10  SIMILARITY TRANSFORMATION
The dynamic equations of a single-input single-output (SISO) system are

where x(t) is the n × 1 state vector, and u(t) and y(t) are the scalar input and
output, respectively. When carrying out analysis and design in the state
domain, it is often advantageous to transform these equations into particular
forms. For example, as we will show later, the controllability canonical form
(CCF) has many interesting properties that make it convenient for
controllability tests and state-feedback design.

Let us consider that the dynamic equations of Eqs. (8-172) and (8-173) are
transformed into another set of equations of the same dimension by the
following transformation:

where P is an n × n nonsingular matrix, so

The transformed dynamic equations are written

Taking the derivative on both sides of Eq. (8-175) with respect to t, we
have



Comparing Eq. (8-178) with Eq. (8-176), we get

and

Using Eq. (8-174), Eq. (8-177) is written

Comparing Eq. (8-181) with Eq. (8-173), we see that

The transformation just described is called a similarity transformation,
because in the transformed system such properties as the characteristic
equation, eigenvectors, eigenvalues, and transfer function are all preserved by
the transformation. We shall describe the controllability canonical form
(CCF), the observability canonical form (OCF), and the diagonal canonical
form (DCF) transformations in the following sections. The transformation
equations are given without proofs.

8-10-1  Invariance Properties of the Similarity
Transformations

One of the important properties of the similarity transformations is that the
characteristic equation, eigenvalues, eigenvectors, and transfer functions are
invariant under the transformations.

8-10-2  Characteristic Equations, Eigenvalues, and
Eigenvectors



The characteristic equation of the system described by Eq. (8-176) is ||sI–
A| = 0 and is written

Because the determinant of a product matrix is equal to the product of the
determinants of the matrices, the last equation becomes

Thus, the characteristic equation is preserved, which naturally leads to the
same eigenvalues and eigenvectors.

8-10-3  Transfer-Function Matrix
From Eq. (8-126), the transfer-function matrix of the system of Eqs. (8-

176) and (8-177) is

which is simplified to

8-10-4  Controllability Canonical Form
Consider the dynamic equations given in Eqs. (8-172) and (8-173). The

characteristic equation of A is

The dynamic equations in Eqs. (8-172) and (8-173) are transformed into
CCF of the form of Eqs. (8-176) and (8-177) by the transformation of Eq. (8-
174), with



where

and

Then,

The matrices C and D are given by Eq. (8-182) and do not follow any
particular pattern. The CCF transformation requires that P−1 exists, which
implies that the matrix S must have an inverse because the inverse of M
always exists because its determinant is (–1)n-1, which is nonzero. The n × n
matrix S in Eq. (8-189) is later defined as the controllability matrix.



EXAMPLE 8-10-1  Consider the coefficient matrices of the state equations
in Eq. (8-172):

The state equations are to be transformed to CCF.
The characteristic equation of A is

Thus, the coefficients of the characteristic equation are
identified as a0 = –3, a1 = –1, and a2 = –3. From Eq. (8-
190),

The controllability matrix is

We can show that S is nonsingular, so the system can
be transformed into the CCF. Substituting S and M into
Eq. (8-188), we get



Thus, from Eqs. (8-191) and (8-192), the CCF model is
given by

which could have been determined once the
coefficients of the characteristic equation are known;
however, the exercise is to show how the CCF
transformation matrix P is obtained. 

8-10-5  Observability Canonical Form
A dual form of transformation of the CCF is the observability canonical

form (OCF). The system described by Eqs. (8-172) and (8-173) is
transformed to the OCF by the transformation

The transformed equations are as given in Eqs. (8-176) and (8-177). Thus,

where



The elements of the matrices  and  are not restricted to any form.
Notice that  and  are the transpose of the  and  in Eqs. (8-191) and (8-
192), respectively.

The OCF transformation matrix Q is given by

where M is as given in Eq. (8-190), and

The matrix V is often defined as the observability matrix, and V−1 must
exist in order for the OCF transformation to be possible.

EXAMPLE 8-10-2  Consider that the coefficient matrices of the system
described by Eqs. (8-172) and (8-138) are

Because the matrix A is identical to that of the system
in Example 8-8-1, the matrix M is the same as that in Eq.
(8-195). The observability matrix is



We can show that V is nonsingular, so the system can
be transformed into the OCF. Substituting V and M into
Eq. (8-203), we have the OCF transformation matrix,

From Eq. (8-191), the OCF model of the system is
described by

Thus,  and  are of the OCF form given in Eqs. (8-
201) and (8-202), respectively, and B does not conform
to any particular form. 

8-10-6  Diagonal Canonical Form
Given the dynamic equations in Eqs. (8-172) and (8-173), if A has distinct

eigenvalues, there is a nonsingular transformation

which transforms these equations to the dynamic equations of Eqs. (8-176)
and (8-177), where

The matrix  is a diagonal matrix,



where λ1, λ2, …, λn are the n distinct eigenvalues of A. The coefficient
matrices B, and C are given in Eq. (8-210) and do not follow any particular
form.

It is apparent that one of the advantages of the diagonal canonical form
(DCF) is that the transformed state equations are decoupled from each other
and, therefore, can be solved individually.

We show in the following that the DCF transformation matrix T can be
formed by use of the eigenvectors of A as its columns; that is,

where pi, i = 1, 2, …, n, denotes the eigenvector associated with the
eigenvalue λi. This is proved by use of Eq. (8-155), which is written as

Now, forming the n × n matrix,

The last equation is written

where  is as given in Eq. (8-211). Thus, if we let



Equation (8-215) is written

If the matrix A is of the CCF and A has distinct eigenvalues, then the DCF
transformation matrix is the Vandermonde matrix,

where λ1, λ2, …, λn are the eigenvalues of A. This can be proven by
substituting the CCF of A in Eq. (8-110) into Eq. (8-155). The result is that
the ith eigenvector pi is equal to the ith column of T in Eq. (8-218).

EXAMPLE 8-10-3  Consider the matrix

which has eigenvalues λ1 = −1, λ2 = −2, and λ3 = −3.
Because A is CCF, to transform it into DCF, the
transformation matrix can be the Vandermonde matrix in
Eq. (8-218). Thus,

Thus, the DCF of A is written



8-10-7  Jordan Canonical Form
In general, when the matrix A has multiple-order eigenvalues, unless the

matrix is symmetric with real elements, it cannot be transformed into a
diagonal matrix. However, there exists a similarity transformation in the form
of Eq. (8-217) such that the matrix  is almost diagonal. The matrix  is
called the Jordan canonical form (JCF). A typical JCF is shown below.

where it is assumed that A has a third-order eigenvalue λ1 and distinct
eigenvalues λ2 and λ3.

The JCF generally has the following properties:

1.    The elements on the main diagonal are the eigenvalues.
2.    All the elements below the main diagonal are zero.
3.    Some of the elements immediately above the multiple-order
eigenvalues on the main diagonal are 1s, as shown in Eq. (8-222).
4.    The 1s together with the eigenvalues form typical blocks called the
Jordan blocks. As shown in Eq. (8-222), the Jordan blocks are enclosed
by dashed lines.
5.    When the nonsymmetrical matrix A has multiple-order eigenvalues,
its eigenvectors are not linearly independent. For an A that is n × n,



there are only r (where r is an integer that is less than n and is dependent
on the number of multiple-order eigenvalues) linearly independent
eigenvectors.
6.    The number of Jordan blocks is equal to the number of independent
eigenvectors r. There is one and only one linearly independent
eigenvector associated with each Jordan block.
7.    The number of 1s above the main diagonal is equal to n − r.

To perform the JCF transformation, the transformation matrix T is again
formed by using the eigenvectors and generalized eigenvectors as its
columns.

EXAMPLE 8-10-4  Consider the matrix given in Eq. (8-165). We have
shown that the matrix has eigenvalues 2, 1, and 1.
Thus, the DCF transformation matrix can be formed
by using the eigenvector and generalized eigenvector
given in Eqs. (8-167), (8-169), and (8-171),
respectively. That is,

Thus, the DCF is

Note that in this case there are two Jordan blocks, and
there is one element of 1 above the main diagonal. 

8-11  DECOMPOSITIONS OF TRANSFER



FUNCTIONS
Up to this point, various methods of characterizing linear systems have

been presented. To summarize, it has been shown that the starting point of
modeling a linear system may be the system’s differential equation, transfer
function, or dynamic equations; all these methods are closely related.
Furthermore, the state diagram is also a useful tool that can not only lead to
the solutions of state equations but also serve as a vehicle of transformation
from one form of description to the others. The block diagram of Fig. 8-7
shows the relationships among the various ways of describing a linear
system. For example, the block diagram shows that, starting with the
differential equation of a system, one can find the solution by the transfer-
function or state-equation method. The block diagram also shows that the
majority of the relationships are bilateral, so a great deal of flexibility exists
between the methods.



Figure 8-7   Block diagram showing the relationships among various
methods of describing linear systems.

One subject remains to be discussed, which involves the construction of
the state diagram from the transfer function between the input and the output.
The process of going from the transfer function to the state diagram is called
decomposition. In general, there are three basic ways to decompose transfer
functions. These are direct decomposition, cascade decomposition, and
parallel decomposition. Each of these three schemes of decomposition has
its own merits and is best suited for a particular purpose.



8-11-1  Direct Decomposition
Direct decomposition is applied to an input-output transfer function that is

not in factored form. Consider the transfer function of an nth-order SISO
system between the input U(s) and output Y(s):

where we have assumed that the order of the denominator is at least 1
degree higher than that of the numerator.

We next show that the direct decomposition can be conducted in at least
two ways, one leading to a state diagram that corresponds to the CCF and the
other to the OCF.

8-11-2  Direct Decomposition to CCF
The objective is to construct a state diagram from the transfer function of

Eq. (8-225). The following steps are outlined:

1.    Express the transfer function in negative powers of s. This is done
by multiplying the numerator and the denominator of the transfer
function by s−

n.
2.    Multiply the numerator and the denominator of the transfer function
by a dummy variable X(s). By implementing the last two steps, Eq. (8-
225) becomes

3.    The numerators and the denominators on both sides of Eq. (8-226)
are equated to each other, respectively. The results are



4.    To construct a state diagram using the two equations in Eqs. (8-227)
and (8-228), they must first be in the proper cause-and-effect relation. It
is apparent that Eq. (8-227) already satisfies this prerequisite. However,
Eq. (8-228) has the input on the left-hand side of the equation and must
be rearranged. Equation (8-228) is rearranged as

The state diagram is drawn as shown in Fig. 8-8 using Eqs. (8-227) and (8-
228). For simplicity, the initial states are not drawn on the diagram. The state
variables x1(t), x2(t), …, xn(t) are defined as the outputs of the integrators and
are arranged in order from the right to the left on the state diagram. The state
equations are obtained by applying the SFG gain formula to Fig. 8-8 with the
derivatives of the state variables as the outputs and the state variables and u(t)
as the inputs, and overlooking the integrator branches. The output equation is
determined by applying the gain formula among the state variables, the input,
and the output y(t). The dynamic equations are written



Figure 8-8   CCF state diagram of the transfer function in Eq. (8-225) by
direct decomposition.

where

Apparently, A and B in Eq. (8-232) are of the CCF.

8-11-3  Direct Decomposition to OCF
Multiplying the numerator and the denominator of Eq. (8-225) by s−n, the

equation is expanded as

or

Figure 8-9 shows the state diagram that results from using Eq. (8-235). The
outputs of the integrators are designated as the state variables. However,
unlike the usual convention, the state variables are assigned in descending
order from right to left. Applying the SFG gain formula to the state diagram,
the dynamic equations are written as in Eqs. (8-230) and (8-231), with



Figure 8-9   CCF state diagram of the transfer function in Eq. (8-225) by
direct decomposition.

and



The matrices A and C are in OCF.
It should be pointed out that, given the dynamic equations of a system, the

input-output transfer function is unique. However, given the transfer
function, the state model is not unique, as shown by the CCF, OCF, and DCF,
and many other possibilities. In fact, even for any one of these canonical
forms (e.g., CCF), while matrices A and B are defined, the elements of C and
D could still be different depending on how the state diagram is drawn, that
is, how the transfer function is decomposed. In other words, referring to Fig.
8-8, whereas the feedback branches are fixed, the feedforward branches that
contain the coefficients of the numerator of the transfer function can still be
manipulated to change the contents of C.

EXAMPLE 8-11-1  Consider the following input-output transfer function:

Figure 8-10   CCF state diagram of the transfer function in Eq. (8-238).

The CCF state diagram of the system is shown in Fig.
8-10, which is drawn from the following equations:



The dynamic equations of the system in CCF are

For the OCF, Eq. (8-238) is expanded to

which leads to the OCF state diagram shown in Fig. 8-
11. The OCF dynamic equations are written



Figure 8-11   OCF state diagram of the transfer function in Eq. (8-238).

8-11-4  Cascade Decomposition
Cascade compensation refers to transfer functions that are written as

products of simple first-order or second-order components. Consider the
following transfer function, which is the product of two first-order transfer
functions.

where a1, a2, b1, and b2 are real constants. Each of the first-order transfer
functions is decomposed by the direct decomposition, and the two state
diagrams are connected in cascade, as shown in Fig. 8-12. The state equations
are obtained by regarding the derivatives of the state variables as outputs and
the state variables and u(t) as inputs and then applying the SFG gain formula
to the state diagram in Fig. 8-12. The integrator branches are neglected when
applying the gain formula. The results are



Figure 8-12   State diagram of the transfer function in Eq. (8-246) by
cascade decomposition.

The output equation is obtained by regarding the state variables and u(t) as
inputs and y(t) as the output and applying the gain formula to Fig. 8-18. Thus,

Figure 8-13   State diagram of the transfer function in Eq. (8-249) by
cascade decomposition.

When the overall transfer function has complex poles or zeros, the



individual factors related to these poles or zeros should be in second-order
form. As an example, consider the following transfer function:

where the poles of the second term are complex. The state diagram of the
system with the two subsystems connected in cascade is shown in Fig. 8-13.
The dynamic equations of the system are

8-11-5  Parallel Decomposition
When the denominator of the transfer function is in factored form, the

transfer function may be expanded by partial-fraction expansion. The
resulting state diagram will consist of simple first- or second-order systems
connected in parallel, which leads to the state equations in DCF or JCF, the
latter in the case of multiple-order eigenvalues.

Consider that a second-order system is represented by the transfer function

where Q(s) is a polynomial of order less than 2, and a1 and a2 are real and
distinct. Although, analytically, a1 and a2 may be complex, in practice,
complex numbers are difficult to implement on a computer. Equation (8-253)



is expansion by partial fractions:

where K1 and K2 are real constants.
The state diagram of the system is drawn by the parallel combination of the

state diagrams of each of the first-order terms in Eq. (8-253), as shown in Fig.
8-14. The dynamic equations of the system are

Figure 8-14   State diagram of the transfer function of Eq. (8-252) by
parallel decomposition.

Thus, the state equations are of the DCF.
The conclusion is that, for transfer functions with distinct poles, parallel

decomposition will lead to the DCF for the state equations. For transfer
functions with multiple-order eigenvalues, parallel decomposition to a state
diagram with a minimum number of integrators will lead to the JCF state



equations. The following example will clarify this point.

EXAMPLE 8-11-2  Consider the following transfer function and its partial-
fraction expansion:

Note that the transfer function is of the third order,
and, although the total order of the terms on the right-
hand side of Eq. (8-256) is four, only three integrators
should be used in the state diagram, which is drawn as
shown in Fig. 8-15. The minimum number of three
integrators is used, with one integrator being shared by
two channels. The state equations of the system are
written directly from Fig. 8-15.

Figure 8-15   State diagram of the transfer function of Eq. (8-256) by
parallel decomposition.



which is recognized to be the JCF. 

8-12  CONTROLLABILITY OF CONTROL
SYSTEMS

The concepts of controllability and observability, introduced first by
Kalman [3], play an important role in both theoretical and practical aspects of
modern control. The conditions on controllability and observability
essentially govern the existence of a solution to an optimal control problem.
This seems to be the basic difference between optimal control theory and
classical control theory. In the classical control theory, the design techniques
are dominated by trial-and-error methods so that given a set of design
specifications the designer at the outset does not know if any solution exists.
Optimal control theory, on the other hand, has criteria for determining at the
outset if the design solution exists for the system parameters and design
objectives.

We shall show that the condition of controllability of a system is closely
related to the existence of solutions of state feedback for assigning the values
of the eigenvalues of the system arbitrarily. The concept of observability
relates to the condition of observing or estimating the state variables from the
output variables, which are generally measurable.

The block diagram shown in Fig. 8-16 illustrates the motivation behind
investigating controllability and observability. Figure 8-16a shows a system
with the process dynamics described by



Figure 8-16   (a) Control system with state feedback. (b) Control system
with observer and state feedback.

The closed-loop system is formed by feeding back the state variables
through a constant feedback gain matrix K. Thus, from Fig. 8-16,

where K is a p × n feedback matrix with constant elements. The closed-
loop system is thus described by

This problem is also known as the pole-placement design through state
feedback. The design objective in this case is to find the feedback matrix K
such that the eigenvalues of (A – BK), or of the closed-loop system, are of
certain prescribed values. The word pole refers here to the poles of the
closed-loop transfer function, which are the same as the eigenvalues of (A –
BK).

We shall show later that the existence of the solution to the pole-placement
design with arbitrarily assigned pole values through state feedback is directly
based on the controllability of the states of the system. The result is that if the
system of Eq. (8-225) is controllable, then there exists a constant feedback
matrix K that allows the eigenvalues of (A – BK) to be arbitrarily assigned.

Once the closed-loop system is designed, the practical problems of
implementing the feeding back of the state variables must be considered.



There are two problems with implementing state feedback control: First, the
number of state variables may be excessive, which will make the cost of
sensing each of these state variables for feedback prohibitive. Second, not all
the state variables are physically accessible, and so it may be necessary to
design and construct an observer that will estimate the state vector from the
output vector y(t). Figure 8-22b shows the block diagram of a closed-loop
system with an observer. The observed state vector x(t) is used to generate
the control u(t) through the feedback matrix K. The condition that such an
observer can be designed for the system is called the observability of the
system.

8-12-1  General Concept of Controllability
The concept of controllability can be stated with reference to the block

diagram of Fig. 8-16a. The process is said to be completely controllable if
every state variable of the process can be controlled to reach a certain
objective in finite time by some unconstrained control u(t), as shown in Fig.
8-17. Intuitively, it is simple to understand that, if any one of the state
variables is independent of the control u(t), there would be no way of driving
this particular state variable to a desired state in finite time by means of a
control effort. Therefore, this particular state is said to be uncontrollable, and,
as long as there is at least one uncontrollable state, the system is said to be
not completely controllable or, simply, uncontrollable.

Figure 8-17   Linear time-invariant system.

As a simple example of an uncontrollable system, Fig. 8-18 illustrates the
state diagram of a linear system with two state variables. Because the control
U(t) affects only the state x1(t), the state x2(t) is uncontrollable. In other words,
it would be impossible to drive x2(t) from an initial state x2(t0) to a desired
state x2(tf ) in finite time interval tf – t0 by the control U(t). Therefore, the
entire system is said to be uncontrollable.



Figure 8-18   State diagram of the system that is not state controllable.

The concept of controllability given here refers to the states and is
sometimes referred to as state controllability. Controllability can also be
defined for the outputs of the system, so there is a difference between state
controllability and output controllability.

8-12-2  Definition of State Controllability
Consider that a linear time-invariant system is described by the following

dynamic equations:

where x(t) is the n × 1 state vector, u(t) is the r × 1 input vector, and y(t) is
the p × 1 output vector. A, B, C, and D are coefficients of appropriate
dimensions.

The state x(t) is said to be controllable at t = t0 if there exists a piecewise
continuous input u(t) that will drive the state to any final state x(tf) for a finite
time (tf − t0) ≥ 0. If every state x(t0) of the system is controllable in a finite time
interval, the system is said to be completely state controllable or, simply,
controllable.

The following theorem shows that the condition of controllability depends
on the coefficient matrices A and B of the system. The theorem also gives
one method of testing for state controllability.

▪ Theorem 8-1. For the system described by the state equation of Eq. (8-
261) to be completely state controllable, it is necessary and sufficient that the



following n × nr controllability matrix has a rank of n:

Because the matrices A and B are involved, sometimes we say that the pair
[A, B] is controllable, which implies that S is of rank n.

The proof of this theorem is given in any standard textbook on optimal
control systems. The idea is to start with the state-transition equation of Eq.
(8-79) and then proceed to show that Eq. (8-263) must be satisfied in order
that all the states are accessible by the input.

Although the criterion of state controllability given in Theorem 8-1 is quite
straightforward, manually it is not very easy to test for high-order systems
and/or systems with many inputs. If S is nonsquare, we can form the matrix
SS′, which is n × n; then, if SS′ is nonsingular, S has rank n.

8-12-3  Alternate Tests on Controllability
There are several alternate methods of testing controllability, and some of

these may be more convenient to apply than the condition in Eq. (8-263).

▪ Theorem 8-2. For a single-input, single-output (SISO) system described
by the state equation of Eq. (8-261) with r = 1, the pair [A, B] is completely
controllable if A and B are in CCF or transformable into CCF by a
similarity transformation.

The proof of this theorem is straightforward, since it was established in
Sec. 8-10 that the CCF transformation requires that the controllability matrix
S be nonsingular. Because the CCF transformation in Sec. 8-10 was defined
only for SISO systems, the theorem applies only to this type of system.

▪ Theorem 8-3. For a system described by the state equation of Eq. (8-
261), if A is in DCF or JCF, the pair [A, B] is completely controllable if all
the elements in the rows of B that correspond to the last row of each Jordan
block are nonzero.

The proof of this theorem comes directly from the definition of
controllability. Let us assume that A is diagonal and that it has distinct
eigenvalues. Then, the pair [A, B] is controllable if B does not have any row
with all zeros. The reason is that, if A is diagonal, all the states are decoupled



from each other, and, if any row of B contains all zero elements, the
corresponding state would not be accessed from any of the inputs, and that
state would be uncontrollable.

For a system in JCF, such as the A and B matrices illustrated in Eq. (8-
264), for controllability only the elements in the row of B that correspond to
the last row of the Jordan block cannot all be zeros. The elements in the other
rows of B need not all be nonzero, since the corresponding states are still
coupled through the 1s in the Jordan blocks of A.

Thus, the condition of controllability for the A and B in Eq. (8-264) is b31 ≠
0, b32 ≠ 0, b41 ≠ 0, and b42 ≠ 0.

Example 8-12-1  The following matrices are for a system with two
identical eigenvalues, but the matrix A is diagonal.

The system is uncontrollable, since the two state
equations are dependent; that is, it would not be possible
to control the states independently by the input. We can
easily show that in this case S = [BAB] is singular. 

EXAMPLE 8-12-2  Consider the system shown in Fig. 8-24, which was
reasoned earlier to be uncontrollable. Let us
investigate the same system using the condition of Eq.
(8-263). The state equations of the system are written
in the form of Eq. (8-263) with



Thus, from Eq. (8-263), the controllability matrix is

which is singular, and the system is uncontrollable. 

EXAMPLE 8-12-3  Consider that a third-order system has the coefficient
matrices

The controllability matrix is

which is singular. Thus, the system is not controllable.
The eigenvalues of A are λ1 = 2, λ2 = 2, and λ3 = 1. The

JCF of A and B are obtained with the transformation x(t)
= Tx(t), where

Then,



Because the last row of B, which corresponds to the
Jordan block for the eigenvalue λ3, is zero, the
transformed state variable x3(t) is uncontrollable. From
the transformation matrix T in Eq. (8-235), x2 = x3, which
means that x2 is uncontrollable in the original system. It
should be noted that the minus sign in front of the 1 in the
Jordan block does not alter the basic definition of the
block. 

8-13  OBSERVABILITY OF LINEAR SYSTEMS
The concept of observability was covered earlier in Sec. 8-11 on

controllability and observability. Essentially, a system is completely
observable if every state variable of the system affects some of the outputs. In
other words, it is often desirable to obtain information on the state variables
from the measurements of the outputs and the inputs. If any one of the states
cannot be observed from the measurements of the outputs, the state is said to
be unobservable, and the system is not completely observable or, simply,
unobservable. Figure 8-19 shows the state diagram of a linear system in
which the state x2 is not connected to the output y(t) in any way. Once we
have measured y(t), we can observe the state x1(t), since x1(t) = y(t). However,
the state x2 cannot be observed from the information on y(t). Thus, the system
is unobservable.



Figure 8-19   State diagram of a system that is not observable.

8-13-1  Definition of Observability
Given a linear time-invariant system that is described by the dynamic

equations of Eqs. (8-261) and (8-262), the state x(t0) is said to be observable
if given any input u(t), there exists a finite time tf ≥ t0 such that the knowledge
of u(t) for t0 ≤ t < tf , matrices A, B, C, and D; and the output y(t) for t0 ≤ t < t0

are sufficient to determine x(t0). If every state of the system is observable for
a finite t0 , we say that the system is completely observable, or, simply,
observable.

The following theorem shows that the condition of observability depends
on the matrices A and C of the system. The theorem also gives one method of
testing observability.

▪ Theorem 8-4. For the system described by Eqs. (8-261) and (8-272) to
be completely observable, it is necessary and sufficient that the following n ×
np observability matrix has a rank of n

The condition is also referred to as the pair [A, C] being observable. In
particular, if the system has only one output, C is a 1 × n row matrix; V is an
n × n square matrix. Then the system is completely observable if V is
nonsingular.

The proof of this theorem is not given here. It is based on the principle that
Eq. (8-272) must be satisfied so that x(t0) can be uniquely determined from
the output y(t).

8-13-2  Alternate Tests on Observability
Just as with controllability, there are several alternate methods of testing



observability. These are described in the following theorems.

▪ Theorem 8-5. For a SISO system, described by the dynamic equations of
Eqs. (8-261) and (8-262) with r = 1 and p = 1, the pair [A, C] is completely
observable if A and C are in OCF or transformable into OCF by a similarity
transformation.

The proof of this theorem is straightforward, since it was established in
Sec. 8-10 that the OCF transformation requires that the observability matrix
V be nonsingular.

▪ Theorem 8-6. For a system described by the dynamic equations of Eqs.
(8-261) and (8-262), if A is in DCF or JCF, the pair [A, C] is completely
observable if all the elements in the columns of C that correspond to the first
row of each Jordan block are nonzero.

Note that this theorem is a dual of the test of controllability given in
Theorem 8-3. If the system has distinct eigenvalues, A is diagonal, then the
condition on observability is that none of the columns of C can contain all
zeros.

EXAMPLE 8-13-1  Consider the system shown in Fig. 8-19, which was
earlier defined to be unobservable. The dynamic
equations of the system are expressed in the form of
Eqs. (8-261) and (8-262) with

Thus, the observability matrix is

which is singular. Thus, the pair [A, C] is
unobservable. In fact, because A is of DCF and the
second column of C is zero, this means that the state x2(t)
is unobservable, as conjectured from Fig. 8-18. 



8-14  RELATIONSHIP AMONG
CONTROLLABILITY, OBSERVABILITY, AND
TRANSFER FUNCTIONS

In the classical analysis of control systems, transfer functions are used for
modeling of linear time-invariant systems. Although controllability and
observability are concepts and tools of modern control theory, we shall show
that they are closely related to the properties of transfer functions.

▪ Theorem 8-7. If the input-output transfer function of a linear system has
pole-zero cancellation, the system will be uncontrollable or unobservable, or
both, depending on how the state variables are defined. On the other hand, if
the input-output transfer function does not have pole-zero cancellation, the
system can always be represented by dynamic equations as a completely
controllable and observable system.

The proof of this theorem is not given here. The importance of this
theorem is that, if a linear system is modeled by a transfer function with no
pole-zero cancellation, then we are assured that it is a controllable and
observable system, no matter how the state-variable model is derived. Let us
amplify this point further by referring to the following SISO system.

Because A is a diagonal matrix, the controllability and observability
conditions of the four states are determined by inspection. They are as
follows:

x1: Controllable and observable (C and O)
x2: Controllable but unobservable (C but UO)
x3: Uncontrollable but observable (UC but O)
x4: Uncontrollable and unobservable (UC and UO)

The block diagram of the system in Fig. 8-20 shows the DCF



decomposition of the system. Clearly, the transfer function of the controllable
and observable system should be



Figure 8-20   Block diagram showing the controllable, uncontrollable,
observable, and unobservable components of the system described in Eq. (8-
275).

whereas the transfer function that corresponds to the dynamics described in
Eq. (8-275) is

which has three pole-zero cancellations. This simple-minded example
illustrates that a “minimum-order” transfer function without pole-zero
cancellation is the only component that corresponds to a system that is
controllable and observable.

EXAMPLE 8-14-1  Let us consider the transfer function

which is a reduced form of Eq. (8-277). Equation (8-
278) is decomposed into CCF and OCF as follows:

CCF:

Because the CCF transformation can be made, the pair
[A, B] of the CCF is controllable. The observability
matrix is



which is singular, and the pair [A, C] of the CCF is
unobservable.

OCF:

Because the OCF transformation can be made, the pair
[A, C] of the OCF is observable. However, the
controllability matrix is

which is singular, and the pair [A, B] of the OCF is
uncontrollable.

The conclusion that can be drawn from this example is
that, given a system that is modeled by transfer function,
the controllability and observability conditions of the
system depend on how the state variables are defined. 

8-15  INVARIANT THEOREMS ON
CONTROLLABILITY AND OBSERVABILITY

We now investigate the effects of the similarity transformations on
controllability and observability. The effects of controllability and
observability due to state feedback will be investigated.

▪ Theorem 8-8. Invariant theorem on similarity transformations: Consider
that the system described by the dynamic equations of Eqs. (8-261) and (8-
262). The similarity transformation x(t) = Px(t), where P is nonsingular,
transforms the dynamic equations to



where

The controllability of [Ā, B] and the observability of [Ā, C] are not
affected by the transformation.

In other words, controllability and observability are preserved through
similar transformations. The theorem is easily proven by showing that the
ranks of S and S and the ranks of V and V are identical, where S and V are
the controllability and observability matrices, respectively, of the transformed
system.

▪ Theorem 8-9. Theorem on controllability of closed-loop systems with
state feedback: If the open-loop system

is completely controllable, then the closed-loop system obtained through
state feedback,

so that the state equation becomes

is also completely controllable. On the other hand, if [A, B] is
uncontrollable, then there is no K that will make the pair [A − BK, B]
controllable. In other words, if an open-loop system is uncontrollable, it
cannot be made controllable through state feedback.

Proof: The controllability of [A, B] implies that there exists a control u(t)
over the time interval [t0, tf] such that the initial state x(t0) is driven to the
final state x(tf) over the finite time interval tf − t0. We can write Eq. (8-252) as



which is the control of the closed-loop system. Thus, if u(t) exists that can
drive x(t0) to any x(tf) in finite time, then we cannot find an input r(t) that will
do the same to x(t), because otherwise we can set u(t) as in Eq. (8-287) to
control the open-loop system.

▪ Theorem 8-10. Theorem on observability of closed-loop systems with
state feedback: If an open-loop system is controllable and observable, then
state feedback of the form of Eq. (8-287) could destroy observability. In other
words, the observability of open-loop and closed-loop systems due to state
feedback is unrelated.

The following example illustrates the relation between observability and
state feedback.

EXAMPLE 8-15-1  Let the coefficient matrices of a linear system be

We can show that the pair [A, B] is controllable and [A, C] is observable.
Let the state feedback be defined as

where

Then the closed-loop system is described by the state equation



The observability matrix of the closed-loop system is

The determinant of V is

Thus, if k1 and k2 are chosen so that |V| = 0, the closed-loop system would
be uncontrollable. 

8-16  CASE STUDY: MAGNETIC-BALL
SUSPENSION SYSTEM

As a case study to illustrate some of the material presented in this chapter,
let us consider the magnetic-ball suspension system that was earlier studied in
Example 3-9-2 and is shown in Fig. 8-21. The objective of the system is to
regulate the current of the electromagnet so that the ball will be suspended at
a fixed distance from the end of the magnet. The dynamic equations of the
system are



Figure 8-21   Ball-suspension system.

where Eq. (8-262) is nonlinear. The system variables and parameters are as
follows:

The state variables are defined as



The state equations are

Let us linearize the system, using the method described in Sec. 3-10, about

the equilibrium point y0(t) = x01 = 0.5 m. Then,  and 

 After substituting the parameter values, the linearized equations
are written

where Δx(t) denotes the state vector, and Δv(308) is the input voltage of
the linearized system. The coefficient matrices are

All the computations done in the following section can be carried out with
the MATLAB state tool (Sec. 8-20). To show the analytical method, we carry



out the steps of the derivations as follows.

8-16-1  The Characteristic Equation

Eigenvalues
The eigenvalues of A*, or the roots of the characteristic equation, are

s = –100 s–8.025 s = 8.025

The State-Transition Matrix
The state-transition matrix of A* is

or

By performing the partial-fraction expansion and carrying out the inverse
Laplace transform, the state-transition matrix is



Because the last term in Eq. (8-308) has a positive exponent, the response
of f(t) increases with time, and the system is unstable. This is expected, since
without control, the steel ball would be attracted by the magnet until it hits
the bottom of the magnet.

Transfer Function
Let us define the ball position x(t) as the output y(t); then, given the input,

v(t), the input-output transfer function of the system is

Controllability
The controllability matrix is

Because the rank of S is 3, the system is completely controllable.

Observability
The observability of the system depends on which variable is defined at the

output. For state-feedback control, which will be discussed later in Chap. 10,
the full controller requires feeding back all three state variables, x1, x2, and x3.
However, for reasons of economy, we may want to feed back only one of the



three state variables. To make the problem more general, we may want to
investigate which state, if chosen as the output, would render the system
unobservable.

1.    y(t) = ball position = x(t): C* = [1 0 0]. The observability matrix is

which has a rank of 3. Thus, the system is completely observable.
2.    y(t) = all velocity = dx(t)/dt: C* = [0 1 0]. The observability matrix
is

which has a rank of 3. Thus, the system is completely observable.
3.    y(t) = winding current = i(t): C* = [0,0,1]

The observability matrix is

which has a rank of 1. Thus, the system is unobservable. The physical
interpretation of this result is that, if we choose the current i(t) as the
measurable output, we would not be able to reconstruct the state variables
from the measured information.

The interested reader can enter the data of this system into any available
computer program and verify the results obtained.



8-17  STATE-FEEDBACK CONTROL
A majority of the design techniques in modern control theory is based on

the state-feedback configuration. That is, instead of using controllers with
fixed configurations in the forward or feedback path, control is achieved by
feeding back the state variables through real constant gains. The block
diagram of a system with state-feedback control is shown in Fig. 8-22.

Figure 8-22   Block diagram of a control system with state feedback.

We can show that the PID control and the tachometer-feedback control
discussed earlier are all special cases of the state-feedback control scheme.
Let us consider a second-order prototype system with tachometer-feedback
control. The process is decomposed by direct decomposition and is
represented by the state diagram of Fig. 8-23a. If the states x1(t) and x2(t) are
physically accessible, these variables may be fed back through constant real
gains −k1 and −k2, respectively, to form the control u(t), as shown in Fig. 8-
23b. The transfer function of the system with state feedback is



Figure 8-23   Control of a second-order system by state feedback.

For comparison purposes, we display the transfer functions of the systems
with tachometer feedback and with PD control as follows:

Tachometer feedback:

PD control:



Thus, tachometer feedback is equivalent to state feedback if k1 =ω2
n and k2 =

Ktω2
n. Comparing Eq. (8-314) with Eq. (8-316), we see that the characteristic

equation of the system with state feedback would be identical to that of the
system with PD control if k1 = ω2

nKp and k2 = ω2
nKD. However, the numerators

of the two transfer functions are different.
The systems with zero reference input, r(t) = 0, are commonly known as

regulators. When r(t) = 0, the control objective is to drive any arbitrary
initial conditions of the system to zero in some prescribed manner, for
example, “as quickly as possible.” Then a second-order system with PD
control is the same as state-feedback control.

It should be emphasized that the comparisons just made are all for second-
order systems. For higher-order systems, the PD control and tachometer-
feedback control are equivalent to feeding back only the state variables x1 and
x2, while state-feedback control feeds back all the state variables.

Because PI control increases the order of the system by one, it cannot be
made equivalent to state feedback through constant gains. We show in Sec. 8-
18 that if we combine state feedback with integral control we can again
realize PI control in the sense of state-feedback control.

8-18  POLE-PLACEMENT DESIGN THROUGH
STATE FEEDBACK

When root loci are utilized for the design of control systems, the general
approach may be described as that of pole placement; the poles here refer to
that of the closed-loop transfer function, which are also the roots of the
characteristic equation. Knowing the relation between the closed-loop poles
and the system performance, we can effectively carry out the design by
specifying the location of these poles.

The design methods discussed in the preceding sections are all
characterized by the property that the poles are selected based on what can be
achieved with the fixed-controller configuration and the physical range of the
controller parameters. A natural question would be: Under what condition
can the poles be placed arbitrarily? This is an entirely new design
philosophy and freedom that apparently can be achieved only under certain
conditions.



When we have a controlled process of the third order or higher, the PD, PI,
single-stage phase-lead, and phase-lag controllers would not be able to
control independently all the poles of the system because there are only two
free parameters in each of these controllers.

To investigate the condition required for arbitrary pole placement in an
nth-order system, let us consider that the process is described by the
following state equation:

where x(t) is an n × 1 state vector, and u(t) is the scalar control. The state-
feedback control is

where K is the 1 × n feedback matrix with constant-gain elements. By
substituting Eq. (8-318) into Eq. (8-317), the closed-loop system is
represented by the state equation

It will be shown in the following that if the pair [A, B] is completely
controllable, then a matrix K exists that can give an arbitrary set of
eigenvalues of (A – BK); that is, the n roots of the characteristic equation

can be arbitrarily placed. To show that this is true, that if a system is
completely controllable, it can always be represented in the controllable
canonical form (CCF); that is, in Eq. (8-317),



The feedback gain matrix K is expressed as

where k1, k2, …, kn are real constants. Then,

The eigenvalues of A − BK are then found from the characteristic equation

Clearly, the eigenvalues can be arbitrarily assigned because the feedback
gains k1, k2, …, kn are isolated in each coefficient of the characteristic
equation. Intuitively, it makes sense that a system must be controllable for the
poles to be placed arbitrarily. If one or more state variables are
uncontrollable, then the poles associated with these state variables are also
uncontrollable and cannot be moved as desired. The following example
illustrates the design of a control system with state feedback.

EXAMPLE 8-18-1  Consider the magnetic-ball suspension system analyzed
in Sec. 8-16. This is a typical regulator system for
which the control problem is to maintain the ball at its
equilibrium position. It is shown in Sec. 8-16 that the



system without control is unstable.
The linearized state model of the magnetic-ball system

is represented by the state equation

where Δx(t) denotes the linearized state vector, and
Δv(t) is the linearized input voltage. The coefficient
matrices are

The eigenvalues of A* are s = −100, −8.025, and
8.025. Thus, the system without feedback control is
unstable.

Let us give the following design specifications:

1.    The system must be stable.
2.    For any initial disturbance on the position of the ball from its
equilibrium position, the ball must return to the equilibrium position
with zero steady-state error.
3.    The time response should settle to within 5 percent of the initial
disturbance in not more than 0.5 s.
4.    The control is to be realized by state feedback

where k1, k2, and k3 are real constants.
A state diagram of the “open-loop” ball-suspension system is shown in

Fig. 8-24a, and the same of the “closed-loop” system with state feedback is
shown in Fig. 8-24b.



Figure 8-24   (a) State diagram of magnetic-ball-suspension system. (b)
State diagram of magnetic-ball-suspension system with state feedback.

We must select the desired location of the eigenvalues of (sI – A* + B*K)
so that requirement 3 in the preceding list on the time response is satisfied.
Without entirely resorting to trial and error, we can start with the following
decisions:

1.    The system dynamics should be controlled by two dominant roots.
2.    To achieve a relatively fast response, the two dominant roots should
be complex.
3.    The damping that is controlled by the real parts of the complex roots



should be adequate, and the imaginary parts should be high enough for
the transient to die out sufficiently fast.

After a few trial-and-error runs, using the ACSYS/MATLAB tool (see
Sec. 8-20), we found that the following characteristic equation roots should
satisfy the design requirements:

s = –20 s =–6+j4.9 s=–6–j4.9

The corresponding characteristic equation is

The characteristic equation of the closed-loop system with state feedback is
written

which can also be obtained directly from Fig. 8-24b using the SFG gain
formula. Equating like coefficients of Eqs. (8-328) and (8-329), we get the
following simultaneous equations:

Solving the last three equations, and being assured that the solutions exist
and are unique, we get the feedback-gain matrix

Figure 8-25 shows the output response y(t) when the system is subject to
the initial condition



Figure 8-25   Output response of magnetic-ball-suspension system with
state feedback, subject to initial condition y(0) = x1(0) = 1.

EXAMPLE 8-18-2  In this example, we shall design a state-feedback control
for the second-order sun-seeker system treated in
Example 6-5-1; also see Chap. 11. The CCF state
diagram of the process with K = 1 is shown in Fig. 8-
26a. The problem involves the design of a state-
feedback control with



Figure 8-26   (a) State diagram of second-order sun-seeker system. (b)
State diagram of second-order sun-seeker system with state feedback.

The state equations are represented in vector-matrix form as

where

The output equation is



where

The design objectives are as follows:

1.    The steady-state error due to a step function input should equal 0.
2.    With the state-feedback control, the unit-step response should have
minimum overshoot, rise time, and settling time.

The transfer function of the system with state feedback is written

Thus, for a step input, if the output has zero steady-state error, the constant
terms in the numerator and denominator must be equal to each other—that is
k1 = 2500. This means that, while the system is completely controllable, we
cannot arbitrarily assign the two roots of the characteristic equation, which is
now

In other words, only one of the roots of Eq. (8-339) can be arbitrarily
assigned. The problem is solved using ACSYS (see Sec. 8-20). After a few
trial-and-error runs, we found out that the maximum overshoot, rise time, and
settling time are all at a minimum when k2 = 75. The two roots are s = −50
and −50. The attributes of the unit-step response are

Maximum overshoot = 0% t, = 0.06717s ts = 0.09467s
The state-feedback gain matrix is

The lesson that we learned from this illustrative example is that state-
feedback control generally produces a system that is type 0. For the system to
track a step input without steady-state error, which requires a type 1 or
higher-type system, the feedback gain k1 of the system in the CCF state



diagram cannot be assigned arbitrarily. This means that, for an nth-order
system, only n − 1 roots of the characteristic equation can be placed
arbitrarily. 

8-19  STATE FEEDBACK WITH INTEGRAL
CONTROL

The state-feedback control structured in the preceding section has one
deficiency in that it does not improve the type of the system. As a result, the
state-feedback control with constant-gain feedback is generally useful only
for regulator systems for which the system does not track inputs, if all the
roots of the characteristic equation are to be placed at will.

In general, most control systems must track inputs. One solution to this
problem is to introduce integral control, just as with PI controller, together
with the constant-gain state feedback. The block diagram of a system with
constant-gain state feedback and integral control feedback of the output is
shown in Fig. 8-27. The system is also subject to a noise input n(t). For a
SISO system, the integral control adds one integrator to the system. As
shown in Fig. 8-27, the output of the (n + 1)st integrator is designated as xn+1.
The dynamic equations of the system in Fig. 8-27 are written as



Figure 8-27   Block diagram of a control system with state feedback and
integral output feedback.

where x(t) is the n × 1 state vector; u(t) and y(t) are the scalar actuating
signal and output, respectively; r(t) is the scalar reference input; and n(t) is
the scalar disturbance input. The coefficient matrices are represented by A, B,
C, D, and E, with appropriate dimensions. The actuating signal u(t) is related
to the state variables through constant-state and integral feedback,

where

with constant real gain elements, and kn+1 is the scalar integral-feedback
gain.

Substituting Eq. (8-343) into Eq. (8-340) and combining with Eq. (8-341),
the n + 1 state equations of the overall system with constant-gain and integral
feedback are written

where



Substituting Eq. (8-343) into Eq. (8-342), the output equation of the overall
system is written

where

The design objectives are as follows:

1.    The steady-state value of the output y(t) follows a step-function
input with zero error; that is,

2.    The n + 1 eigenvalues of (  – ) are placed at desirable locations.
For the last condition to be possible, the pair [ , ] must be completely
controllable.

The following example illustrates the applications of state-feedback with
integral control.



EXAMPLE 8-18-1  We have shown in Example 8-18-1 that, with constant-
gain state-feedback control, the second-order sun-
seeker system can have only one of its two roots
placed at will for the system to track a step input
without steady-state error. Now let us consider the
same second-order sun-seeker system in Example 8-
18-1, except that an integral control is added to the
forward path. The state diagram of the overall system
is shown in Fig. 8-28. The coefficient matrices are

Figure 8-28   Sun-seeker system with state feedback and integral control
in Example 8-18-1.

From Eq. (8-347),

We can show that the pair [ , ] is completely controllable. Thus, the
eigenvalues of (|sI –  + |) can be arbitrarily placed. Substituting , ,
and  in the characteristic equation of the closed-loop system with state and
integral feedback, we have



which can also be found from Fig. 8-28 using the SFG gain formula.
The design objectives are as follows:

1.    The steady-state output must follow a step function input with zero
error.
2.    The rise time and settling time must be less than 0.05 s.
3.    The maximum overshoot of the unit-step response must be less than
5 percent.

Because all three roots of the characteristic equation can be placed
arbitrarily, it is not realistic to require minimum rise and settling times, as in
Example 8-18-1.

Again, to realize a fast rise time and settling time, the roots of the
characteristic equation should be placed far to the left in the s-plane, and the
natural frequency should be high. Keep in mind that roots with large
magnitudes will lead to high gains for the state-feedback matrix.

The ACSYS/MATLAB software was used to carry out the design. After a
few trial-and-error runs, the design specifications can be satisfied by placing
the roots at

s = −200 −50+j50 and −50−j50
The desired characteristic equation is

Equating like coefficients of Eqs. (8-355) and (8-356), we get

k1 = 25,000 k2 = 275 and k3 = 400
The attributes of the unit-step response are as follows:

Maximumovershoot=4%



tr = 0.03247s

ts = 0.04667s

Notice that the high feedback gain of k1, which is due to the large values of
the roots selected, may pose physical problems; if so, the design
specifications may have to be revised. 

EXAMPLE 8-18-2  In this example we illustrate the application of state-
feedback with integral control to a system with a
disturbance input.

Consider a dc-motor control system that is described by the following state
equations:

where

The output equation is



The design problem is to find the control u(t) = ea(t) through state feedback
and integral control such that

1.    

2.    

3.    The eigenvalues of the closed-loop system with state feedback and
integral control are at s = −300, −10 + j 10, and −10 − j10.

Let the state variables be defined as x1(t) = ω (t) and x2(t) = ia(t). The state
equations in Eqs. (8-357) and (8-358) are written in vector-matrix form:

where n(t) = TLus(t).

From Eq. (8-347),



The control is given by

where

Figure 8-29 shows the state diagram of the overall designed system.

Figure 8-29   Dc-motor control system with state feedback and integral
control and disturbance torque in Example 8-18-2.



The coefficient matrix of the closed-loop system is

The characteristic equation is

which is more easily determined by applying the gain formula of SFG to
Fig. 8-29.

For the three roots assigned, the last equation must equal

Equating the like coefficients of Eqs. (8-371) and (8-372), we get

k1 = −0.38 k2 = 0.6 k = −6.0
Applying the SFG gain formula to Fig. 8-29 between the inputs r (t) and

n(t) and the states ω (t) and ia(t), we have

where Δc(s) is the characteristic polynomial given in Eq. (8-372).
Applying the final-value theorem to the last equation, the steady-state

values of the state variables are found to be



Thus, the motor velocity ω (t) will approach the constant reference input
step function r(t) = us(t) as t approaches infinity, independent of the
disturbance torque TL. Substituting the system parameters into Eq. (8-373),
we get

Figure 8-30 shows the time responses of ω (t) and ia(t) when TL = 1 and TL

= 0. The reference input is a unit-step function. 



Figure 8-30   Time responses of dc-motor control system with state
feedback and integral control and disturbance torque in Example 8-18-2.

8-20  MATLAB TOOLS AND CASE STUDIES
In this section, we present a MATLAB tool to solve most problems

addressed in this chapter. The reader is encouraged to apply this tool to all the
problems identified by a MATLAB toolbox in the left margin of the text
throughout this chapter. As in Chap. 2, we use MATLAB’s symbolic tool to



solve some of the initial problems in this chapter involving inverse Laplace
transformations. Finally, using the tfcal tool, discussed in Chap. 3, we can
convert from transfer functions to state-space representation. These programs
allow the user to conduct the following tasks:

•   Enter the state matrices.
•   Find the system’s characteristic polynomial, eigenvalues, and
eigenvectors.
•   Find the similarity transformation matrices.
•   Examine the system controllability and observability properties.
•   Obtain the step, impulse, and natural (response to initial conditions)
responses, as well as the time response to any function of time.
•   Use the MATLAB symbolic tool to find the state-transition matrix
using the inverse Laplace command.
•   Convert a transfer function to state-space form or vice versa.

To better illustrate how to use the software, let us go through some of the
steps involved in solving earlier examples in this chapter.

8-20-1  Description and Use of the State-Space Analysis Tool
The State-Space Analysis Tool (state tool) consists of a number of m-files

and GUIs for the analysis of state-space systems. The state tool can be
invoked from the Automatic Control Systems launch applet by clicking on
the appropriate button. You will then see the window pictured in Fig. 8-31.
We first consider the example in Sec. 8-16 to describe the functionality of the
state tool.





Figure 8-31   The State-Space Analysis window.

To enter the following coefficient matrices,

enter the values in the appropriate edit boxes. Note that the default value of
initial conditions is set to zero and you do not have to adjust it for this
example. Follow the instructions on the screen very carefully. The elements
in the row of a matrix may be separated by a space or a comma, while the
rows themselves must be separated by a semicolon. For example, to enter
matrix A, enter [0,1,0;64.4,0,-16;0,0,-100] in the A edit box, and to enter
matrix B, enter [0;0;100] in the B edit box, as shown in Fig. 8-32. In this
case, the D matrix is set to zero (default value). To find the characteristic Eq.
(8-270), eigenvalues, and eigenvectors, choose the “Eigenvals & vects of A”
option from the Calculate/Display menu. The detailed solution will be
displayed on the MATLAB command window. The A matrix, eigenvalues of
A, and eigenvectors of A are shown in Fig. 8-33. Note that the matrix
representation of the eigenvalues corresponds to the diagonal canonical form
(DCF) of A, while matrix T, representing the eigenvectors, is the DCF
transformation matrix discussed in Sec. 8-11-4. To find the state-transition
matrix ϕ (t), you must use the tfsym tool, which will be discussed in Sec. 8-
20-2.





Figure 8-32   Inputting values in the state-space window.

Figure 8-33   The MATLAB command window display after clicking the
“Eigenvals & vects of A” button.

The choice of the C in Eq. (8-376) makes the ball position the output y(t)



for input v(t). Then the input-output transfer function of the system can be
obtained by choosing the “State-Space Calculations” option. The final output
appearing in the MATLAB command window is the transfer function in both
polynomial and factored forms, as shown in Fig. 8-34. As you can see, there
is a small error due to numerical simulation. You may set the small terms to
zero in the resulting transfer function to get Eq. (8-309).





Figure 8-34   The MATLAB command window after clicking the “State-
Space Calculations” button.

Click the “Controllability” and “Observability” menu options to determine
whether the system is controllable or observable. Note that these options are
only enabled after pressing the “State-Space Calculations” button. After
clicking the “Controllability” button, you get the MATLAB command
window display, shown in Fig. 8-35. The S matrix in this case is the same as
Eq. (8-310) with the rank of 3. As a result, the system is completely
controllable. The program also provides the M and P matrices and the system
controllability canonical form (CCF) representation as defined in Sec. 8-11-2.

Figure 8-35   The MATLAB command window after clicking the
“Controllability” button.

Once you choose the “Observability” option, the system observability is
assessed in the MATLAB command window, as shown in Fig. 8-36. The
system is completely observable, since the V matrix has a rank of 3. Note that
the V matrix in Fig. 8-42 is the same as in Eq. (8-311). The program also



provides the M and Q matrices and the system observability canonical form
(OCF) representation as defined in Sec. 8-11-3. As an exercise, the user is
urged to reproduce Eqs. (8-312) and (8-313) using this software.





Figure 8-36   The MATLAB command window after clicking the
“Observability” button.

You may obtain the output y(t) natural time response (response to initial
conditions only), the step response, the impulse response, or the time
response to any other input function by choosing the appropriate option from
the Time Response menu.

The state tool program may be used on all the examples identified by a
MATLAB toolbox in the left margin of the text throughout this chapter,
except problems involving inverse Laplace transformations and closed-form
solutions. To address the analytical solutions, we need to use the tfsym tool,
which requires the symbolic tool of MATLAB.

8-20-2  Description and Use of tfsym for State-Space
Applications

You may run the Transfer Function Symbolic Tool by clicking the
“Transfer Function Symbolic” button in the ACSYS window. You should get
the window in Fig. 8-37. For this example, we will use the State-Space mode.
Choose the appropriate option from the drop-down menu as shown in Fig. 8-
37.





Figure 8-37   The Transfer Function Symbolic window.

Let us continue our solution to the example in previous section. Figure 8-
38 shows the input of the matrices for this example into the state-space
window. The input and output displays in the MATLAB command window
are selectively shown in Fig. 8-39. Note that at first glance the (sI-A)−1 and ϕ
(t) matrices may appear different from Eqs. (8-366) and (8-367). However,
after minor manipulations, you may be able to verify that they are the same.
This difference in representation is because of MATLAB symbolic approach.
You may further simplify these matrices by using the “simple” command in
the MATLAB command window. For example, to simplify ϕ (t), type
“simple(phi)” in the MATLAB command window. If the desired format has
not been achieved, you may have reached the software limit.





Figure 8-38   Inputting values into the Transfer Function Symbolic
window.





Figure 8-39   Selective display of the MATLAB command window for the
tfsym tool.

8-21  CASE STUDY: POSITION CONTROL OF
THE LEGO MINDSTORMS ROBOTIC ARM
SYSTEM

Let us consider the robotic arm system that was shown in Fig. 2-41, and in
App. D, where using a proportional controller, in Sec. D-1-6, we control the
position of the robot arm. In this section we use the state-space approach to
do the same.

Proportional Control
From Eq. (6-57), the system transfer function is

As before, La/Ra may be neglected for small La. Hence, from Eq. (6-58), the
simplified transfer functions of the systems is

Table 8-1 restates the parameter values that were shown earlier in Table 8-
7 for the LEGO NXT motor.

TABLE 8-1   Robotic Arm and Payload Experimental Parameters



Premultiplying both sides of Eq. (8-380) by the denominator, we get

Taking the inverse Laplace transform of Eq. (8-381), while recalling that
the transfer function is independent of initial conditions of the system, we get
the following differential equation with constant real coefficients:

Obviously, you can also directly arrive at Eq. (8-383) using the modeling
techniques discussed in Chaps. 2 and 6. Defining

where x1(t), x2(t) are the state variables, and u(t) is the input, and y(t) is the



output.
The state equations are

There is a slight, but important, difference between the proportional control
system in Eqs. (8-384) and (8-385) and the state feedback control system in
Eqs. (8-317) and (8-318). Comparing the current system to that in Example
8-18-2, we can see because KP in the proportional control appears in the
forward path, as opposed to in the feedback loops, it also appears in the B
matrix as the coefficient of the input u(t); also see Eq. (8-337) and Fig. 8-26b
for comparison. As a result, the coefficient matrices become

Using Kp = 3 (also see Sec. 8-1-6), and substituting the parameter values
from Table 8-1 into the coefficient matrices, we get

Using the ACSYS state tool we can confirm the following results:



The characteristic equation is

The eigenvalues of A, or the roots of the characteristic equation, are

Controllability: The controllability matrix is

Because the rank of S is 2, the system is completely controllable.
   The CCF representation of the system is

Observability: The observability matrix is

which has a rank of 2. Thus, the system is completely observable.
   The OCF representation of the system is



Using the Time Response menu in the State-Space Tool, we can obtain the
step response of the system for a unit step input, which is shown in Fig. 8-40.
The results are identical to Fig. 8-31, which was obtained for a step input of
160°. For the sake of comparison with the PD controller, we used Toolbox 8-
21-2 instead.

Figure 8-40   Comparison of unit step response of the NXT robot arm for
proportional controller with KP = 3 and PD controller with KP = 3 and KD =
0.1.

PD Control
The transfer functions of the systems is



Substituting the parameter values in Table 8-1, we get

For comparison purposes, with the proportional controller in Fig. 8-40, we
retain the earlier value of Kp = 3 and vary KD. For KD = 0.1 the transfer
function in Eq. (8-395) becomes

Using Toolbox 8-21-1 we can find the equivalent system state equations.

Toolbox 8-21-1
Conversion of the transfer function in Eq. (8-396) to the state-space

form:

The coefficient matrices of PD control become



Using the ACSYS state tool we can confirm the following results:
The characteristic equation is

The eigenvalues of A, or the roots of the characteristic equation, are

Controllability: The controllability matrix is

Because the rank of S is 2, the system is completely controllable.
   The CCF representation of the system is

Observability: The observability matrix is

If Kp ≠ 0, the matrix has a rank of 2. Thus, the system is completely
observable.

   The OCF representation of the system is



Using the Time Response menu in the State-Space Tool, we can obtain the
step response of the system for a unit step input, which is shown in Fig. 8-40.
Comparing the proportional and PD controllers, we can see that the PD
controller improves the percent overshoot and settling time by increasing the
damping of the system.

Toolbox 8-21-2
Figure 8-40 is obtained by the following sequence of MATLAB

functions:

8-22  SUMMARY
This chapter was devoted to the state-variable analysis of linear systems.

The fundamentals on state variables and state equations were introduced in
Chaps. 2 and 3, and formal discussions on these subjects were covered in this



chapter. Specifically, the state-transition matrix and state-transition equations
were introduced and the relationship between the state equations and transfer
functions was established. Given the transfer function of a linear system, the
state equations of the system can be obtained by decomposition of the
transfer function. Given the state equations and the output equations, the
transfer function can be determined either analytically or directly from the
state diagram.

Characteristic equations and eigenvalues were defined in terms of the state
equations and the transfer function. Eigenvectors of A were also defined for
distinct and multiple-order eigenvalues. Similarity transformations to
controllability canonical form (CCF), observability canonical form (OCF),
diagonal canonical form (DCF), and Jordan canonical form (JCF) were
discussed. State controllability and observability of linear time-invariant
systems were defined and illustrated, and a final example, on the magnetic-
ball-suspension system, summarized the important elements of the state-
variable analysis of linear systems.

The MATLAB software tools state tool and tfsym were described in Sec.
8-20. The program functionality was discussed with two examples. Together
these tools can solve most of the homework problems and examples in this
chapter. Finally, the NXT robot example studied in Chaps. 2, 6, and 7 and
App. D was extended to state-space form in Sec. 8-21, where the effects of a
proportional and a PD controller were studied.
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PROBLEMS
8-1.   The following differential equations represent linear time-invariant

systems. Write the dynamic equations (state equations and output equations)
in vector-matrix form.

(a)  

(b)  

(c)  

(d)  

8-2.   The following transfer functions show linear time-invariant systems.
Write the dynamic equations (state equations and output equations) in vector-
matrix form.

(a)  

(b)  

(c)  

(d)  

8-3.   Repeat Prob. 8-2 by using MATLAB.

8-4.   Write the state equations for the block diagrams of the systems
shown in Fig. 8P-4.





Figure 8P-4

8-5.   By use of Eq. (8-58), show that

8-6.   The state equations of a linear time-invariant system are represented
by

Find the state-transition matrix ϕ(t), the characteristic equation, and
the eigenvalues of A for the following cases:

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  



(g)  

8-7.   Find ϕ(t) and the characteristic equation of the state variables in
Prob. 8-6, using a computer program.

8-8.   Find the state-transition equation of each of the systems described in
Prob. 8-6 for t ≥ 0. Assume that x(0) is the initial state vector, and the
components of the input vector u(t) are all unit-step functions.

8-9.   Find out if the matrices given in the following can be state-transition
matrices. [Hint: check the properties of ϕ(t).]

(a)  

(b)  

(c)  

(d)  

8-10.   Find the time response of the following systems:

(a)  

(b)  



8-11.   Given a system described by the dynamic equations:

(a)  

(b)  

(c)  

(1)  Find the eigenvalues of A. Use the ACSYS computer program to
check the answers. You may get the characteristic equation and solve for the
roots using tfsym or tcal components of ACSYS.

(2)  Find the transfer-function relation between X(s) and U(s).

(3)  Find the transfer function Y(s)/U(s).

8-12.   Given the dynamic equations of a time-invariant system:

where

Find the matrices A1 and B1 so that the state equations are written as



where

8-13.   Given the dynamic equations

(a)  

(b)  

(c)  

(d)  

(e)  

Find the transformation  that transforms the state equations



into the controllability canonical form (CCF).

8-14.   For the systems described in Prob. 8-13, find the transformation 
 so that the state equations are transformed into the observability

canonical form (OCF).

8-15.   For the systems described in Prob. 8-13, find the transformation 
 so that the state equations are transformed into the diagonal

canonical form (DCF) if A has distinct eigenvalues and Jordan canonical
form (JCF) if A has at least one multiple-order eigenvalue.

8-16.   Consider the following transfer functions. Transform the state
equations into the controllability canonical form (CCF) and observability
canonical form (OCF).

(a)  

(b)  

8-17.   The state equation of a linear system is described by

The coefficient matrices are given as follows. Explain why the state
equations cannot be transformed into the controllability canonical form
(CCF).

(a)  

(b)  



(c)  

(d)  

8-18.   Check the controllability of the following systems:

(a)  

(b)  

(c)  

(d)  

(e)  



(f)  

8-19.   Check the observability of the following systems:

(a)  

(b)  

(c)  

(d)  
(e)  

(f)  



8-20.   The equations that describe the dynamics of a motor control system
are

(a)  Assign the state variables as x1(t) = θm(t), x2(t) = dθm(t)/dt, and x3(t) =
ia(t). Write the state equations in the form of

Write the output equation in the form y(t) = Cx(t), where y(t) = θm(t).
(b)  Find the transfer function G(s) = Θm(s)/E(s) when the feedback path

from Θm(s) to E(s) is broken. Find the closed-loop transfer function M(s) =
Θm(s)/Θr(s).

8-21.   Given the matrix A of a linear system described by the state
equation



(a)  

(b)  

(c)  

Find the state-transition matrix ϕ(t) using the following methods:

(1)  Infinite-series expansion of eAt, expressed in closed form

(2)  The inverse Laplace transform of (sI − A)−1

8-22.   The schematic diagram of a feedback control system using a dc
motor is shown in Fig. 8P-22. The torque developed by the motor is Tm(t) =
Kiia(t), where Ki is the torque constant.



Figure 8P-22

The constants of the system are

Assume that all the units are consistent so that no conversion is necessary.
(a)   Let the state variables be assigned as x1 = θy and x2 = dθy/dt. Let the

output be y = θy. Write the state equations in vector-matrix form. Show that
the matrices A and B are in CCF.

(b)   Let θr(t) be a unit-step function. Find x(t) in terms of x(0), the initial
state. Use the Laplace transform table.

(c)   Find the characteristic equation and the eigenvalues of A.
(d)   Comment on the purpose of the feedback resistor Rs.

8-23.   Repeat Prob. 8-22 with the following system parameters:

8-24.   Consider that matrix A can be diagonalized. Show that 
 where P transforms A into a diagonal matrix, and 

where D is a diagonal matrix.

8-25.   Consider that matrix A can be transformed to the Jordan canonical
form, then  where S transforms A into a Jordan canonical form
and J is in a Jordan canonical form.

8-26.   The block diagram of a feedback control system is shown in Fig.
8P-26.

(a)  Find the forward-path transfer function Y(s)/E(s) and the closed-loop



transfer function Y(s)/R(s).
(b)  Write the dynamic equations in the form of

Find A, B, C, and D in terms of the system parameters.
(c)  Apply the final-value theorem to find the steady-state value of the

output y(t) when the input r(t) is a unit-step function. Assume that the closed-
loop system is stable.

Figure 8P-26

8-27.   For the linear time-invariant system whose state equations have the
coefficient matrices given by Eqs. (8-191) and (8-192) (CCF), show that

and the characteristic equation of A is



8-28.   A linear time-invariant system is described by the differential
equation

(a)   Let the state variables be defined as x1 = y, x2 = dy/dt, and x3 = d2y/dt2.
Write the state equations of the system in vector-matrix form.

(b)   Find the state-transition matrix ϕ(t) of A.
(c)   Let y(0) = 1, dy(0)/dt = 0, d2y(0)/dt2 = 0, and r(t) = us(t). Find the state-

transition equation of the system.
(d)   Find the characteristic equation and the eigenvalues of A.

8-29.   A spring-mass-friction system is described by the following
differential equation:

(a)  Define the state variables as x1(t) = y(t) and x2(t) = dy(t)/dt. Write the
state equations in vector-matrix form. Find the state-transition matrix ϕ(t) of
A.

(b)  Define the state variables as x1(t) = y(t) and x2(t) = y(t) + dy(t)/dt. Write
the state equations in vector-matrix form. Find the state-transition matrix ϕ (t)
of A.

(c)  Show that the characteristic equations, | sI – A | = 0, for parts (a) and
(b) are identical.

8-30.   Given the state equations dx(t)/dt = Ax(t), where σ and ω are real
numbers:

(a)  Find the state transition matrix of A.
(b)  Find the eigenvalues of A.

8-31.   (a) Show that the input-output transfer functions of the two systems
shown in Fig. 8P-31 are the same.



Figure 8P-31

(b)  Write the dynamic equations of the system in Fig. 8P-31a as

and those of the system in Fig. 8-31b as

8-32.   Draw the state diagrams for the following systems.



(a)  
(b)  Same A as in part (a), but with

8-33.   Draw state diagrams for the following transfer functions by direct
decomposition. Assign the state variables from right to left for x1, x2, .…
Write the state equations from the state diagram and show that the equations
are in CCF.

(a)  

(b)  

(c)  

(d)  

8-34.   Draw state diagrams for the systems described in Prob. 8-33 by
parallel decomposition. Make certain that the state diagrams contain a
minimum number of integrators. The constant branch gains must be real.
Write the state equations from the state diagram.

8-35.   Draw the state diagrams for the systems described in Prob. 8-33 by
using cascade decomposition. Assign the state variables in ascending order
from right to left. Write the state equations from the state diagram.

8-36.   The block diagram of a feedback control system is shown in Fig.
8P-36.

(a)   Draw a state diagram for the system by first decomposing G(s) by



direct decomposition. Assign the state variables in ascending order, x1, x2,…,
from right to left. In addition to the state-variable-related nodes, the state
diagram should contain nodes for R(s), E(s), and C(s).

(b)   Write the dynamic equations of the system in vector-matrix form.
(c)   Find the state-transition equations of the system using the state

equations found in part (b). The initial state vector is x(0), and r(t) = us(t).
(d)   Find the output y(t) for t ≥ 0 with the initial state x(0), and r(t) = us(t).

Figure 8P-36

8-37.
(a)  Find the closed-loop transfer function Y(s)/R(s), and draw the state

diagram.
(b)  Perform a direct decomposition to Y(s)/R(s), and draw the state

diagram.
(c)  Assign the state variables from right to left in ascending order, and

write the state equations in vector-matrix form.
(d)  Find the state-transition equations of the system using the state

equations found in part (c). The initial state vector is x(0), and r(t) = us(t).
(e)  Find the output y(t) for t ≥ 0 with the initial state x(0), and r(t) = us(t).

8-38.   The block diagram of a linearized idle-speed engine-control system
of an automobile is shown in Fig. 8P-38. (For a discussion on linearization of
nonlinear systems, refer to Sect. 4-9.) The system is linearized about a
nominal operating point, so all the variables represent linear-perturbed
quantities. The following variables are defined: Tm(t) is the engine torque; TD,
the constant load-disturbance



Figure 8P-38

torque; ω (t), the engine speed; u(t), the input-voltage to the throttle
actuator; and α, the throttle angle. The time delay in the engine model can be
approximated by

(a)  Draw a state diagram for the system by decomposing each block
individually. Assign the state variables from right to left in ascending order.

(b)  Write the state equations from the state diagram obtained in part (a), in
the form of

(c)  Write Y(s) as a function of U(s) and TD(s). Write Ω(s) as a function of
U(s) and TD(s).

8-39.   The state diagram of a linear system is shown in Fig. 8P-39.



Figure 8P-39

(a)  Assign state variables on the state diagram from right to left in
ascending order. Create additional artificial nodes if necessary so that the
state-variable nodes satisfy as “input nodes” after the integrator branches are
deleted.

(b)  Write the dynamic equations of the system from the state diagram in
part (a).

8-40.   The block diagram of a linear spacecraft-control system is shown in
Fig. 8P-40.



Figure 8P-40

(a)  Determine the transfer function Y(s)/R(s).
(b)  Find the characteristic equation and its roots of the system. Show that

the roots of the characteristic equation are not dependent on K.
(c)  When K = 1, draw a state diagram for the system by decomposing

Y(s)/R(s), using a minimum number of integrators.
(d)  Repeat part (c) when K = 4.
(e)  Determine the values of K that must be avoided if the system is to be

both state controllable and observable.

8-41.   A considerable amount of effort is being spent by automobile
manufacturers to meet the exhaust-emission-performance standards set by the
government. Modern automobile-power-plant systems consist of an internal
combustion engine that has an internal cleanup device called a catalytic
converter. Such a system requires control of such variables as the engine air–
fuel (A/F) ratio, ignition-spark timing, exhaust-gas recirculation, and
injection air. The control-system problem considered in this problem deals
with the control of the A/F ratio. In general, depending on fuel composition
and other factors, a typical stoichiometric A/F is 14.7:1, that is, 14.7 grams of
air to each gram of fuel. An A/F greater or less than stoichiometry will cause
high hydrocarbons, carbon monoxide, and nitrous oxides in the tailpipe



emission. The control system shown in Fig. 8P-41 is devised to control the
air–fuel ratio so that a desired output is achieved for a given input command.

Figure 8P-41

The sensor senses the composition of the exhaust-gas mixture entering the
catalytic converter. The electronic controller detects the difference or the
error between the command and the error and computes the control signal
necessary to achieve the desired exhaust-gas composition. The output y(t)
denotes the effective air–fuel ratio. The transfer function of the engine is
given by

where Td = 0.2 s is the time delay and is approximated by

The gain of the sensor is 1.0.
(a)  Using the approximation for  given, find the expression for Gp(s).

Decompose Gp(s) by direct decomposition, and draw the state diagram with
u(t) as the input and y(t) as the output. Assign state variables from right to left
in ascending order, and write the state equations in vector-matrix form.

(b)  Assuming that the controller is a simple amplifier with a gain of l, i.e.,
u(t) = e(t), find the characteristic equation and its roots of the closed-loop



system.

8-42.   Repeat Prob. 8-41 when the time delay of the automobile engine is
approximated as

8-43.   The schematic diagram in Fig. 8P-43 shows a permanent-magnet
dc-motor-control system with a viscous-inertia damper. The system can be
used for the control of the printwheel of an electronic word processor. A
mechanical damper such as the viscous-inertia type is sometimes used in
practice as a simple and economical way of stabilizing a control system. The
damping effect is achieved by a rotor suspended in a viscous fluid. The
differential and algebraic equations that describe the dynamics of the system
are as follows:



Figure 8P-43

(a)  Let the state variables be defined as x1(t) = ωm(t) and x2(t) = ωD(t). Write
the state equations for the open-loop system with e(t) as the input. (Open-
loop refers to the feedback path from ωm to e being open.)

(b)  Draw the state diagram for the overall system using the state equations
found in part (a) and e(t) = Ks[ωr(t) – ωm(t)].

(c)  Derive the open-loop transfer function Ωm(s)/E(s) and the closed-loop
transfer function Ωm(s)/Ωr(s).

8-44.   Determine the state controllability of the system shown in Fig. 8P-
44.

Figure 8P-44

(a)  a = 1, b = 2, c = 2, and d = 1.



(b)  Are there any nonzero values for a, b, c, and d such that the system is
uncontrollable?

8-45.   Determine the controllability of the following systems:

(a)  

(b)  

8-46.   Determine the controllability and observability of the system shown
in Fig. 8P-46 by the following methods:

(a)  Conditions on the A, B, C, and D matrices
(b)  Conditions on the pole-zero cancellation of the transfer functions

Figure 8P-46

8-47.   The transfer function of a linear control system is



(a)  Determine the value(s) of α so that the system is either uncontrollable
or unobservable.

(b)  With the value(s) of α found in part (a), define the state variables so
that one of them is uncontrollable.

(c)  With the value(s) of α found in part (a), define the state variables so
that one of them is unobservable.

8-48.   Consider the system described by the state equation

where

Find the region in the a-b plane such that the system is completely
controllable.

8-49.   Determine the condition on b1, b2, c1, and c2 so that the following
system is completely controllable and observable.

8-50.   The schematic diagram of Fig. 8P-50 represents a control system
whose purpose is to hold the level of the liquid in the tank at a desired level.
The liquid level is controlled by a float whose position h(t) is monitored. The
input signal of the open-loop system is e(t). The system parameters and
equations are as follows:



Figure 8P-50

The number of valves connected to the tank from the reservoir is N = 10.
All the valves have the same characteristics and are controlled simultaneously



by θy. The equations that govern the volume of flow are as follows:

(a)  Define the state variables as x1(t) = h(t), x2(t) = θm(t), and x3(t) =
dθm(t)/dt. Write the state equations of the system in the form of dx(t)/dt =
Ax(t) + Bei(t). Draw a state diagram for the system.

(b)  Find the characteristic equation and the eigenvalues of the A matrix
found in part (a).

(c)  Show that the open-loop system is completely controllable; that is, the
pair [A, B] is controllable.

(d)  For reasons of economy, only one of the three state variables is
measured and fed back for control purposes. The output equation is y = Cx,
where C can be one of the following forms:

1.  

2.  

3.  

Determine which case (or cases) corresponds to a completely observable
system.

8-51.   The “broom-balancing” control system described in Prob. 6-21 has
the following parameters:

The small-signal linearized state equation model of the system is



where

(a)  Find the characteristic equation of A* and its roots.
(b)  Determine the controllability of [A*, B*].
(c)  For reason of economy, only one of the state variables is to be

measured for feedback.

The output equation is written

Δy(t) = C* Δx(t)

where

1.  

2.  

3.  

4.  

Determine which C* corresponds to an observable system.

8-52.   The double-inverted pendulum shown in Fig. 8P-52 is
approximately modeled by the following linear state equation:



Figure 8P-52

where



Determine the controllability of the states.

8-53.   The block diagram of a simplified control system for the large space
telescope (LST) is shown in Fig. 8P-53. For simulation and control purposes,
model the system by state equations and by a state diagram.

(a)  Draw a state diagram for the system and write the state equations in
vector-matrix form. The state diagram should contain a minimum number of
state variables, so it would be helpful if the transfer function of the system is
written first.

(b)  Find the characteristic equation of the system.



Figure 8P-53

8-54. The state diagram shown in Fig. 8P-54 represents two subsystems
connected in cascade.

Figure 8P-54

(a)  Determine the controllability and observability of the system.
(b)  Consider that output feedback is applied by feeding back y2 to u2; that

is, u2 = −ky2, where k is a real constant. Determine how the value of k affects
the controllability and observability of the system.

8-55.   Given the system

where



(a)  Determine the state controllability and observability of the system.
(b)  Let u(t) = −Kx(t), where K = [k1k2], and k1 and k2 are real constants.

Determine if and how controllability and observability of the closed-loop
system are affected by the elements of K.

8-56.   The torque equation for a system is given by

where KFd1 = 1 and J = 1. Define the state variables as x1 = θ and x2 = dθ/dt.
Find the state-transition matrix ϕ(t) using ACSYS/MATLAB.

8-57.   Starting with the state equation dx(t)/dt = Ax(t) + Bθr obtained in
Prob. 8-22, use ACSYS/MATLAB to do the following:

(a)  Find the state-transition matrix of A, ϕ(t).
(b)  Find the characteristic equation of A.
(c)  Find the eigenvalues of A.
(d)  Compute and plot the unit-step response of y(t) = θy(t) for 3 s. Set all

the initial conditions to zero.

8-58.   The block diagram of a control system with state feedback is shown
in Fig. 8P-58. Find the real feedback gains k1, k2, and k3 so that



Figure 8P-58

•   The steady-state error ess [e(t) is the error signal] due to a step input is
zero.
•   The complex roots of the characteristic equation are at −1 + j and −1
−j.
•   Find the third root. Can all three roots be arbitrarily assigned while
still meeting the steady-state requirement?

8-59.   The block diagram of a control system with state feedback is shown
in Fig. 8P-59a. The feedback gains k1, k2, and k3 are real constants.



Figure 8P-59

(a)  Find the values of the feedback gains so that:

•   The steady-state error ess[e(t) is the error signal] due to a step input is
zero.
•   The characteristic equation roots are at −1 + j, −1 − j, and −10.

(b)  Instead of using state feedback, a series controller is implemented, as
shown in Fig. 8P-59b. Find the transfer function of the controller Gc(s) in
terms of k1, k2, and k3 found in part (a) and the other system parameters.

8-60.   Problem 8-39 has revealed that it is impossible to stabilize the
broom-balancing control system described in Probs. 4-21 and 8-51 with a
series PD controller. Consider that the system is now controlled by state
feedback with Δr(t) = −Kx(t), where



(a)  Find the feedback gains k1, k2, k3, and k4 so that the eigenvalues of A* −
B*K are at −1 + j, −1 − j, −10, and −10. Compute and plot the responses of
Δx1(t), Δx2(t), Δx3(t), and Δx4(t) for the initial condition, Δx1(0) = 0.1, Δθ(0) =
0.1, and all other initial conditions are zero.

(b)  Repeat part (a) for the eigenvalues at −2 + j2, −2 − j2, −20, and −20.
Comment on the difference between the two systems.

8-61.   The linearized state equations of the ball-suspension control system
described in Prob. 4-57 are expressed as

where

Let the control current Δi(t) be derived from the state feedback Δi(t) =
−KΔx(t), where

(a)  Find the elements of K so that the eigenvalues of A* − B*K are at −1
+ j, −1 − j, −10, and −10.

(b)  Plot the responses of Δx1(t) = Δy1(t) (magnet displacement) and Δx3(t) =
Δy2(t) (ball displacement) with the initial condition



(c)  Repeat part (b) with the initial condition

Comment on the responses of the closed-loop system with the two sets of
initial conditions used in (b) and (c).

8-62.   The temperature x(t) in the electric furnace shown in Fig. 8P-62 is
described by the differential equation

Figure 8P-62

where u(t) is the control signal, and n(t) the constant disturbance of
unknown magnitude due to heat loss. It is desired that the temperature x(t)
follows a reference input r that is a constant.

(a)  Design a control system with state and integral control so that the
following specifications are satisfied:

•   
•   The eigenvalues of the closed-loop system are at −10 and −10.
•   Plot the responses of x(t) for t ≥ 0 with r = 1 and n(t) = −1, and then



with r = 1 and n(t) = 0, all with x(0) = 0.
(b)  Design a PI controller so that

where R(s) = R/s.

Find KP and KI so that the characteristic equation roots are at −10 and −10.
Plot the responses of x(t) for t ≥ 0 with r = 1 and n(t) = −1, and then with r =
1 and n(t) = 0, all x(0) = 0.

8-63.   The transfer function of a system is given by

Find the state-space model of the system if

Design a state control feedback u = –Kx so that the closed-loop poles are
located at   and s = –10

8-64.   Figure 8P-64 shows an inverted pendulum on a moving platform.

Assuming M = 2 kg, m = 0.5 kg, and l = 1 m.
(a)  Find the state-space model of the system if 

 and 

(b)  Design a state feedback control with gain −K so that the closed-loop
poles are located at 



Figure 8P-64

8-65.   Consider the following state-space equation of a system:

(a)  Design a state feedback controller so that

(i)   The damping ratio is ζ = 0.707.

(ii)   Peak time of the unit-step response is 3 s.

(b)  Use MATLAB to plot the step response of the system and show how
your design meets the specification in part (a).

8-66.   Consider the following state-space equation of a system:



(a)  Design a state feedback controller so that

(i)   Settling time is less than 5 s (1 percent settling time).

(ii)   Overshoot is less than 10 percent.

(b)  Use MATLAB to verify your design.

8-67.   Figure 8P-67 shows an RLC circuit.

Figure 8P-67

(a)  Find the state equation for the circuit when v(t) is an input, i(t) is an
output, and capacitor voltage and the inductor current are the state variables.

(b)  Find the condition that the system is controllable.
(c)  Find the condition that the system is observable.
(d)  Repeat parts (a), (b), and (c) when v(t) is an input, the voltage of the R2

is output, and capacitor voltage and the inductor current are the state
variables.



CHAPTER 9



Root-Locus Analysis

Before starting this chapter, the reader is encouraged to refer to App. B to
review the theoretical background related to complex variables.

In the preceding chapters, we have demonstrated the importance of the
poles and zeros of the closed-loop transfer function of a linear control system
on the dynamic performance of the system. The roots of the characteristic
equation, which are the poles of the closed-loop transfer function, determine
the absolute and the relative stability of linear SISO systems. Keep in mind
that the transient properties of the system also depend on the zeros of the
closed-loop transfer function.

Learning Outcomes

After successful completion of this chapter, you will be able to
1. Formulate or interpret a root locus to determine the effects of a

parameter variation on the closed loop poles of a system.
2. Based on the properties of root loci, manually construct them.
3. Construct the root contours of a system for multi-parameter

variation studies (e.g., a PD or a PI controller).
4. Use MATLAB to construct root loci and root contours.
5. Use root loci or root contours to design control systems.

An important study in linear control systems is the investigation of the
trajectories of the roots of the characteristic equation—or, simply, the root
loci—when a certain system parameter varies. In Chap. 7, several examples
already illustrated the usefulness of the root loci of the characteristic equation
in the study of linear control systems. The basic properties and the systematic
construction of the root loci are first due to W. R. Evans1,3. In general, root
loci may be sketched by following some simple rules and properties.

As discussed in Chap. 7, for plotting the root loci accurately, the



MATLAB root-locus tool can also be used. As design engineers, it may be
sufficient for us to learn how to use computer tools to generate the root loci
for design purposes. However, it is important to learn the basics of the root
loci and their properties, as well as how to interpret the data provided by the
root loci for analysis and design purposes. The material in this text is
prepared with these objectives in mind.

The root-locus technique is not confined only to the study of control
systems. In general, the method can be applied to study the behavior of roots
of any algebraic equation with one or more variable parameters. The general
root-locus problem can be formulated by referring to the following algebraic
equation of the complex variable, say, s:

where P(s) is an nth-order polynomial of s,

and Q(s) is an mth-order polynomial of s; n and m are positive integers.

For the present, we do not place any limitations on the relative magnitudes
between n and m. K is a real constant that can vary from –∞ to +∞.

The coefficients a1, a2,…, an, b1, b2,…, bm are considered to be real and
fixed.

Root loci of multiple variable parameters can be treated by varying one
parameter at a time. The resultant loci are called the root contours, and the
subject is treated in Sec. 9-5. By replacing s with z in Eqs. (9-1) through (9-
3), the root loci of the characteristic equation of a linear discrete-data system
can be constructed in a similar fashion (App. H).

For the purpose of identification in this text, we define the following
categories of root loci based on the values of K:

1.    Root loci (RL). Refers to the entire root loci for –∞ < K < ∞.

2.    Root contours (RC). Contour of roots when more than one
parameter varies.



In general, for most control-system applications, the values of K are
positive. Under unusual conditions, when a system has positive feedback or
the loop gain is negative, then we have the situation that K is negative.
Although we should be aware of this possibility, we need to place the
emphasis only on positive values of K in developing the root-locus
techniques.

9-1  BASIC PROPERTIES OF THE ROOT LOCI
Because our main interest is control systems, let us consider the closed-

loop transfer function of a single-loop control system

keeping in mind that the transfer function of multiple-loop SISO systems
can also be expressed in a similar form. The characteristic equation of the
closed-loop system is obtained by setting the denominator polynomial of
Y(s)/R(s) to zero. Thus, the roots of the characteristic equation must satisfy

Suppose that G(s)H(s) contains a real variable parameter K as a
multiplying factor, such that the rational function can be written as

where P(s) and Q(s) are polynomials as defined in Eqs. (9-2) and (9-3),
respectively. Equation (9-5) is written as

The numerator polynomial of Eq. (9-7) is identical to Eq. (9-1). Thus, by
considering that the loop transfer function G(s)H(s) can be written in the
form of Eq. (9-6), we have identified the RL of a control system with the



general root-locus problem.
When the variable parameter K does not appear as a multiplying factor of

G(s)H(s), we can always condition the functions in the form of Eq. (9-1). As
an illustrative example, consider that the characteristic equation of a control
system is

To express the last equation in the form of Eq. (9-7), we divide both sides
of the equation by the terms that do not contain K, and we get

Comparing the last equation with Eq. (9-7), we get

Now K is isolated as a multiplying factor to the function Q(s)/P(s).
We shall show that the RL of Eq. (9-5) can be constructed based on the

properties of Q(s)/P(s). In the case where , the root-
locus problem is another example in which the characteristics of the closed-
loop system, in this case represented by the roots of the characteristic
equation, are determined from the knowledge of the loop transfer function
G(s)H(s).

Now we are ready to investigate the conditions under which Eq. (9-5) or
Eq. (9-7) is satisfied.

Let us express G(s)H(s) as

where G1(s)H1(s) does not contain the variable parameter K. Then, Eq. (9-
5) is written as



To satisfy Eq. (9-12), the following conditions must be satisfied
simultaneously:

Condition on magnitude

Condition on angles

where i = 0, ±1, ±2,… (any integer).

In practice, the conditions stated in Eqs. (9-13) through (9-15) play
different roles in the construction of the root loci.

•   The conditions on angles in Eq. (9-14) or Eq. (9-15) are used to
determine the trajectories of the root loci in the s-plane.

•   Once the root loci are drawn, the values of K on the loci are
determined by using the condition on magnitude in Eq. (9-13).

The construction of the root loci is basically a graphical problem, although
some of the properties are derived analytically. The graphical construction of
the RL is based on the knowledge of the poles and zeros of the function
G(s)H(s). In other words, G(s)H(s) must first be written as

where the zeros and poles of G(s)H(s) are real or in complex-conjugate
pairs.

Applying the conditions in Eqs. (9-13), (9-14), and (9-15) to Eq. (9-16), we
have



For 0 ≤ K < ∞:

For –∞ < K ≤ 0:

where i = 0, ±1, ±2, …
The graphical interpretation of Eq. (9-18) is that any point s1 on the RL that

corresponds to a positive value of K must satisfy the following condition:
The difference between the sums of the angles of the vectors drawn

from the zeros and those from the poles of G(s)H(s) to s 1 is an odd
multiple of 180 degrees.

For negative values of K, any point s1 on the RL must satisfy the following
condition:

The difference between the sums of the angles of the vectors drawn
from the zeros and those from the poles of G(s)H(s) to s1 is an even
multiple of 180 degrees, including zero degrees.

Once the root loci are constructed, the values of K along the loci can be
determined by writing Eq. (9-17) as

The value of K at any point s1 on the RL is obtained from Eq. (9-20) by



substituting the value of s1 into the equation. Graphically, the numerator of
Eq. (9-20) represents the product of the lengths of the vectors drawn from the
poles of G(s)H(s) to s1, and the denominator represents the product of lengths
of the vectors drawn from the zeros of G(s)H(s) to s1.

To illustrate the use of Eqs. (9-18) to (9-20) for the construction of the root
loci, let us consider the function

The location of the poles and zero of G(s)H(s) are arbitrarily assigned, as
shown in Fig. 9-1. Let us select an arbitrary trial point s1 in the s-plane and
draw vectors directing from the poles and zeros of G(s)H(s) to the point. If s1

is indeed a point on the RL for positive K, it must satisfy Eq. (9-18); that is,
the angles of the vectors shown in Fig. 9-1 must satisfy

Figure 9-1   Pole-zero configuration of
G(s)H(s)=K(s+z1)/[s(s+p2)×(s+p3)].

where i = 0, ±1, ±2, … As shown in Fig. 9-1, the angles of the vectors are



measured with the positive real axis as reference. Similarly, if s1 is a point on
the RL for negative values of K, it must satisfy Eq. (9-19), that is,

where i = 0, ±1, ±2, …
If s1 is found to satisfy either Eq. (9-22) or Eq. (9-23), Eq. (9-20) is used to

find the magnitude of K at the point. As shown in Fig. 9-1, the lengths of the
vectors are represented by A, B, C, and D. The magnitude of K is

The sign of K depends on whether s1 satisfies Eq. (9-22) (K ≥ 0) or Eq. (9-
23) (K ≤ 0). Thus, given the function G(s)H(s) with K as a multiplying factor
and the poles and zeros are known, the construction of the RL of the zeros of
1 + G(s)H(s) involves the following two steps:

1.    A search for all the s1 points in the s-plane that satisfy Eq. (9-18) for
positive K. If the RL for negative values of K are desired, then Eq. (9-
19) must be satisfied.

2.    Use Eq. (9-20) to find the magnitude of K on the RL.
We have established the basic conditions on the construction of the root-

locus diagram. However, if we were to use the trial-and-error method just
described, the search for all the root-locus points in the s-plane that satisfy
Eq. (9-18) or Eq. (9-19) and Eq. (9-20) would be a very tedious task.

With MATLAB tools, as introduced in Chap. 7, the trial-and-error method
have long become obsolete. Nevertheless, even with a high-speed computer
and an effective root-locus program, you should still have an understanding
of the properties of the root loci to be able to manually sketch the root loci of
simple and moderately complex systems, if necessary, and interpret the
computer results correctly, when applying the root loci for analysis and
design of control systems.

9-2  PROPERTIES OF THE ROOT LOCI



The following properties of the root loci are useful for the purpose of
constructing the root loci manually and for the understanding of the root loci.
The properties are developed based on the relation between the poles and
zeros of G(s)H(s) and the zeros of 1 + G(s)H(s), which are the roots of the
characteristic equation.

9-2-1 K = 0 and K = ±∞ Points
The K = 0 points on the root loci are at the poles of G(s)H(s).
The K = ±∞ points on the root loci are at the zeros of G(s)H(s).
The poles and zeros referred to here, include those at infinity, if any. The

reason for these properties are seen from the condition of the root loci given
by Eq. (9-12), which is

As the magnitude of K approaches zero, G1(s)H1(s) approaches infinity, so s
must approach the poles of G1(s)H1(s) or of G(s)H(s). Similarly, as the
magnitude of K approaches infinity, s must approach the zeros of G(s)H(s).

EXAMPLE 9-2-1    Consider the equation

When K = 0, the three roots of the equation are at s =
0, –2, and –3. When the magnitude of K is infinite, the
three roots of the equation are at s = –1, ∞, and ∞. It is
useful to consider that infinity in the s-plane is a point
concept. We can visualize that the finite s-plane is only a
small portion of a sphere with an infinite radius. Then,
infinity in the s-plane is a point on the opposite side of
the sphere that we face.

Dividing both sides of Eq. (9-26) by the terms that do
not contain K, we get



which gives

Thus, the three roots of Eq. (9-26) when K = 0 are the
same as the poles of the function G(s)H(s). The three
roots of Eq. (9-26) when K = ±∞ are at the three zeros of
G(s)H(s), including those at infinity. In this case, one
finite zero is at s = –1, but there are two zeros at infinity.
The three points on the root loci at which K = 0 and those
at which K = ±∞ are shown in Fig. 9-2. △

Figure 9-2   Points at which K = 0 and K = ±∞ on the RL of s(s+2)
(s+3)+K(s+1)=0.

9-2-2  Number of Branches on the Root Loci

It is important to keep track of the total number of branches of the
root loci.

A branch of the RL is the locus of one root when K varies between –∞ and
∞. The following property of the RL results, since the number of branches of
the RL must equal the number of roots of the equation.

The number of branches of the RL of Eq. (9-1) or Eq. (9-5) is equal to
the order of the polynomial.



For example, the number of branches of the root loci of Eq. (9-26) when K
varies from –∞ to ∞ is three, since the equation has three roots.

Keeping track of the individual branches and the total number of branches
of the root-locus diagram is important in making certain that the plot is done
correctly. This is particularly true when the root-locus plot is done by a
computer because unless each root-locus branch is coded by a different color,
it is up to the user to make the distinctions.

EXAMPLE 9-2-2   The number of branches of the root loci of

is three, since the equation is of the third order. In
other words, the equation has three roots, and thus, there
should be three root loci. 

9-2-3  Symmetry of the RL
The RL are symmetrical with respect to the real axis of the s-plane. In

general, the RL are symmetrical with respect to the axes of symmetry of
the pole-zero configuration of G(s)H(s).

It is important to pay attention to the symmetry of the root loci.

The reason behind this property is because for a polynomial with real
coefficients the roots must be real or in complex-conjugate pairs. In general,
if the poles and zeros of G(s)H(s) are symmetrical to an axis in addition to the
real axis in the s-plane, we can regard this axis of symmetry as if it were the
real axis of a new complex plane obtained through a linear transformation.

EXAMPLE 9-2-3   Consider the equation

Dividing both sides of the equation by the terms that
do not contain K, we get



The root loci of Eq. (9-30) are shown in Fig. 9-3 for K = −∞ to K = ∞.
Since the pole-zero configuration of G(s)H(s) is symmetrical with respect to
the real axis as well as the s = −1 axis, the root-locus plot is symmetrical to
the two axes.

As a review of all the properties of the root loci presented thus far, we
conduct the following exercise with regard to the root loci in Fig. 9-3.



Figure 9-3   Root loci of s(s + 2)(s + 3) + K(s + 1) = 0, showing the
properties of symmetry.

The points at which K = 0 are at the poles of G(s)H(s), s = 0, −1, and −2.
The function G(s)H(s) has three zeros at s = ∞ at which K = ±∞. The reader
should try to trace out the three separate branches of the root loci by starting
from one of the K = −∞ points, through the K = 0 point on the same branch,
and ending at K = ∞ at s = ∞. 

EXAMPLE 9-2-4   When the pole-zero configuration of G(s)H(s) is
symmetrical with respect to a point in the s-plane, the
root loci will also be symmetrical to that point. This is
illustrated by the root-locus plot of

shown in Fig. 9-4. 



Figure 9-4   Root loci of s(s + 2)(s2 + 2s + 2) + K = 0, showing the
properties of symmetry.

9-2-4 Angles of Asymptotes of the RL: Behavior of the RL at
|s| = ∞

Asymptotes of root loci refers to behavior of root loci at |s| = ∞.

When n, the order of P(s), is not equal to m, the order of Q(s), some of the
loci will approach infinity in the s-plane. The properties of the RL near
infinity in the s-plane are described by the asymptotes of the loci when |s|



→∞ In general when n≠m, there will be 2|n–m| asymptotes that describe the
behavior of the RL at |s|=∞ The angles of the asymptotes and their intersect
with the real axis of the s-plane are described as follows.

For large values of s, the RL for K ≥ 0 are asymptotic to asymptotes
with angles given by

where i=0,1,2,..., |n–m|–1 n and m are the number of finite poles and
zeros of G(s)H(s), respectively.

For K ≤ 0 (RL), the angles of the asymptotes are

where i=0,1,2,...,|n–m|–1.

9-2-5  Intersect of the Asymptotes (Centroid)
The intersect of the 2|n–m| asymptotes of the RL lies on the real axis of the

s-plane, at

where n is the number of finite poles and m is the number of finite zeros of
G(s)H(s), respectively. The intersect of the asymptotes σ1 represents the
center of gravity of the root loci and is always a real number, or

EXAMPLE 9-2-5   The root loci and their asymptotes for Eq. (9-26) for –∞
≤ K ≤ ∞ are shown in Fig. 9-5.



Figure 9-5   Root loci and asymptotes of s(s + 2)(s + 3) + K(s + 1) = 0 for
–∞ ≤ K ≤ ∞. 

Toolbox 9-2-1 MATLAB code for root loci in Fig. 9-5.



EXAMPLE 9-2-6   Consider the transfer function

which corresponds to the characteristic equation

The pole-zero configuration of G(s)H(s) is shown in
Fig. 9-6. From the six properties of the root loci
discussed so far, the following information concerning
the root loci of Eq. (9-38) when K varies from −∞ to ∞ is
obtained:



Figure 9-6   Asymptotes of the root loci of s(s + 4)(s2 + 2s + 2) + K(s + 1)
= 0.

1.    K = 0: The points at which K = 0 on the root loci are at the poles of
G(s)H(s): s = 0, −4, − 1 +j, and −1 −j.
2.    K = ±∞: The points at which K = ±∞ on the root loci are at the zeros
of G(s)H(s: s = −1, ∞, ∞, and ∞.
3.    There are four root loci branches, since Eqs. (9-37) and (9-38) are of
the fourth order.
4.    The root loci are symmetrical to the real axis.
5.    Since the number of finite poles of G(s)H(s) exceeds the number of
finite zeros of G(s)H(s) by three (n − m = 4 − 1 = 3), when K = ±∞, three
root loci approach s = ∞.
The angles of the asymptotes of the RL (K ≥ 0) are given by Eq. (9-33):

The angles of the asymptotes of the root loci for K ≤ 0 are given by Eq. (9-
34), and are calculated to be 0°, 120°, and 240°.

6.    The intersection of the asymptotes is given by Eq. (9-36):

The asymptotes of the root loci are shown in Fig. 9-6. 

EXAMPLE 9-2-7   The asymptotes of the root loci of several equations are
shown in Fig. 9-7. 





Figure 9-7   Examples of the asymptotes of the root loci.

9-2-6  Root Loci on the Real Axis
The entire real axis of the s-plane is occupied by the RL for all values K.

On a given section of the real axis, RL for K ≥ 0 are found in the section only
if the total number of poles and zeros of G(s)H(s) to the right of the section is
odd. Note that the remaining sections of the real axis are occupied by the RL
for K ≤ 0. Complex poles and zeros of G(s)H(s) do not affect the type of RL
found on the real axis.

The entire real axis of the s-plane is occupied by root loci.

These properties are arrived at based on the following observations:

1.    At any point s1 on the real axis, the angles of the vectors drawn from
the complex-conjugate poles and zeros of G(s)H(s) add up to zero. Thus,
only the real zeros and poles of G(s)H(s) contribute to the angular
relations in Eqs. (9-18) and (9-19).
2.    Only the real poles and zeros of G(s)H(s) that lie to the right of the
point s1 contribute to Eqs. (9-18) and (9-19) because real poles and zeros
that lie to the left of the point contribute nothing.
3.    Each real pole of G(s)H(s) to the right of s1 contributes −180
degrees, and each real zero of G(s)H(s) to the right of s1 contributes
+180 degrees to Eqs. (9-18) and (9-19).

The last observation shows that for s1 to be a point on the root locus, there
must be an odd number of poles and zeros of G(s)H(s) to the right of the
point. For s1 to be a point on the branch of the root loci for K ≤ 0, the total
number of poles and zeros of G(s)H(s) to the right of the point must be even.
The following example illustrates the determination of the properties of the
root loci on the real axis of the s-plane.

EXAMPLE 9-2-8   The root loci on the real axis for two pole-zero
configurations of G(s)H(s) are shown in Fig. 9-8.



Notice that the entire real axis is occupied by the root
loci for all values of K. 

Figure 9-8   Properties of root loci on the real axis.

9-2-7  Angles of Departure and Angles of Arrival of the RL
The angle of departure or arrival of a root locus at a pole or zero,

respectively, of G(s)H(s) denotes the angle of the tangent to the locus near
the point.

The angles of departure and arrival are determined using Eq. (9-18) for
root loci for positive K and Eq. (9-19) for root loci for negative K. The details
are illustrated by the following example.

EXAMPLE 9-2-9   For the root-locus diagram shown in Fig. 9-9, the root
locus near the pole s = −1 + j may be more accurately



sketched by knowing the angle at which the root locus
leaves the pole. As shown in Fig. 9-10, the angle of
departure of the root locus at s = −1 + j is represented
by θ2, measured with respect to the real axis. Let us
assign s1 to be a point on the RL leaving the pole at −1
+ j and is very close to the pole. Then, s1 must satisfy
Eq. (9-18). Thus,





Figure 9-9   Root loci of s(s + 3)(s2 + 2s + 2) + K = 0 to illustrate the
angles of departure or arrival.

Figure 9-10   Angles of departure and arrival at a third-order pole.

where i is any integer. Since s1 is assumed to be very
close to the pole at −1 + j, the angles of the vectors drawn
from the other three poles are approximated by
considering that s1 is at −1 + j. From Fig. F-7, Eq. (F-16)
is written as

where θ2 is the only unknown angle. In this case, we
can set i to be −1, and the result for θ2 is –71.6°.

When the angle of departure or arrival of a root locus
for positive K at a simple pole or zero of G(s)H(s) is
determined, the angle of arrival or departure of the root
locus for negative K at the same point differs from this
angle by 180°, and Eq. (9-19) is now used. Figure 9-9
shows that the angle of arrival of the root locus for



negative K at −1 + j is 108.4°, which is 180° − 71.6°.
Similarly, for the root-locus diagram in Fig. 9-10, we can
show that the root locus for negative K arrives at the pole
s = −3 with an angle of 180°, and the root locus for
positive K leaves the same pole at 0°. For the pole at s =
0, the angle of arrival of the negative-K root locus is
180°, whereas the angle of departure of the positive-K
root locus is 180°. These angles are also determined from
the knowledge of the type of root loci on sections of the
real axis separated by the poles and zeros of G(s)H(s).
Since the total angles of the vectors drawn from complex-
conjugate poles and zeros to any point on the real axis
add up to be zero, the angles of arrival and departure of
root loci on the real axis are not affected by the complex
poles and zeros of G(s)H(s). 

EXAMPLE 9-2-10  In this example, we examine the angles of departure and
arrival of the root loci at a multiple-order pole or zero
of G(s)H(s). Consider that a G(s)H(s) has a multiple-
order (third-order) pole on the real axis, as shown in
Fig. 9-10. Only the real poles and zeros of G(s)H(s)
are shown, since the complex ones do not affect the
type or the angles of arrival and departure of the root
loci on the real axis. For the third-order pole at s = −2,
there are three positive-K loci leaving and three
negative-K loci arriving at the point. To find the
angles of departure of the positive-K root loci, we
assign a point s1 on one of the loci near s = −2, and
apply Eq. (9-18). The result is

where θ1 and θ3 denote the angles of the vectors drawn
from the pole at 0 and the zero at −3, respectively, to s1.
The angle θ2 is multiplied by 3, since there are three poles
at s = −2, so that there are three vectors drawn from −2 to
s1. Setting i to zero in Eq. (9-42), and since θ1 = 180°, θ3=



0°, we have θ2 = 0°, which is the angle of departure of the
positive-K root loci that lies between s = 0 and s = −2.
For the angles of departure of the other two positive-K
loci, we set i = 1 and i = 2 successively in Eq. (F-18), and
we have θ2 = 120° and −120°. Similarly, for the three
negative-K root loci that arrive at s = −2, Eq. (9-19) is
used, and the angles of arrivals are found to be 60°, 180°,
and −60°. 

9-2-8  Intersection of the RL with the Imaginary Axis

Routh-Hurwitz criterion may be used to find the intersection of the
root loci on the imaginary axis.

The points where the RL intersect the imaginary axis of the s-plane, and
the corresponding values of K may be determined by means of the Routh-
Hurwitz criterion. For complex situations, when the RL have multiple
number of intersections on the imaginary axis, the intersects and the critical
values of K can be determined with the help of the root-locus computer
program. The Bode diagram method in Chap. 10, associated with the
frequency response, can also be used for this purpose.

EXAMPLE 9-2-11  The root loci shown in Fig. F-7 is for the equation

Figure 9-9 shows that the root loci intersect the jω axis
at two points. Applying the Routh-Hurwitz criterion to
Eq. (9-43), and by solving the auxiliary equation, we
have the critical value of K for stability at K = 8.16, and
the corresponding crossover points on the jω-axis are at
±j1.095. 

9-2-9  Breakaway Points (Saddle Points) on the RL
Breakaway points on the RL of an equation correspond to multiple-order



roots of the equation.
Figure 9-11a illustrates a case in which two branches of the root loci meet

at the breakaway point on the real axis and then depart from the axis in
opposite directions. In this case, the breakaway point represents a double root
of the equation when the value of K is assigned the value corresponding to
the point. Fig. 9-11b shows another common situation when two complex-
conjugate root loci approach the real axis, meet at the breakaway point, and
then depart in opposite directions along the real axis. In general, a breakaway
point may involve more than two root loci. Figure 9-11c illustrates a situation
when the breakaway point represents a fourth-order root.



Figure 9-11  Examples of breakaway points on the real axis in the s-plane.

• A root-locus plot may have more than one breakaway points.
• Breakaway points may be complex conjugates in the s-plane.

A root-locus diagram can have, of course, more than one breakaway point.



Moreover, the breakaway points need not always be on the real axis. Because
of the conjugate symmetry of the root loci, the breakaway points not on the
real axis must be in complex-conjugate pairs. Refer to Fig. 9-14 for an
example of root loci with complex breakaway points. The properties of the
breakaway points of root loci are given as follows:

The breakaway points on the RL of 1+KG1(s)H1(s)=0 must satisfy

It is important to point out that the condition for the breakaway point given
in Eq. (9-44) is necessary but not sufficient. In other words, all breakaway
points on the root loci must satisfy Eq. (9-44), but not all solutions of Eq. (9-
44) are breakaway points. To be a breakaway point, the solution of Eq. (9-44)
must also satisfy Eq. (9-5), that is, must also be a point on the root loci for
some real K.

If we take the derivatives on both sides of Eq. (9-12) with respect to s, we
get

Thus, the condition in Eq. (9-44) is equivalent to

9-2-10  Angles of Arrival and Departure of Root Loci at the
Breakaway Point

The angles at which the root loci arrive at or depart from a breakaway
point depend on the number of loci that are involved at the point. For
example, the root loci shown in Fig. 9-11a and b all arrive and break away at
180° apart, whereas in Fig. 9-11c, the four root loci arrive and depart with
angles 90° apart. In general, n root loci (− ∞ ≤ K ≤ ∞) arrive at or depart
from a breakaway point 180/n degrees apart.

Many root-locus computer programs have features that will obtain the



breakaway points, which is a rather tedious task to do manually.

EXAMPLE 9-2-12  Consider the second-order equation (similar to the PD
control system in Example 7-7-1)

Based on some of the properties of the root loci
described thus far, the root loci of Eq. (9-47) are sketched
as shown in Fig. 9-12 for −∞ < K < ∞. It can be proven
that the complex portion of the root loci is a circle. The
two breakaway points are on the real axis, one between 0
and −2 and the other between −4 and −∞. From Eq. (9-
48), we have

Figure 9-12  Root loci of s(s + 2) + K(s + 4) = 0.



Applying Eq. (9-44), the breakaway points on the root loci must satisfy

or

Solving Eq. (9-50), we find the two breakaway points of the root loci at s =
−1.172 and −6.828. Figure 9-12 shows that the two breakaway points are all
on the root loci for positive K. 

EXAMPLE 9-2-13 Consider the equation (another example of a PD control
system)

The equivalent G(s)H(s) is obtained by dividing both
sides of Eq. (9-51) by the terms that do not contain K. We
have

Based on the poles and zeros of G(s)H(s), the root loci
of Eq. (9-52) are plotted as shown in Fig. 9-13. The plot
shows that there are two breakaway points, one for K > 0
and one for K < 0. These breakaway points are
determined from



Figure 9-13  Root loci of s2 + 2s + 2 + K(s + 2) = 0.

or

The solution of this equation gives the breakaway point as s = −0.586 and s
= −3.414. 

EXAMPLE 9-2-14  Figure 9-14 shows the root loci of the equation

Dividing both sides of the last equation by the terms
that do not contain K, we have



Since the poles of G1(s)H1(s) are symmetrical about the axes s = −2 and ω =
0 in the s-plane, the root loci of the equation are also symmetrical with
respect to these two axes. Taking the derivative of G1(s)H1(s) with respect to
s, we get

or

The solutions of the last equation are s = −2, −2 + j2.45, and −2 − j2.45. In
this case, Fig. 9-14 shows that all the solutions of Eq. (9-58) are breakaway
points on the root loci, and two of these points are complex. 



Figure 9-14  Root loci of s(s + 4)(s2 + 4s + 20) + K = 0.

EXAMPLE 9-2-15  In this example, we demonstrate that not all the
solutions of Eq. (9-44) are breakaway points on the



root loci. The root loci of the equation

are shown in Fig. 9-15. The root loci show that neither
the K ≥ 0 loci nor the K ≤ 0 loci has any breakaway point
in this case. However, writing Eq. (F-36) as

Figure 9-15  Root loci of s(s2 + 2s + 2) + K = 0.



and applying Eq. (9-44), we have the equation for the
breakaway points:

The roots of Eq. (9-61) are s = −0.667 + j0.471 and
−0.667 − j0.471. These two roots are not breakaway
points on the root loci, since they do not satisfy Eq. (9-
59) for any real value of K. 



9-2-11  Calculation of K on the Root Loci
Once the root loci are constructed, the values of K at

any point s1 on the loci can be determined by use of the
defining equation of Eq. (9-20). Graphically, the
magnitude of K can be written as

EXAMPLE 9-2-16  As an illustration on the determination of the value of K
on the root loci, the root loci of the equation

are shown in Fig. 9-16. The value of K at the point s1 is
given by

Figure 9-16  Graphical method of finding the values of K on the real axis.

where A and B are the lengths of the vectors drawn
from the poles of G(s)H(s) = K(s + 2)/(s2 + 2s + 2) to the
point s1, and C is the length of the vector drawn from the
zero of G(s)H(s) to s1. In this case, s1 is on the locus
where K is positive. In general, the value of K at the point
where the root loci intersect the imaginary axis can also
be found by the method just described. Figure 9-16
shows that the value of K at s = 0 is −1. The computer
method and the Routh-Hurwitz criterion are other
convenient alternatives of finding the critical value of K
for stability. 

9-2-12  Summary: Properties of the Root Loci
In summary, except for extremely complex cases, the properties on the root



loci just presented should be adequate for making a reasonably accurate
sketch of the root-locus diagram short of plotting it point by point. The
computer program can be used to solve for the exact root locations, the
breakaway points, and some of the other specific details of the root loci,
including the plotting of the final loci. However, one cannot rely on the
computer solution completely, since the user still has to decide on the range
and resolution of K so that the root-locus plot has a reasonable appearance.
For quick reference, the important properties described are summarized in
Table 9-1.

Table 9-1   Properties of the Root Loci of 1 + KG1(s)H1 = 0



EXAMPLE 9-2-17  Consider the equation

Dividing both sides of the last equation by the terms
that do not contain K, we have

The following properties of the root loci are
determined:



1.    The K = 0 points are at the poles of G(s)H(s): s = −5, −6, −1 + j, and
−1 −j.

2.    The K = ±∞ points are at the zeros of G(s)H(s): s = −3, ∞·, ∞, ∞.

3.    There are five separate branches on the root loci.

4.    The root loci are symmetrical with respect to the real axis of the s-
plane.

5.    Since G(s)H(s) has five poles and one finite zero, four RL and CRL
should approach infinity along the asymptotes. The angles of the
asymptotes of the RL are given by [Eq. (9-33)]

for i = 0, 1, 2, 3. Thus, the four root loci that approach
infinity as K approaches infinity should approach
asymptotes with angles of 45°, −45°, 135°, and −135°,
respectively. The angles of the asymptotes of the CRL at
infinity are given by Eq. (9-34):

for i = 0, 1, 2, 3. Thus, as K approaches −∞, four root
loci for K < 0 should approach infinity along asymptotes
with angles of 0°, 90°, 180°, and 270°.

6.    The intersection of the asymptotes is given by [Eq. (9-36)]

The results from these six steps are illustrated in Fig.
9-17. It should be pointed out that in general the
properties of the asymptotes do not indicate on which
side of the asymptotes the root loci lie. The asymptotes



indicate nothing more than the behavior of the root loci
as |s|→∞. In fact, the root locus can even cross an
asymptote in the finite s domain. The segments of the
root loci shown in Fig. 9-17 can be accurately plotted
only if additional information is obtained.



Figure 9-17  Preliminary calculation of the root loci of s(s + 5)(s + 6)(s2 +
2s + 2) + K(s + 3) = 0.

7.    Root loci on the real axis: There are K ≥ 0 root loci on the real axis
between s = 0 and −3, and s = −5 and −6. There are K ≤ 0 root loci on
the remaining portions of the real axis, that is, between s = −3 and −5,
and s = −6 and −∞, as shown in Fig. 9-18.

Figure 9-18  Root loci of s(s + 5)(s + 6)(s2 + 2s + 2) + K(s + 3) = 0 on the
real axis.

8.    Angles of departure: The angle of departure θ of the root loci
leaving the pole at −1 +j is determined using Eq. (9-18). If s1 is a point
on the root loci leaving the pole at −1 +j, and s1 is very close to the pole,
as shown in Fig. 9-19, Eq. (9-18) gives



Figure 9-19  Computation of angle of departure of the root loci of s(s + 5)
(s + 6)(s2 + 2s + 2) + K(s + 3) = 0.

or

for i = 0, ±1, ±2, … Therefore, selecting i = 2, θ ≅ –
43.8°

Similarly, Eq. (9-19) is used to determine the angle of
arrival θ’ ′ of the K ≤ 0 root loci arriving at the pole −1 +
j. It is easy to see that θ′ differs from θ by 180°; thus,

9.    The intersection of the root loci on the imaginary axis is determined
using Routh’s tabulation. Equation (F-42) is written as

Routh’s tabulation is



For Eq. (9-73) to have no roots on the imaginary axis
or in the right-half of the s-plane, the elements in the first
column of Routh’s tabulation must all be of the same
sign. Thus, the following inequalities must be satisfied:

Thus, all the roots of Eq. (9-73) will stay in the left-
half s-plane if K lies between 0 and 35, which means that
the root loci of Eq. (9-73) cross the imaginary axis when
K = 35 and K = 0.

The coordinates at the crossover points on the
imaginary axis that correspond to K = 35 are determined
from the auxiliary equation:

which is obtained by using the coefficients from the
row just above the row of zeros in the s1 row that would
have happened when K is set to 35. Substituting K = 35 in
Eq. (9-77), we get

The roots of Eq. (9-78) are s = j1.34 and −j1.34, which



are the points at which the root loci cross the jω-axis.

10.    Breakaway points: Based on the information gathered from the
preceding nine steps, a trial sketch of the root loci indicates that there
can be only one breakaway point on the entire root loci, and the point
should lie between the two poles of G(s)H(s) at s = −5 and −6. To find
the breakaway point, we take the derivative on both sides of Eq. (9-65)
with respect to s and set it to zero; the resulting equation is

Since there is only one breakaway expected, only one
root of the last equation is the correct solution of the
breakaway point. The five roots of Eq. (9-79) are

Clearly, the breakaway point is at −5.53. The other
four solutions do not satisfy Eq. (9-73) and are not
breakaway points. Based on the information obtained in
the last 10 steps, the root loci of Eq. (9-73) are sketched
as shown in Fig. 9-20. 





Figure 9-20  Root loci of s(s + 5)(s + 6)(s2 + 2s + 2) + K(s + 3) = 0.

9-3  THE ROOT SENSITIVITY
The condition on the breakaway points on the RL in Eq. (9-47) leads to the

root sensitivity17,19 of the characteristic equation. The sensitivity of the roots
of the characteristic equation when K varies is defined as the root sensitivity
and is given by

Thus, Eq. (9-47) shows that the root sensitivity at the breakaway points is
infinite. From the root-sensitivity standpoint, we should avoid selecting the
value of K to operate at the breakaway points, which correspond to multiple-
order roots of the characteristic equation. In the design of control systems,
not only it is important to arrive at a system that has the desired
characteristics but also, just as important, the system should be insensitive to
parameter variations. For instance, a system may perform satisfactorily at a
certain K, but if it is very sensitive to the variation of K, it may get into the
undesirable performance region or become unstable if K varies by only a
small amount. In formal control-system terminology, a system that is
insensitive to parameter variations is called a robust system. Thus, the root-
locus study of control systems must involve not only the shape of the root
loci with respect to the variable parameter K but also how the roots along the
loci vary with the variation of K.

EXAMPLE 9-3-1  Figure 9-21 shows the root-locus diagram of



Figure 9-21  RL of s(s + 1) + K = 0 showing the root sensitivity with
respect to K.

with K incremented uniformly over 100 values from −20 to 20. Each dot
on the root-locus plot represents one root for a distinct value of K. Thus, we
see that the root sensitivity is low when the magnitude of K is large. As the
magnitude of K decreases, the movements of the roots become larger for the



same incremental change in K. At the breakaway point, s = −0.5, the root
sensitivity is infinite.

Figure 9-22 shows the RL of

Figure 9-22  RL of s2(s + 1)2 + K(s + 2) = 0, showing the root sensitivity
with respect to K.



with K incremented uniformly over 200 values from −40 to 50. Again, the
loci show that the root sensitivity increases as the roots approach the
breakaway points at s = 0, −0.543, −1.0, and −2.457. We can investigate the
root sensitivity further by using the expression in Eq. (9-47). For the second-
order equation in Eq. (9-81),

Toolbox 9-3-1
MATLAB statements for Eqs. (9-81) and (9-82).

From Eq. (9-81), K = –s(s + 1); the root sensitivity
becomes

where s = σ + jω, and s must take on the values of the
roots of Eq. (9-84). For the roots on the real axis, ω = 0.
Thus, Eq. (9-84) leads to



When the two roots are complex, s = –0.5 for all values of ω ; Eq. (9-84)
gives

From Eq. (9-86), it is apparent that the sensitivities of the pair of complex-
conjugate roots are the same, since ω appears only as ω2 in the equation.
Equation (9-85) indicates that the sensitivities of the two real roots are
different for a given value of K. Table 9-2 gives the magnitudes of the
sensitivities of the two roots of Eq. (9-81) for several values of K, where
│SK1│ denotes the root sensitivity of the first root, and │SK2│ denotes that of
the second root. These values indicate that although the two real roots reach s
= –0.5 for the same value of K = 0.25, and each root travels the same distance
from ω = 0 and s = –1, respectively, the sensitivities of the two real roots are
not the same. 

Table 9-2   Root Sensitivity



9-4  DESIGN ASPECTS OF THE ROOT LOCI
One of the important aspects of the root-locus technique is that, for most

control systems with moderate complexity, the analyst or designer can obtain
vital information on the performance of the system by making a quick sketch
of the RL using some or all of the properties of the root loci. It is of
importance to understand all the properties of the RL even when the diagram
is to be plotted with the help of a digital computer program. From the design
standpoint, it is useful to learn the effects on the RL when poles and zeros of
G(s)H(s) are added or moved around in the s-plane. Some of these properties
are helpful in the construction of the root-locus diagram. The design of the
PI, PID, phase-lead, phase-lag, and lead-lag controllers discussed in Chap. 11
all have implications of adding poles and zeros to the loop transfer function
in the s-plane.

9-4-1 Effects of Adding Poles and Zeros to G(s)H(s)
The general problem of controller design in control systems may be treated

as an investigation of the effects to the root loci when poles and zeros are



added to the loop transfer function G(s)H(s).

9-4-2 Addition of Poles to G(s)H(s)
Adding a pole to G(s)H(s) has the effect of pushing the root loci toward the

right-half s-plane. The effect of adding a zero to G(s)H(s) can be illustrated
with several examples.

EXAMPLE 9-4-1  Consider the function

The RL of 1 + G(s)H(s) = 0 are shown in Fig. 9-23a. These RL are
constructed based on the poles of G(s)H(s), which are at s = 0 and –a. Now
let us introduce a pole at s = –b, with b > a. The function G(s)H(s) now
becomes





Figure 9-23  Root-locus diagrams that show the effects of adding poles to
G(s)H(s).

Figure 9-23b shows that the pole at s = –b causes the complex part of the
root loci to bend toward the right-half s-plane. The angles of the asymptotes
for the complex roots are changed from ±90° to ±60°. The intersect of the
asymptotes is also moved from –a/2 to –(a + b)/2 on the real axis.

If G(s)H(s) represents the loop transfer function of a control system, the
system with the root loci in Fig. 9-23b may become unstable if the value of K
exceeds the critical value for stability, whereas the system represented by the
root loci in Fig. 9-23a is always stable for K > 0. Figure 9-23c shows the root
loci when another pole is added to G(s)H(s) at s = –c, c > b. The system is
now of the fourth order, and the two complex root loci are bent farther to the
right. The angles of asymptotes of these two complex loci are now ±45°. The
stability condition of the fourth-order system is even more acute than that of
the third-order system. Figure 9-23d illustrates that the addition of a pair of
complex-conjugate poles to the transfer function of Eq. (9-87) will result in a
similar effect. Therefore, we may draw a general conclusion that the addition
of poles to G(s)H(s) has the effect of moving the dominant portion of the root
loci toward the right-half s-plane.

Toolbox 9-4-1
The results for Fig. 9-23 can be obtained by the following MATLAB
code:



9-4-3  Addition of Zeros to G(s)H(s)
Adding left-half plane zeros to the function G(s)H(s) generally has the

effect of moving and bending the root loci toward the left-half s-plane.
The following example illustrates the effect of adding a zero and zeros to

G(s)H(s) on the RL.

EXAMPLE 9-4-2  Figure 9-24a shows the RL of the G(s)H(s) in Eq. (9-87)



with a zero added at s = –b(b > a). The complex-
conjugate part of the RL of the original system is bent
toward the left and forms a circle. Thus, if G(s)H(s) is
the loop transfer function of a control system, the
relative stability of the system is improved by the
addition of the zero. Figure 9-24b shows that a similar
effect will result if a pair of complex-conjugate zeros
is added to the function of Eq. (9-87). Figure 9-24c
shows the RL when a zero at s = –c is added to the
transfer function of Eq. (9-88).





Figure 9-24  Root-locus diagrams that show the effects of adding zeros to
G(s)H(s).

Toolbox 9-4-2
MATLAB code for Fig. 9-24.

EXAMPLE 9-4-3  Consider the equation

Dividing both sides of Eq. (9-89) by the terms that do not contain K, we
have the loop transfer function



It can be shown that the nonzero breakaway points depend on the value of
a and are

Figure 9-25 shows the RL of Eq. (9-44) with b = 1 and several values of a.
The results are summarized as follows:

Figure 9-25a: a = 10. Breakaway points: s = –2.5 and –40.
Figure 9-25b: a = 9. The two breakaway points given by Eq. (9-91)

converge to one point at s = –3. Note the change in the RL when the pole at
–a is moved from –10 to –9.

For values of a less than 9, the values of s as given by Eq. (9-91) no longer
satisfy Eq. (9-89), which means that there are no finite, nonzero, breakaway
points.

Figure 9-25c: a = 8. No breakaway point on RL.
As the pole at s = –a is moved farther to the right along the real axis, the

complex portion of the RL is pushed farther toward the right-half plane.
Figure 9-25d: a = 3.
Figure 9-25e: a = b = 1. The pole at s = –a and the zero at –b cancel each

other out, and the RL degenerate into a second-order case and lie entirely on
the jω -axis.





Figure 9-25  Root-locus diagrams that show the effects of moving a pole
of G(s)H(s) ⋅ G(s)H(s) = K(s + 1)/[s2(s + a)].

Toolbox 9-4-3
MATLAB code for Fig. 9-25.



EXAMPLE 9-4-4  Consider the equation

which leads to the equivalent G(s)H(s) as

The objective is to study the RL for various values of a(> 0). The
breakaway point equation of the RL is determined as



Figure 9-26 shows the RL of Eq. (9-92) under the following conditions.
Figure 9-26a: a = 1. Breakaway points: s = –0.38, –1.0, and –2.618, with

the last point being on the RL for K ≥ 0. As the value of a is increased from
unity, the two double poles of G(s)H(s) at s = –1 will move vertically up and
down with the real parts equal to –1. The breakaway points at s = –0.38 and s
= –2.618 will move to the left, whereas the breakaway point at s = –1 will
move to the right.

Figure 9-26b: a = 1.12. Breakaway points: s = –0.493, –0.857, and –2.65.
Because the real parts of the poles and zeros of G(s)H(s) are not affected by
the value of a, the intersect of the asymptotes is always at s = 0.

Figure 9-26c: a = 1.185. Breakaway points: s = –0.667, –0.667, and –
2.667. The two breakaway points of the RL that lie between s = 0 and –1
converge to a point.

Figure 9-26d: a = 3. Breakaway point: s = –3. When a is greater than
1.185, Eq. (9-94) yields only one solution for the breakaway point.

The reader may investigate the difference between the RL in Fig. 9-26c
and d and fill in the evolution of the loci when the value of a is gradually
changed from 1.185 to 3 and beyond. 





Figure 9-26  Root-locus diagrams that show the effects of moving a pole
of G(s)H(s) = K(s + 2)/[s(s2 + 2s + a)].

9-5  ROOT CONTOURS: MULTIPLE-
PARAMETER VARIATION

The root-locus technique discussed thus far is limited to only one variable
parameter in K. In many control-systems problems, the effects of varying
several parameters should be investigated. For example, when designing a
controller that is represented by a transfer function with poles and zeros, it



would be useful to investigate the effects on the characteristic equation roots
when these poles and zeros take on various values. In Sec. 9-4, the root loci
of equations with two variable parameters are studied by fixing one
parameter and assigning different values to the other. In this section, the
multiparameter problem is investigated through a more systematic method of
embedding. When more than one parameter varies continuously from –∞ to
∞, the root loci are referred to as the root contours (RC). It will be shown
that the root contours still possess the same properties as the single-parameter
root loci, so that the methods of construction discussed thus far are all
applicable.

The principle of root contour can be described by considering the equation

where K1 and K2 are the variable parameters, and P(s), Q1(s), and Q2(s) are
polynomials of s. The first step involves setting the value of one of the
parameters to zero. Let us set K2 to zero. Then, Eq. (9-95) becomes

which now has only one variable parameter in K1. The root loci of Eq. (9-
96) may be determined by dividing both sides of the equation by P(s). Thus,

Equation (9-97) is of the form of 1 + K1G1(s)H1(s) = 0, so we can construct
the RL of the equation based on the pole-zero configuration of G1(s)H1(s).
Next, we restore the value of K2, while considering the value of K1 fixed, and
divide both sides of Eq. (9-95) by the terms that do not contain K2. We have

which is of the form of 1 + K2G2(s)H2(s) = 0. The root contours of Eq. (9-
95) when K2 varies (while K1 is fixed) are constructed based on the pole-zero
configuration of



It is important to note that the poles of G2(s)H2(s) are identical to the roots
of Eq. (9-96). Thus, the root contours of Eq. (9-95) when K2 varies must all
start (K2 = 0) at the points that lie on the root loci of Eq. (9-96). This is the
reason why one root-contour problem is considered to be embedded in
another. The same procedure may be extended to more than two variable
parameters. The following examples illustrate the construction of RCs when
multiparameter-variation situations exist.

EXAMPLE 9-5-1  Consider the equation

where K1 and K2 are the variable parameters, which vary from 0 to ∞.
As the first step, we let K2 = 0, and Eq. (9-100) becomes

Dividing both sides of the last equation by s3, which is the term that does
not contain K1, we have

The root contours of Eq. (9-101) are drawn based on the pole-zero
configuration of

as shown in Fig. 9-27a. Next, we let K2 vary between 0 and ∞ while
holding K1 at a constant nonzero value. Dividing both sides of Eq. (9-100) by
the terms that do not contain K2, we have



Figure 9-27  Root contours of 
varies and K1 is a constant.



Thus, the root contours of Eq. (9-100) when K2 varies may be drawn from
the pole-zero configuration of

The zeros of G2(s)H2(s) are at s = 0, 0; but the poles are at the zeros of 1 +
K1G1(s)H1(s), which are found on the RL of Fig. 9-27a. Thus, for fixed K1, the
RC when K2 varies must all emanate from the root contours of Eq. 9-27a.
Figure 9-27b shows the root contours of Eq. (9-100) when K2 varies from 0 to
∞, for K1 = 0.0184, 0.25, and 2.56.

Toolbox 9-5-1
MATLAB code for Fig. 9-27.

EXAMPLE 9-5-2  Consider the loop transfer function



of a closed-loop control system. It is desired to construct the root contours
of the characteristic equation with K and T as variable parameters. The
characteristic equation of the system is

First, we set the value of T to zero. The characteristic equation becomes

The root contours of this equation when K varies are drawn based on the
pole-zero configuration of

as shown in Fig. 9-28a. Next, we let K be fixed, and consider that T is the
variable parameter.



Figure 9-28  (a) RL for  (b) Pole-zero configuration of
G2(s)H2(s) = Ts2(s2 + 2s + 2)/[s(s2 + 2s +2) + K].

Dividing both sides of Eq. (9-62) by the terms that do not contain T, we get

The root contours when T varies are constructed based on the pole-zero
configuration of G2(s)H2(s). When T = 0, the points on the root contours are at
the poles of G2(s)H2(s), which are on the root contours of Eq. (9-108). When T
= ∞, the roots of Eq. (9-107) are at the zeros of G2(s)H2(s), which are at s = 0,
0, −1 +j, and −1 +j. Figure 9-28b shows the pole-zero configuration of
G2(s)H2(s) for K = 10. Notice that G2(s)H2(s) has three finite poles and four
finite zeros. The root contours for Eq. (9-107) when T varies are shown in
Figs. 9-29, 9-30, and 9-31 for three different values of K.



Figure 9-29  Root contours for s(1+Ts)(s2+2s+2)+K=0. K > 4.



Figure 9-30  Root contours for s(1+Ts)(s2+2s+2)+K=0. K = 0.5.

Figure 9-31  Root contours for s(1+Ts)(s2+2s+2)+K=0. 0 < K < 0.5.

The root contours in Fig. 9-30 show that when K = 0.5 and T = 0.5, the
characteristic equation in Eq. (9-107) has a quadruple root at s = –1.

Toolbox 9-5-2
MATLAB code for Example 9-5-2.



EXAMPLE 9-5-3  As an example to illustrate the effect of the variation of a
zero of G(s)H(s), consider the function

The characteristic equation is

Let us first set T to zero and consider the effect of varying K. Equation (9-
112) becomes

This leads to



The root contours of Eq. (9-113) are drawn based on the pole-zero
configuration of Eq. (9-114), and are shown in Fig. 9-32.

Figure 9-32  Root loci for s(s + 1)(s + 2) + K = 0.

When the K is fixed and nonzero, we divide both sides of Eq. (9-115) by
the terms that do not contain T, and we get

The points that correspond to T = 0 on the root contours are at the poles of
G2(s)H2(s) or the zeros of s(s + 1)(s + 2) + K, whose root contours are
sketched as shown in Fig. 9-32, where K varies. If we choose K = 20 just as
an illustration, the pole-zero configuration of G2(s)H2(s) is shown in Fig. 9-33.
The root contours of Eq. (9-112) for 0 ≤ T < ∞ are shown in Fig. 9-34 for



three different values of K.

Figure 9-33  Pole-zero configuration of G2(s)H2(s) = KS [s(s + 1)(s + 2) +
K ]. K = 20.





Figure 9-34  Root contours of s(s + 1)(s + 2) + K + KTs = 0.

Because G2(s)H2(s) has three poles and one zero, the angles of the
asymptotes of the root contours when T varies are at 90° and –90°. We can
show that the intersection of the asymptotes is always at s = 1.5. This is
because the sum of the poles of G2(s)H2(s), which is given by the negative of
the coefficient of the s2 term in the denominator polynomial of Eq. (9-70), is
3; the sum of the zeros of G2(s)H2(s) is 0; and n – m in Eq. (9-30) is 2.

Toolbox 9-5-3
MATLAB code for Fig. 9-25.

The root contours in Fig. 9-17 show that adding a zero to the loop transfer
function generally improves the relative stability of the closed-loop system
by moving the characteristic equation roots toward the left in the s-plane. As
shown in Fig. 9-17, for K = 20, the system is stabilized for all values of T
greater than 0.2333. However, the largest relative damping ratio that the
system can have by increasing T is only approximately 30 percent. 

9-6  MATLAB TOOLS
Apart from the MATLAB toolboxes appearing in this chapter, this chapter

does not contain any software because of its focus on theoretical
development. In Chap. 11, when we address control system design, we will
introduce the MATLAB SISO design tool that can allow you solve root-locus
problems with a great deal of ease.



9-7  SUMMARY
In this chapter, we introduced the root-locus technique for linear

continuous data control systems. The technique represents a graphical
method of investigating the roots of the characteristic equation of a linear
time-invariant system when one or more parameters vary. In Chap. 11 the
root-locus method will be used heavily for the design of control systems.
However, keep in mind that, although the characteristic equation roots give
exact indications on the absolute stability of linear SISO systems, they give
only qualitative information on the relative stability, since the zeros of the
closed-loop transfer function, if any, play an important role on the dynamic
performance of the system.

The root-locus technique can also be applied to discrete-data systems with
the characteristic equation expressed in the z-transform. As shown in App. H,
the properties and construction of the root loci in the z-plane are essentially
the same as those of the continuous-data systems in the s-plane, except that
the interpretation of the root location to system performance must be made
with respect to the unit circle |z| = 1 and the significance of the regions in the
z-plane.

The majority of the material in this chapter is designed to provide the
basics of constructing the root loci. Computer programs, such as the
MATLAB toolboxes used throughout this chapter, can be used to plot the
root loci and provide details of the plot. The final section of Chap. 11 deals
with the root-locus tools of MATLAB. However, the authors believe that a
computer program can be used only as a tool, and the intelligent investigator
should have a thorough understanding of the fundamentals of the subject.

The root-locus technique can also be applied to linear systems with pure
time delay in the system loop. The subject is not treated here, since systems
with pure time delays are more easily treated with the frequency-domain
methods discussed in Chap. 10.
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PROBLEMS
9-1.    Find the angles of the asymptotes and the intersect of the
asymptotes of the root loci of the following equations when K varies
from −∞ to ∞.



9-2.    Use MATLAB to solve Prob. 9-1.

9-3.    Show that the asymptotes angles are

9-4.    Prove that the asymptotes center is

9-5.    Plot the asymptotes for K > 0 and K < 0 for

9-6.    For the loop transfer functions that follow, find the angle of
departure or arrival of the root loci at the designated pole or zero.

(a)  

Angle of arrival (K < 0) and angle of departure (K > 0) at s = j.



(a)  

Angle of arrival (K < 0) and angle of departure (K > 0) at s = j.

(a)  

Angle of departure (K > 0) at s = –1 + j.

(a)  

Angle of departure (K > 0) at s = –1 + j.

(a)  

Angle of arrival (K > 0) at s = –1 + j.

9-7.    Prove that

(a)  The departure angle of the root locus from a complex pole is ωD = 180°
– argGH′, where argGH′ is the phase angle of GH at the complex pole,
ignoring the effect of that pole.

(b)  The arrival angle of the root locus at the complex zero is ωD = 180° –
argGH″, where argGH″ is the phase angle of GH at the complex zero,
ignoring the contribution of that particular zero.

9-8.    Find the angles of departure and arrival for all complex poles and
zeros of the open-loop transfer function of

9-9.    Mark the K = 0 and K = ±∞ points and the RL and complementary



root locus (CRL) on the real axis for the pole-zero configurations shown in
Fig. 9P-9. Add arrows on the root loci on the real axis in the direction of
increasing K.

Figure 9P-9

9-10.    Prove that a breakaway ω satisfies the following:

9-11.    Find all the breakaway points of the root loci of the systems
described by the pole–zero configurations shown in Fig. 9P-9.

9-12.    Construct the root-locus diagram for each of the following control
systems for which the poles and zeros of G(s)H(s) are given. The
characteristic equation is obtained by equating the numerator of 1 + G(s)H(s)
to zero.



(a)  Poles at 0, –5, –6; zero at –8

(b)  Poles at 0, –1, –3, –4; no finite zeros

(c)  Poles at 0, 0, –2, –2; zero at –4

(d)  Poles at 0, –1 + j, –1 –j; zero at –2

(e)  Poles at 0, –1 + j, –1 –j; zero at –5

(f)  Poles at 0, –1 + j, –1 –j; no finite zeros

(g)  Poles at 0, 0, –8, –8; zeros at –4, –4

(h)  Poles at 0, 0, –8, –8; no finite zeros

(i)  Poles at 0, 0, –8, –8; zeros at –4 + j2, –4 –j2

(j)  Poles at –2, 2; zeros at 0, 0

(k)  Poles at j, –j, j2, –j2; zeros at –2, 2

(l)  Poles at j, –j, j2, –j2; zeros at –1, 1

(m)  Poles at 0, 0, 0, 1; zeros at –1, –2, –3

(n)  Poles at 0, 0, 0, –100, –200; zeros at –5, –40

(o)  Poles at 0, –1, –2; zero at 1

9-13.    Use MATLAB to solve Prob. 9-12.

9-14.    The characteristic equations of linear control systems are given as
follows. Construct the root loci for K ≥ 0.



9-15.    Use MATLAB to solve Prob. 9-14.

9-16.    The forward-path transfer functions of a unity-feedback control
system are given in the following.

(a)  

(b)  

(c)  

(d)  



(e)  

(f)  

(g)  

(h)  

(i)  

Construct the root loci for K ≥ 0. Find the value of K that makes the
relative damping ratio of the closed-loop system (measured by the dominant
complex characteristic equation roots) equal to 0.707, if such a solution
exists.

9-17.    Use MATLAB to verify your answer to Prob. 9-16.

9-18.    A unity-feedback control system has the forward-path transfer
functions given in the following. Construct the root-locus diagram for K ≥ 0.
Find the values of K at all the breakaway points.

(a)  

(b)  

(c)  



(e)  

(d)  

(f)  

9-19.    Use MATLAB to verify your answer to Prob. 9-18.

9-20.    The forward-path transfer function of a unity-feedback control
system is

Construct the root loci of the characteristic equation of the closed-loop
system for K ≥ ∞, with

(a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, and (e) n = 5.

9-21.    Use MATLAB to solve Prob. 9-20.

9-22.    The characteristic equation of the control system shown in Fig. 7P-
16 when K = 100 is

Construct the root loci of the equation for Kt ≥ 0.

9-23.    Use MATLAB to verify your answer to Prob. 9-22.

9-24.    The block diagram of a control system with tachometer feedback is
shown in Fig. 9P-24.

(a)  Construct the root loci of the characteristic equation for K ≥ 0 when Kt

≥ 0.



(b)  Set K = 10. Construct the root loci of the characteristic equation for Kt

≥ 0.

Figure 9P-24

9-25.    Use MATLAB to solve Prob. 9-24.

9-26.    The characteristic equation of the dc-motor control system
described in Probs. 4-49 and 5-40 can be approximated as

when KL = ∞ and the load inertia JL is considered as a variable parameter.
Construct the root loci of the characteristic equation for KL ≥ 0.

9-27.    Use MATLAB to verify your answer to Prob. 9-26.

9-28.    The forward-path transfer function of the control system shown in
Fig. 9P-24 is

(a)  Construct the root loci for K ≥ 0 with ω = 5.

(b)  Construct the root loci for ω ≥ 0 with K = 10.

9-29.    Use MATLAB to solve Prob. 9-28.



9-30.    The forward-path transfer function of a control system is

(a)  Construct the root loci for K ≥ 0.

(b)  Use MATLAB to verify your answer to part (a).

9-31.    The characteristic equation of the liquid-level control system
described in Prob. 5-42 is written

(a)  For A = Ko = 50, construct the root loci of the characteristic equation as
N varies from 0 to ∞

(b)  For N = 10 and Ko = 50, construct the root loci of the characteristic
equation for A ≥ 0.

(c)  For A = 50 and N = 20, construct the root loci for Ko ≥ 0.

9-32.    Use MATLAB to solve Prob. 9-31.

9-33.    Repeat Prob. 9-31 for the following cases.

(a) A = Ko = 100 (b) N = 20 and Ko = 50 (c) A = 100 and N = 20.

9-34.    Use MATLAB to verify your answer to Prob. 9-33.

9-35.    The feedforward transfer function of a unity-feedback system is

(a)  Construct the root loci for K = 25.

(b)  Find the range of K value for which the system is stable.



(c)  Use MATLAB to verify your answer to part (a).

9-36.    The transfer functions of a single-feedback-loop control system are

(a)  Construct the loci of the zeros of 1 + G(s) for K ≥ 0.

(b)  Repeat part (a) when H(s) = 1 + 5s.

9-37.    Use MATLAB to solve Prob. 9-36.

9-38.    The forward-path transfer function of a unity-feedback system is

(a)  Construct the root loci for T = 1 sec and K > 1.

(b)  Find the values of K where the system is stable.

(c)  Use MATLAB to verify your answer to part (a).

9-39.    The transfer functions of a single-feedback-loop control system are

(a)  Construct the root loci of the characteristic equation for Td ≥ 0.

(b)  Use MATLAB to verify your answer to part (a).

9-40.    For the dc-motor control system described in Probs. 4-49 and 5-40,
it is of interest to study the effects of the motor-shaft compliance KL on the
system performance.

(a)  Let K = 1, with the other system parameters as given in Probs. 4-49
and 5-40. Find an equivalent G(s)H(s) with KL as the gain factor. Construct



the root loci of the characteristic equation for KL ≥ 0. The system can be
approximated as a fourth-order system by canceling the large negative pole
and zero of G(s)H(s) that are very close to each other.

(b)  Repeat part (a) with K = 1000.

9-41.    Use MATLAB to verify your answer to Prob. 9-40.

9-42.    The characteristic equation of the dc-motor control system
described in Probs. 4-49 and 5-40 is given in the following when the motor
shaft is considered to be rigid (KL = ∞). Let 

 and Ks

= 1.

(a)  Construct the root loci for JL ≥ 0 to show the effects of variation of the
load inertia on system performance.

(b)  Use MATLAB to verify your answer to part (a).

9-43.    Given the equation  it is desired to investigate
the root loci of this equation for  and for various values of ω .

(a)  Construct the root loci for  when ω = 12.

(b)  Repeat part (a) when ω = 4.

(c)  Determine the value of ω so that there is only one nonzero breakaway
point on the entire root loci for –∞ < K < ∞. Construct the root loci.

9-44.    Use MATLAB to solve Prob. 9-43.

9-45.    The forward-path transfer function of a unity-feedback control
system is



Determine the values of ω so that the root loci (–∞ < K < ∞) will have
zero, one, and two breakaway points, respectively, not including the one at s
= 0. Construct the root loci for –∞ < K < ∞ for all three cases.

9-46.    Figure 9P-46 shows the block diagram of a unity-feedback control
system.

Design a proper controller H(s) for the system.

Figure 9P-46

9-47.    The pole-zero configuration of G(s)H(s) of a single-feedback-loop
control system is shown in Fig. 9P-47a. Without actually plotting, apply the
angle-of-departure (and-arrival) property of the root loci to determine which
root-locus diagram shown is the correct one.



Figure 9P-47



CHAPTER 10



Frequency-Domain Analysis

Before starting this chapter, the reader is encouraged to refer to App. B to
review the theoretical background related to complex variables and
frequency-domain analysis and frequency plots (including asymptotic
approximations—Bode plots).

In practice, the performance of a control system is more realistically
measured by its time-domain characteristics. The reason is that the
performance of most control systems is judged based on the time responses
due to certain test signals. This is in contrast to the analysis and design of
communication systems for which the frequency response is of more
importance, since most of the signals to be processed are either sinusoidal or
composed of sinusoidal components. We learned in Chap. 7 that the time
response of a control system is usually more difficult to determine
analytically, especially for high-order systems. In design problems, there are
no unified methods of arriving at a designed system that meets the time-
domain performance specifications, such as maximum overshoot, rise time,
delay time, settling time, and so on. On the other hand, in the frequency
domain, there is a wealth of graphical methods available that are not limited
to low-order systems. It is important to realize that there are correlating
relations between the frequency-domain and the time-domain performances
in a linear system, so the time-domain properties of the system can be
predicted based on the frequency-domain characteristics. The frequency
domain is also more convenient for measurements of system sensitivity to
noise and parameter variations. With these concepts in mind, we consider the
primary motivation for conducting control systems analysis and design in the
frequency domain to be convenience and the availability of the existing
analytical tools. Another reason is that it presents an alternative point of view
to control-system problems, which often provides valuable or crucial
information in the complex analysis and design of control systems.
Therefore, to conduct a frequency-domain analysis of a linear control system
does not imply that the system will only be subject to a sinusoidal input. It
may never be. Rather, from the frequency-response studies, we will be able to



project the time-domain performance of the system.

Learning Outcomes
After successful completion of this chapter, you will be able to

1.  Conduct a frequency response analysis of a system.
2.  Plot the frequency response of a system using polar, magnitude, and
phase diagrams.
3.  Identify the resonant peak frequency and magnitude, bandwidth in a
frequency response.
4.  For a prototype second-order system, relate the frequency-domain
specifications to the time-response specifications.
5.  Plot the system Nyquist diagram.
6.  Perform system stability analysis using the Nyquist stability criterion.
7.  Use MATLAB to construct plot frequency response, Nyquist and
Nichols plots.
8.  Use frequency-response techniques to design control systems.

10-1  INTRODUCTION TO FREQUENCY
RESPONSE

The starting point for frequency-domain analysis of a linear system is its
transfer function. Let us consider the following practical example. It is well
known from linear system theory that when the input to a stable linear time-
invariant system is sinusoidal with amplitude R and frequency ω,

the steady-state output of the system, y(t), will be a sinusoid with the same
frequency w but possibly with different amplitude and phase; that is,

where Y is the amplitude of the output sine wave and ϕ is the phase shift in



degrees or radians.
Let us examine this concept through a practical example.

EXAMPLE 10-1-1  For the test vehicle suspension system, modeled in
Example 6-5-2, as shown in Fig. 10-1a, a four post
shaker is used to test the performance of the vehicle
suspension system by applying various excitations to
the vehicle. Using the 1-DOF quarter-car model,
shown in Fig. 10-1b, we can study the performance of
each wheel suspension and its response to various road
inputs. In this case we apply a sinusoidal input to each
wheel, and study the behavior of the system as the
excitation frequency varies from zero to very high
(depending on shaker frequency limitations).



Figure 10-1   (a) A Cadillac SRX 2005 model on a four-post shaker test
facility (from author’s research on active suspension system). (b) A 1° of
freedom quarter-car model of one wheel suspension.

The equation of motion of the quarter-car system,
categorized as a base excitation system (see Chap. 2), is



defined as follows:

where the system parameters are scaled for simpler
treatment of the example.

Equation (10-3) reflects the bounce of the vehicle
subject to road excitations. The transfer function of the
relative motion is shown as

where the system is overdamped ζ = 1.25. and ωn = 4
red/s. The time response of the system for 

 can be obtained using the inverse
Laplace transforms, see Chap. 3. From Eq. (10-3) and the

Laplace transformation table in App. C, 

Hence,

where, because the system is inherently stable, the



transient response vanishes, and the steady-state response
is z(t) = Z sin(ωt + ϕ), and can be represented in polar
form as

where G(jω) = |G(jω) is the frequency response
function. We define

as the frequency response magnitude and phase,
respectively, see App. B for review of complex variables.
Note that care must be taken in calculating the phase
because of the sign change in the denominator of Eq. (10-
8a), as w varies. The polar representation of the

frequency response function  for ω
= 1 is shown in Fig. 10-2. As shown the frequency
response is defined by the vector G(jω) = |G(jω) <G(jω)
= M<ϕ of magnitude M and phase ϕ. Considering the
input and output time responses, shown in Fig. 10-3, the
magnitude and phase values are identified in this case.



Figure 10-2   Polar representation of the frequency response function 

 for ω = 1 rad/s.

Figure 10-3   Graphical representation of input A sin(ωt) and output z(t) =
Z sin(ωt + ϕ) for A = 0.01 and ω = 1 rad/s.



Table 10-1 describes different M and ϕ values as w
increases. As shown, the magnitude M decreases as the
frequency increases, and the phase f changes from 0° to –
180°. The polar representation of the frequency response

function  for w varying from 0.1
to 100 rad/s is shown in Fig. 10-4, where the “x” values
correspond to the excitation frequencies shown in Table
10-1. Generally speaking, from Fig. 10-4, we can think of
the polar frequency response plot as how a vector of
magnitude M and phase f changes its magnitude and
direction as w varies from zero to infinity.

TABLE 10-1   Numerical Values of Sample Magnitude and Phase of
the System in Example 10-1-1



Figure 10-4   Polar representation of the frequency response function 

 for w varying from 0.1 to 100 rad/s.

From App. B, we know that the polar plot in Fig. 10-4
can be represented as separate magnitude and phase
frequency response plots—also known as the Bode plot
of the system. Figure 10-5 shows the frequency response
plots. Note that, as discussed in App. B, in the Bode plot,
it is customary to use log scale for the abscissa and dB =
(20 log M) scale to represent the magnitude and degrees
to represent the phase.



Figure 10-5   Magnitude and phase frequency response plots for 

 for ω varying from 0.1 to 100 rad/s.

MATLAB Toolbox 10-1-1 was used to arrive at Figs.
10-3 through 10-5.

In general, for the transfer function of a linear SISO
system M(s); the Laplace transforms of the input and the
output, see Eqs. (10-1) and (10-2), are related through

For sinusoidal steady-state analysis, we replace s by
jω, and the last equation becomes

By writing the function Y(jω) as



with similar definitions for M(jω) and R(jω), Eq. (10-
10) leads to the magnitude relation between the input and
the output:

and the phase relation:

Thus, for the input and output signals described by
Eqs. (10-1) and (10-2), respectively, the amplitude of the
output sinusoid is

and the phase of the output is

Thus, by knowing the transfer function M(s) of a linear
system, the magnitude characteristic, |M(jω)|, and the
phase characteristic, <M(jω), completely describe the
steady-state performance when the input is a sinusoid.
The crux of frequency-domain analysis is that the
amplitude and phase characteristics of a closed-loop
system can be used to predict both time-domain transient
and steady-state system performances.

Toolbox 10-1-1
MATLAB code for Fig. 10-3 for the input and output time response

plots.



MATLAB code for Fig. 10-4—polar plot.

MATLAB code for Fig. 10-5—Bode plots.



In the end, to put these results into perspective, by looking at Figs. 10-
3 through 10-5, you can see that the suspension system works as a filter
to significantly reduce the effect of road excitations. The performance of
the suspension system, however, is frequency dependent where the
magnitude of the suspension transfer function reduces with higher
frequencies while its phase varies from 0° to –180°.

EXAMPLE 10-1-2   In frequency-domain analyses of control systems, often
we have to determine the basic properties of a polar
plot. Consider the following transfer function (see also
Example B-2-4):

By substituting s = jω in Eq. (10-16), the magnitude
and phase of G(jω) at ω = 0 and ω = ∞ are computed as
follows:

Thus, the properties of the polar plot of G(jω) at ω = 0
and ω = ∞ are ascertained.

To express G(jω) as the sum of its real and imaginary
parts, we must rationalize G(jω) by multiplying its



numerator and denominator by the complex conjugate of
its denominator. Therefore, G(jω) is written to find the
intersections of the G( jω) plot on the real and imaginary
axes of the G(jω)-plane, we rationalize G(jω) to give

After simplification, the last equation is written

Next, we determine the intersections, if any, of the
polar plot with the two axes of the G( jω)-plane. If the
polar plot of G( jω) intersects the real axis, at the point of
intersection, the imaginary part of G( jω) is zero, that is,

Similarly, the intersection of G( jω) with the imaginary
axis is found by setting Re[G(jω)] of Eq. (10-21) to zero,
that is,

Setting Re[G(jω)] to zero, we have ω = ∞, and G(j∞) =
0, which means that the G( jω) plot intersects the
imaginary axis only at the origin. Setting [G(jω)] to zero,
we have  rad/s. This gives the point of
intersection on the real axis at

The result,  rad/s, has no physical meaning
because the frequency is negative; it simply represents a
mapping point on the negative jω-axis of the s-plane. In
general, if G(s) is a rational function of s (a quotient of
two polynomials of s), the polar plot of G( jω) for



negative values of ω is the mirror image of that for
positive ω, with the mirror placed on the real axis of the
G( jω)-plane. From Eq. (B-58), we also see that
Re[G(j0)] = ∞ and Im[G(j0)] = ∞. With this information,
it is now possible to make a sketch of the polar plot for
the transfer function in Eq. (10-16), as shown in Fig. 10-
6.

Figure 10-6   Polar plot of .

You should also be able to sketch the asymptotic
magnitude or phase plots of the system. Please refer to
App. B for further discussions on the subject.

MATLAB Toolbox 10-1-2 can be used to arrive at Fig.
10-6 and the Bode plots of the system.

Toolbox 10-1-2
MATLAB code for Fig. 10-6—polar plot.



MATLAB code for Fig. 10-7—Bode plots.

Figure 10-7   Bode diagrams for 



10-1-1  Frequency Response of Closed-Loop Systems
For the single-loop control-system configuration studied in the preceding

chapters, the closed-loop transfer function is

Under the sinusoidal steady state, s = jω , Eq. (10-25) becomes

The sinusoidal steady-state transfer function M( jω) may be expressed in
terms of its magnitude and phase, that is,

Or M( jω) can be expressed in terms of its real and imaginary parts:

The magnitude of M( jω) is

and the phase of M( jω) is

If M(s) represents the input-output transfer function of an electric filter,
then the magnitude and phase of M( jω) indicate the filtering characteristics
on the input signal. Figure 10-8 shows the gain and phase characteristics of
an ideal low-pass filter that has a sharp cutoff frequency at ωc. It is well
known that an ideal filter characteristic is physically unrealizable. In many
ways, the design of control systems is quite similar to filter design, and the
control system is regarded as a signal processor. In fact, if the ideal low-pass-



filter characteristics shown in Fig. 10-8 were physically realizable, they
would be highly desirable for a control system, since all signals would be
passed without distortion below the frequency ωc, and completely eliminated
at frequencies above ωc where noise may lie.

Figure 10-8   Gain-phase characteristics of an ideal low-pass filter.

If ωc is increased indefinitely, the output Y( jω) would be identical to the
input R( jω) for all frequencies. Such a system would follow a step-function
input in the time domain exactly. From Eq. (10-29), we see that, for |M(jω)|
to be unity at all frequencies, the magnitude of G(jω) must be infinite. An
infinite magnitude of G( jω) is, of course, impossible to achieve in practice,
nor would it be desirable, since most control systems may become unstable
when their loop gains become very high. Furthermore, all control systems are
subject to noise during operation. Thus, in addition to responding to the input
signal, the system should be able to reject and suppress noise and unwanted
signals. For control systems with high-frequency noise, such as air-frame
vibration of an aircraft, the frequency response should have a finite cutoff
frequency ωc.

Mr indicates the relative stability of a stable closed-loop system.



The phase characteristics of the frequency response of a control system are
also of importance, as we shall see that they affect the stability of the system.

Figure 10-9 illustrates typical gain and phase characteristics of a control
system. As shown by Eqs. (10-29) and (10-30), the gain and phase of a
closed-loop system can be determined from the forward-path and loop
transfer functions. In practice, the frequency responses of G(s) and H(s) can
often be determined by applying sine-wave inputs to the system and
sweeping the frequency from 0 to a value beyond the frequency range of the
system.

Figure 10-9   Typical gain-phase characteristics of a feedback control
system.

10-1-2  Frequency-Domain Specifications
In the design of linear control systems using the frequency-domain

methods, it is necessary to define a set of specifications so that the
performance of the system can be identified. Specifications such as the
maximum overshoot, damping ratio, and the like used in the time domain can
no longer be used directly in the frequency domain. The following frequency-



domain specifications are often used in practice.
Resonant Peak Mr

The resonant peak Mr is the maximum value of |M(jω)|.
In general, the magnitude of Mr gives indication on the relative stability of

a stable closed-loop system. Normally, a large Mr corresponds to a large
maximum overshoot of the step response. For most control systems, it is
generally accepted in practice that the desirable value of Mr should be
between 1.1 and 1.5.

Resonant Frequency ω
The resonant frequency ωr is the frequency at which the peak resonance Mr

occurs.

Bandwidth BW
The bandwidth BW is the frequency at which |M(jw)| drops to 70.7% of, or

3 dB down from, its zero-frequency value.
In general, the bandwidth of a control system gives indication on the

transient-response properties in the time domain. A large bandwidth
corresponds to a faster rise time, since higher-frequency signals are more
easily passed through the system. Conversely, if the bandwidth is small, only
signals of relatively low frequencies are passed, and the time response will be
slow and sluggish. Bandwidth also indicates the noise-filtering characteristics
and the robustness of the system. The robustness represents a measure of the
sensitivity of a system to parameter variations. A robust system is one that is
insensitive to parameter variations.

•   BW gives an indication of the transient response properties of a
control system.
•   BW gives an indication of the noise-filtering characteristics and
robustness of the system.

Cutoff Rate
Often, bandwidth alone is inadequate to indicate the ability of a system in

distinguishing signals from noise. Sometimes it may be necessary to look at
the slope of |M(jω)|, which is called the cutoff rate of the frequency response,



at high frequencies. Apparently, two systems can have the same bandwidth,
but the cutoff rates may be different.

The performance criteria for the frequency-domain defined above are
illustrated in Fig. 10-9. Other important criteria for the frequency domain will
be defined in later sections of this chapter.

10-2  MR, ωR , AND BANDWIDTH OF THE
PROTOTYPE SECOND-ORDER SYSTEM

10-2-1  Resonant Peak and Resonant Frequency
For the prototype second-order system, the resonant peak Mr, the resonant

frequency ωr, and the bandwidth BW are all uniquely related to the damping
ratio ζ and the natural undamped frequency ωn of the system.

Consider the closed-loop transfer function of the prototype second-order
system

At sinusoidal steady state, s = jω, Eq. (10-31) becomes

We can simplify Eq. (10-32) by letting u = ω/ωn. Then, Eq. (10-32)
becomes

The magnitude and phase of M( ju) are



and

respectively. The resonant frequency is determined by setting the
derivative of |M(ju) | with respect to u to zero. Thus,

from which we get

In normalized frequency, the roots of Eq. (10-37) are ur 0 and

•   For the prototype second-order system, Mr is a function of ζ only.
•   For the prototype second-order system, Mr = 1 and ωr = 0 when ζ ≥
0.707.

The solution of ur = 0 merely indicates that the slope of the |M(ju)|-versus-
ω curve is zero at ω = 0; it is not a true maximum if ζ is less than 0.707.
Equation (10-38) gives the resonant frequency

Because frequency is a real quantity, Eq. (10-39) is meaningful only for 2ζ2

≤1, or ζ ≤0.707. This means simply that, for all values of ζ greater than 0.707,
the resonant frequency is Ωr = 0 and Mr = 1.



Substituting Eq. (10-38) into Eq. (10-35) for u and simplifying, we get

It is important to note that, for the prototype second-order system, Mr is a
function of the damping ratio ζ only, and ωr is a function of both ζ and ωn.
Furthermore, although taking the derivative of |M(ju) | with respect to u is a
valid method of determining Mr and ωr, for higher-order systems, this
analytical method is quite tedious and is not recommended. Graphical
methods to be discussed and computer methods are much more efficient for
high-order systems.

BW/ωn decreases monotonically as the damping ratio ζ decreases.

Toolbox 10-2-1
MATLAB code for Fig. 10-10.



Figure 10-10 illustrates the plots of |M(ju) | of Eq. (10-34) versus u for
various values of ζ. Notice that, if the frequency scale were unnormalized, the
value of ωr = urω would increase when ζ decreases, as indicated by Eq. (10-
39). When ζ = 0, ωr ωn. Figures 10-11 and 10-12 illustrate the relationship
between Mr and ζ, and ur(=ωr/ωn) and ζ, respectively.



Figure 10-10   Magnification versus normalized frequency of the
prototype second-order control system.



Figure 10-11   Mr versus damping ratio for the prototype second-order
system.



Figure 10-12   Normalized resonant frequency versus damping ratio for

the prototype second-order system. .

10-2-2  Bandwidth
In accordance with the definition of bandwidth, we set the value of |M(ju) |

to .

Thus,

•   BW is directly proportional to ωn.
•   When a system is unstable, Mr no longer has any meaning.
•   Bandwidth and rise time are inversely proportional to each other.

which leads to

The plus sign should be chosen in the last equation, since u must be a
positive real quantity for any ζ. Therefore, the bandwidth of the prototype
second-order system is determined from Eq. (10-43) as

Figure 10-13 shows a plot of BW/ωn as a function of ζ. Notice that, as ζ
increases, BW/ωn decreases monotonically. Even more important, Eq. (10-
44) shows that BW is directly proportional to ωn.



Figure 10-13   Bandwidth/ωn versus damping ratio for the prototype
second-order system.

We have established some simple relationships between the time-domain
response and the frequency-domain characteristics of the prototype second-
order system. The summary of these relationships is as follows.

1.    The resonant peak Mr of the closed-loop frequency response
depends on ζ only [Eq. (10-40)]. When ζ is zero, Mr is infinite. When ζ
is negative, the system is unstable, and the value of Mr ceases to have
any meaning. As ζ increases, Mr decreases.
2.    For ζ≥0.707, Mr = 1 (see Fig. 10-11), and ωr = 0 (see Fig. 10-12). In
comparison with the unit-step time response, the maximum overshoot in
Eq. (7-40) also depends only on ζ. However, the maximum overshoot is



zero when ζ ≥ 1.
3.    Bandwidth is directly proportional to ωn [Eq. (10-44)]; that is, BW
increases and decreases linearly with ωn. BW also decreases with an
increase in ζ for a fixed ωn (see Fig. 10-13). For the unit-step response,
rise time increases as ωn decreases, as demonstrated in Eq. (7-46) and
Fig. 7-15. Therefore, BW and rise time are inversely proportional to
each other.
4.    Bandwidth and Mr are proportional to each other for 0 ζ ≤ 0.707.

The correlations among pole locations, unit-step response, and the
magnitude of the frequency response for the prototype second-order system
are summarized in Fig. 10-14.



Figure 10-14   Correlation among pole locations, unit-step response, and
the magnitude of frequency response of the prototype second-order system.



10-3  EFFECTS OF ADDING POLES AND
ZEROS TO THE FORWARD-PATH TRANSFER
FUNCTION

The relationships between the time-domain and the frequency-domain
responses arrived at in the preceding section apply only to the prototype
second-order system described by Eq. (10-31). When other second-order or
higher-order systems are involved, the relationships are different and may be
more complex. It is of interest to consider the effects on the frequency-
domain response when poles and zeros are added to the prototype second-
order transfer function. It is simpler to study the effects of adding poles and
zeros to the closed-loop transfer function; however, it is more realistic from a
design standpoint to modify the forward-path transfer function.

The objective of the next two sections is to demonstrate the simple
relationships between BW, Mr, and the time-domain response of the
prototype second-order forward-path transfer function. Typical effects on
BW of adding a pole and a zero to the forward-path transfer function are
investigated.

10-3-1  Effects of Adding a Zero to the Forward-Path
Transfer Function

The closed-loop transfer function of Eq. (10-31) may be considered as that
of a unity-feedback control system with the prototype second-order forward-
path transfer function

Let us add a zero at s = –1/T to the transfer function so that Eq. (10-45)
becomes

The general effect of adding a zero to the forward-path transfer
function is to increase the BW of the closed-loop system.



The closed-loop transfer function is

In principle, Mr, ωr, and BW of the system can all be derived using the
same steps used in the previous section. However, because there are now
three parameters in ζ, ωn, and T, the exact expression for Mr, ωr, and BW are
difficult to obtain analytically even though the system is still second order.
After a length derivation, the bandwidth of the system is found to be

where

While it is difficult to see how each of the parameters in Eq. (10-48)
affects the bandwidth, Fig. 10-15 shows the relationship between BW and T
for ζ = 0.707 and ωn = 1.



Figure 10-15   Bandwidth of a second-order system with open-loop
transfer function G(s) = (1 + Ts)/[s(s + 1.414)].

Notice that the general effect of adding a zero to the forward-path
transfer function is to increase the bandwidth of the closed-loop system.

However, as shown in Fig. 10-15, over a range of small values of T, the
bandwidth is actually decreased. Figure 10-16a and b gives the plots of
|M(jω) | of the closed-loop system that has the G(s) of Eq. (10-46) as its
forward-path transfer function: ωn = 1; ζ = 0.707 and 0.2, respectively; and T
takes on various values. These curves verify that the bandwidth generally
increases with the increase of T by the addition of a zero to G(s), except for a
range of small values of T, for which BW is actually decreased.





Figure 10-16   Magnification curves for the second-order system with the
forward-path transfer function G(s) in Eq. (10-46). (a) ωn = 1, ζ = 0.707 (b)
ωn = 1, ζ = 0.2.

Toolbox 10-3-1
MATLAB code for Fig. 10-16a.

MATLAB code for Fig. 10-16b.



Figures 10-17 and 10-18 show the corresponding unit-step responses of the
closed-loop system. These curves show that a high bandwidth corresponds to
a faster rise time. However, as T become very large, the zero of the closed-
loop transfer function, which is at s = −1/T, moves very close to the origin,
causing the system to have a large time constant. Thus, Fig. 10-17 illustrates
the situation that the rise time is fast, but the large time constant of the zero
near the origin of the s-plane causes the time response to drag out in reaching
the final steady state (i.e., the settling time will be longer).



Figure 10-17   Unit-step responses of a second-order system with a
forward-path transfer function G(s).



Figure 10-18   Unit-step responses of a second-order system with a
forward-path transfer function G(s).

Toolbox 10-3-2
MATLAB code for Fig. 10-17—use clear all, close all, and clc if

necessary.



Toolbox 10-3-3
MATLAB code for Fig. 10-18—use clear all, close all, and clc if

necessary.

10-3-2  Effects of Adding a Pole to the Forward-Path
Transfer Function

Adding a pole at s = −1/T to the forward-path transfer function of Eq. (10-
45) leads to



Adding a pole to the forward-path transfer function makes the closed-
loop system less stable, and decreases the bandwidth.

The derivation of the bandwidth of the closed-loop system with G(s) given
in Eq. (10-50) is quite tedious. We can obtain a qualitative indication on the
bandwidth properties by referring to Fig. 10-19, which shows the plots of
|M(jω)| ω for ωn = 1,ζ = 0.707, and versus values of T. Because the system is
now of the third order, it can be unstable for a certain set of system
parameters. It can be shown that, for ωn = 1 and ζ, the system is stable for all
positive values of T. The |M(jω)|-versus-ω curves of Fig. 10-19 show that, for
small values of T, the bandwidth of the system is slightly increased by the
addition of the pole, but Mr is also increased. When T becomes large, the
pole added to G(s) has the effect of decreasing the bandwidth but increasing
Mr. Thus, we can conclude that, in general, the effect of adding a pole to
the forward-path transfer function is to make the closed-loop system less
stable while decreasing the bandwidth.



Figure 10-19   Magnification curves for a third-order system with a
forward-path transfer function G(s).

The unit-step responses of Fig. 10-20 show that, for larger values of T, T =
1 and T = 5, the following relations are observed:



Figure 10-20   Unit-step responses of a third-order system with a forward-
path transfer function G(s).

1.    The rise time increases with the decrease of the bandwidth.
2.    The larger values of Mr also correspond to a larger maximum
overshoot in the unit-step responses.

The correlation between Mr and the maximum overshoot of the step
response is meaningful only when the system is stable. When G(jω) =
−1|M(jω)| is infinite, and the closed-loop system is marginally stable. On the
other hand, when the system is unstable, the value of |M(jω) | is analytically
finite, but it no longer has any significance.

Toolbox 10-4-1
MATLAB code for Fig. 10-12—use clear all, close all, and clc if

necessary.



When Mr = ∞, the closed-loop system is marginally stable. When the
system is unstable, Mr no longer has any meaning.

10-4  NYQUIST STABILITY CRITERION:
FUNDAMENTALS

•   The Nyquist plot of L( jω) is done in polar coordinates as ω varies
from 0 to ∞.
•   The Nyquist criterion also gives indication on relative stability

Thus far we have presented two methods of determining the stability of
linear SISO systems: the Routh-Hurwitz criterion and the root-locus method
of determining stability by locating the roots of the characteristic equation in
the s-plane. Of course, if the coefficients of the characteristic equation are all
known, we can solve for the roots of the equation by use of MATLAB.



The Nyquist criterion is a semigraphical method that determines the
stability of a closed-loop system by investigating the properties of the
frequency-domain plot, the Nyquist plot, of the loop transfer function
G(s)H(s), or L(s). Specifically, the Nyquist plot of L(s) is a plot of L( jω) in
the polar coordinates of Im[L( jω)] versus Re[L( jω)] as ω varies from 0 to ∞.
This is another example of using the properties of the loop transfer function
to find the performance of the closed-loop system. The Nyquist criterion has
the following features that make it an alternative method that is attractive for
the analysis and design of control systems.

1.    In addition to providing the absolute stability, like the Routh-
Hurwitz criterion, the Nyquist criterion also gives information on the
relative stability of a stable system and the degree of instability of an
unstable system. It also gives an indication of how the system stability
may be improved, if needed.
2.    The Nyquist plot of G(s)H(s) or of L(s) is very easy to obtain,
especially with the aid of a computer.
3.    The Nyquist plot of G(s)H(s) gives information on the frequency-
domain characteristics such as Mr, ωr, BW, and others with ease.
4.    The Nyquist plot is useful for systems with pure time delay that
cannot be treated with the Routh-Hurwitz criterion and are difficult to
analyze with the root-locus method.

This subject is also treated in App. G for the general case where the loop
transfer function is of nonminimum-phase type.

10-4-1  Stability Problem
The Nyquist criterion represents a method of determining the location of

the characteristic equation roots with respect to the left half and the right half
of the s-plane. Unlike the root-locus method, the Nyquist criterion does not
give the exact location of the characteristic equation roots.

Let us consider that the closed-loop transfer function of a SISO system is

where G(s)H(s) can assume the following form



where the T’s are real or complex-conjugate coefficients, and Td is a real
time delay.1

Because the characteristic equation is obtained by setting the denominator
polynomial of M(s) to zero, the roots of the characteristic equation are also
the zeros of 1 + G(s)H(s). Or, the characteristic equation roots must satisfy

In general, for a system with multiple number of loops, the denominator of
M(s) can be written as

where L(s) is the loop transfer function and is of the form of Eq. (10-52).
Before embarking on the details of the Nyquist criterion, it is useful to

summarize the pole-zero relationships of the various system transfer
functions.

Identification of Poles and Zeros
•   Loop transfer function zeros: zeros of L(s).
•   Loop transfer function poles: poles of L(s).
•   Closed-loop transfer function poles: zeros of 1 + L(s) = roots of the
characteristic equation poles of 1 + L(s) = poles of L(s).

Stability Conditions
We define two types of stability with respect to the system configuration.

•   Open-loop stability. A system is said to be open-loop stable if the
poles of the loop transfer function L(s) are all in the left-half s-plane. For
a single-loop system, this is equivalent to the system being stable when
the loop is opened at any point.



•   Closed-loop stability. A system is said to be closed-loop stable, or
simply stable, if the poles of the closed-loop transfer function or the
zeros of 1 + L(s) are all in the left-half s-plane. Exceptions to the above
definitions are systems with poles or zeros intentionally placed at s = 0.

10-4-2  Definitions of Encircled and Enclosed
Because the Nyquist criterion is a graphical method, we need to establish

the concepts of encircled and enclosed, which are used for the interpretation
of the Nyquist plots for stability.

Encircled
A point or region in a complex function plane is said to be encircled by a

closed path if it is found inside the path.
For example, point A in Fig. 10-21 is encircled by the closed path Γ

because A is inside the closed path. Point B is not encircled by the closed path
Γ because it is outside the path. Furthermore, when the closed path Γ has a
direction assigned to it, the encirclement, if made, can be in the clockwise
(CW) or the counterclockwise (CCW) direction. As shown in Fig. 10-21,
point A is encircled by Γ in the CCW direction. We can say that the region
inside the path is encircled in the prescribed direction, and the region outside
the path is not encircled.



Figure 10-21   Definition of encirclement.

Enclosed
A point or region is said to be enclosed by a closed path if it is encircled in

the CCW direction or the point or region lies to the left of the path when the
path is traversed in the prescribed direction.

The concept of enclosure is particularly useful if only a portion of the
closed path is shown. For example, the shaded regions in Fig. 10-22a and b
are considered to be enclosed by the closed path Γ. In other words, point A in
Fig. 10-22a is enclosed by Γ, but point A in Fig. 10-22b is not. However,
point B and all the points in the shaded region outside Γ in Fig. 10-22b are
enclosed.

Figure 10-22   Definition of enclosed points and regions. (a) Point A is
enclosed by G. (b) Point A is not enclosed, but B is enclosed by the locus G.

10-4-3  Number of Encirclements and Enclosures
When a point is encircled by a closed path Γ, a number N can be assigned

to the number of times it is encircled. The magnitude of N can be determined
by drawing an arrow from the point to any arbitrary point s1 on the closed
path Γ and then letting s1 follow the path in the prescribed direction until it
returns to the starting point. The total net number of revolutions traversed by
this arrow is N, or the net angle is 2πN radians. For example, point A in Fig.
10-23a is encircled once or 2π radians by Γ, and point B is encircled twice or
4π radians, all in the CW direction. In Fig. 10-23b, point A is enclosed once,



and point B is enclosed twice by Γ. By definition, N is positive for CCW
encirclement and negative for CW encirclement.

Figure 10-23   Definition of the number of encirclements and enclosures.

10-4-4  Principles of the Argument
The Nyquist criterion was originated as an engineering application of the

well-known “principle of the argument” concept in complex-variable theory.
The principle is stated in the following in a heuristic manner.

Let Δ(s) be a single-valued function of the form of the right-hand side of
Eq. (10-52), which has a finite number of poles in the s-plane. Single valued
means that, for each point in the s-plane, there is one and only one
corresponding point, including infinity, in the complex Δ(s)-plane. As
defined in Chap. 9, infinity in the complex plane is interpreted as a point.

Do not attempt to relate Δ(s) with L(s). They are not the same.

Suppose that a continuous closed path Γs is arbitrarily chosen in the s-
plane, as shown in Fig. 10-24a. If Γs does not go through any poles of Δ(s),
then the trajectory ΓΔ mapped by Δ(s) into the Δ(s)-plane is also a closed
one, as shown in Fig. 10-24b. Starting from a point s1, the Γs locus is traversed
in the arbitrarily chosen direction (CW in the illustrated case), through the



points s2 and s3, and then returning to s1 after going through all the points on
the Γs locus, as shown in Fig. 10-24a, the corresponding ΓΔ locus will start
from the point Δ(s1) and go through points Δ(s2) and Δ(s3), corresponding to s1,
s2, and s3, respectively, and finally return to the starting point, Δ(s1). The
direction of traverse of ΓΔ can be either CW or CCW, that is, in the same
direction or the opposite direction as that of Γs, depending on the function
Δ(s). In Fig. 10-24b, the direction of ΓΔ is arbitrarily assigned, for illustration
purposes, to be CCW.

Figure 10-24   (a) Arbitrarily chosen closed path in the s-plane. (b)
Corresponding locus Γs in the Δ(s)-plane.

Although the mapping from the s-plane to the Δ(s)-plane is single-valued,
the reverse process is not a single-valued mapping. For example, consider the
function

which has poles s = 0, −1, and −2 in the s-plane. For each point in the s-
plane, there is only one corresponding point in the Δ(s)-plane. However, for
each point in the Δ(s)-plane, the function maps into three corresponding



points in the s-plane. The simplest way to illustrate this is to write Eq. (10-
55) as

If Δ(s) is a real constant, which represents a point on the real axis in the
Δ(s)-plane, the third-order equation in Eq. (10-56) gives three roots in the s-
plane. The reader should recognize the parallel of this situation to the root-
locus diagram that essentially represents the mapping of Δ(s) = −1 + j0 onto
the loci of roots of the characteristic equation in the s-plane, for a given value
of K. Thus, the root loci of Eq. (10-55) have three individual branches in the
s-plane.

The principle of the argument can be stated:
Let Δ(s) be a single-valued function that has a finite number of poles in

the s-plane. Suppose that an arbitrary closed path Γs is chosen in the s-
plane so that the path does not go through any one of the poles or zeros
of Γ(s); the corresponding Γρ locus mapped in the Δ(s)-plane will encircle
the origin as many times as the difference between the number of zeros
and poles of Δ(s) that are encircled by the s-plane locus Γs.

In equation form, the principle of the argument is stated as

In general, N can be positive (Z > P), zero (Z = P), or negative (Z < P).
These three situations are described in more detail as follows:

1.    N > 0 (Z > P). If the s-plane locus encircles more zeros than poles of
Δ(s) in a certain prescribed direction (CW or CCW), N is a positive
integer. In this case, the Δ(s)-plane locus ΓΔ will encircle the origin of
the Δ(s)-plane N times in the same direction as that of Γs.
2.    N = 0(Z = P). If the s-plane locus encircles as many poles as zeros,
or no poles and zeros, of Δ(s), the Δ(s)-plane locus ΓΔ will not encircle
the origin of the Δ(s)-plane.



3.    N<(Z < P). If the s-plane locus encircles more poles than zeros of
Δ(s) in a certain direction, N is a negative integer. In this case, the Δ(s)-
plane locus ΓΔ will encircle the origin N times in the opposite direction
as that of Γs.

A convenient way of determining N with respect to the origin (or any
point) of the Δ(s)-plane is to draw a line from the point in any direction to a
point as far as necessary; the number of net intersections of this line with the
Δ(s) locus gives the magnitude of N. Figure 10-25 gives several examples of
this method of determining N. In these illustrated cases, it is assumed that the
Γs locus has a CCW sense.



Figure 10-25   Examples of the determination of N in the Δ(s)-plane.

Critical Point
For convenience, we shall designate the origin of the Δ(s)-plane as the

critical point from which the value of N is determined. Later, we shall
designate other points in the complex-function plane as critical points,
dependent on the way the Nyquist criterion is applied.

A rigorous proof of the principle of the argument is not given here. The
following illustrative example may be considered a heuristic explanation of
the principle.



Let us consider the function Δ(s) is of the form

where K is a positive real number. The poles and zeros of Δ(s) are assumed
to be as shown in Fig. 10-19a. The function Δ(s) can be written as

Figure 10-26 a shows an arbitrarily chosen trajectory Γs in the s-plane, with
the arbitrary point s1 on the path, and Γs does not pass through any of the
poles and the zeros of Δ(s). The function Δ(s) evaluated at s = s1 is

Figure 10-26   (a) Pole-zero configuration of Δ(s) in Eq. (10-59) and the s-
plane trajectory Γs. (b) Δ(s)-plane locus ΓΔ, which corresponds to the Γs locus



of (a) through the mapping of Eq. (10-59).

Z and P refer to only the zeros and poles, respectively, of Δ(s) that are
encircled by Γs.

The term (s1 + z1) can be represented graphically by the vector drawn from
−z1 to s1. Similar vectors can be drawn for (s1 + P1) and (s + P2). Thus, Δ(s1) is
represented by the vectors drawn from the finite poles and zeros of Δ(s) to the
point s1, as shown in Fig. 10-26a. Now, if the point s1 is moved along the
locus Γs in the prescribed CCW direction until it returns to the starting point,
the angles generated by the vectors drawn from the two poles that are not
encircled by Γs when s1 completes one roundtrip are zero, whereas the vector
(s1 + z1) drawn from the zero at −z1, which is encircled by Γs, generates a
positive angle (CCW) of 2π radians, which means that the corresponding Δ(s)
plot must go around the origin 2π radians, or one revolution, in the CCW
direction, as shown in Fig. 10-26b. This is why only the poles and zeros of
Δ(s) that are inside the Γs trajectory in the s-plane will contribute to the value
of N of Eq. (10-57). Because the poles of Δ(s) contribute to a negative phase,
and zeros contribute to a positive phase, the value of N depends only on the
difference between Z and P. For the case illustrated in Fig. 10-26a, Z = 1 and
P = 0.

Thus,

which means that the Δ(s)-plane locus ΓΔ should encircle the origin once in
the same direction as that of the s-plane locus Γs . It should be kept in mind
that Z and P refer only to the zeros and poles, respectively, of Δ(s) that are
encircled by Γs and not the total number of zeros and poles of Δ(s).

In general, the net angle traversed by the Δ(s)-plane locus, as the s-plane
locus is traversed once in any direction, is equal to

This equation implies that if there are N more zeros than poles of Δ(s),



which are encircled by the s-plane locus Γs, in a prescribed direction, the
Δ(s)-plane locus will encircle the origin N times in the same direction as that
of Γs. Conversely, if N more poles than zeros are encircled by Γs in a given
direction, N in Eq. (10-62) will be negative, and the Δ(s)-plane locus must
encircle the origin N times in the opposite direction to that of Γs.

A summary of all the possible outcomes of the principle of the argument is
given in Table 10-2.

TABLE 10-2   Summary of All Possible Outcomes of the Principle of
the Argument

10-4-5  Nyquist Path
Years ago when Nyquist was faced with solving the stability problem,

which involves determining if the function Δ(s) = 1 + (s) has zeros in the
right-half s-plane, he apparently discovered that the principle of the argument
could be applied to solve the stability problem if the s-plane locus Γs is taken
to be one that encircles the entire right half of the s-plane. Of course, as an
alternative, Gs can be chosen to encircle the entire left-half s-plane, as the
solution is a relative one. Figure 10-27 illustrates a Gs locus with a CCW
sense that encircles the entire right half of the s-plane. This path is chosen to
be the s-plane trajectory Gs for the Nyquist criterion, since in mathematics,
CCW is traditionally defined to be the positive sense. The path Gs shown in
Fig. 10-27 is defined to be the Nyquist path. Because the Nyquist path must



not pass through any poles and zeros of Δ(s), the small semicircles shown
along the jω-axis in Fig. 10-27 are used to indicate that the path should go
around these poles and zeros if they fall on the jω-axis. It is apparent that, if
any pole or zero of Δ(s) lies inside the right-half s-plane, it will be encircled
by the Nyquist path Gs.

Figure 10-27   Nyquist path.

10-4-6 Nyquist Criterion and the L(s) or the G(s)H(s) Plot

The Nyquist path is defined to encircle the entire right-half s-plane.

The Nyquist criterion is a direct application of the principle of the
argument when the s-plane locus is the Nyquist path of Fig. 10-27. In
principle, once the Nyquist path is specified, the stability of a closed-loop
system can be determined by plotting the Δ(s) = 1 + L(s) locus when s takes
on values along the Nyquist path and investigating the behavior of the Δ(s)



plot with respect to the critical point, which in this case is the origin of the
Δ(s)-plane.

Because the function L(s) is generally known, it would be simpler to
construct the L(s) plot that corresponds to the Nyquist path, and the
same conclusion on the stability of the closed-loop system can be
obtained by observing the behavior of the L(s) plot with respect to the
(−1, j0) point in the L(s)-plane.

This is because the origin of the Δ(s) = 1 + L(s) plane corresponds to the
(−1,j0) point in the L(s)-plane. Thus the (−1, j0) point in the L(s)-plane
becomes the critical point for the determination of closed-loop stability.

For single-loop systems, L(s) = G(s)H(s), the previous development leads
to the determination of the closed-loop stability by investigating the behavior
of the G(s)H(s) plot with respect to the (−1, j0) point of the G(s)H(s)-plane.
Thus, the Nyquist stability criterion is another example of using the loop
transfer function properties to find the behavior of closed-loop systems.

Thus, given a control system that has the characteristic equation given by
equating the numerator polynomial of 1 + L(s) to zero, where L(s) is the loop
transfer function, the application of the Nyquist criterion to the stability
problem involves the following steps.

1.    The Nyquist path Gs is defined in the s-plane, as shown in Fig. 10-
27.
2.    The L(s) plot corresponding to the Nyquist path is constructed in the
L(s)-plane.
3.    The value of N, the number of encirclement of the (−1, j0) point
made by the L(s) plot, is observed.
4.    The Nyquist criterion follows from Eq. (10-57),

The stability requirements for the two types of stability defined earlier are



interpreted in terms of Z and P.
For closed-loop stability, Z must equal zero. For open-loop stability, P

must equal zero.
Thus, the condition of stability according to the Nyquist criterion is stated

as

That is, for a closed-loop system to be stable, the L(s) plot must encircle
the (−1, j 0) point as many times as the number of poles of L (s) that are
in the right-half s-plane, and the encirclement, if any, must be made in
the clockwise direction (if Γs is defined in the CCW sense).

10-5  NYQUIST CRITERION FOR SYSTEMS
WITH MINIMUM-PHASE TRANSFER
FUNCTIONS

We shall first apply the Nyquist criterion to systems with L(s) that are
minimum-phase transfer functions. The properties of the minimum-phase
transfer functions are described in App. G and are summarized as follows:

1.    A minimum-phase transfer function does not have poles or zeros in
the right-half s-plane or on the jω-axis, excluding the origin.
2.    For a minimum-phase transfer function L(s) with m zeros and n
poles, excluding the poles at s = 0, when s = j ω and as ω varies from ∞
to 0, the total phase variation of L( jω) is (n − m)π/2 rad.
3.    The value of a minimum-phase transfer function cannot become
zero or infinity at any finite nonzero frequency.
4.    A nonminimum-phase transfer function will always have a more
positive phase shift as ω varies from ∞ to 0. Or, equally true, it will
always have a more negative phase shift as ω varies from 0 to ∞.

•   A minimum-phase transfer function does not have poles or zeros in
the right-half s-plane or on the jω-axis, except at s = 0.



•   For L(s) that is minimum-phase type, Nyquist criterion can be
checked by plotting the segment of L( jω) from ω = ∞ to 0.

Because a majority of the loop transfer functions encountered in the real
world satisfy condition 1 and are of the minimum-phase type, it would be
prudent to investigate the application of the Nyquist criterion to this class of
systems. As if turns out, this is quite simple.

Because a minimum-phase L(s) does not have any poles or zeros in the
right-half s-plane or on the jω-axis (except at s = 0) P = 0, and the poles of
Δ(s) = 1+ L(s) also have the same properties. Thus, the Nyquist criterion for a
system with L(s) being a minimum-phase transfer function is simplified to

Thus, the Nyquist criterion can be stated: For a closed-loop system with
loop transfer function L(s) that is of minimum-phase type, the system is
closed-loop stable if the plot of L(s) that corresponds to the Nyquist path
does not encircle the critical point (−1, j0) in the L(s)-plane.

Furthermore, if the system is unstable, Z ≠ 0; N in Eq. (10-65) would be a
positive integer, which means that the critical point (− j0) is enclosed N times
(corresponding to the direction of the Nyquist path defined here). Thus, the
Nyquist criterion of stability for systems with minimum-phase loop transfer
functions can be further simplified:For a closed-loop system with loop
transfer function L(s)that is of minimum-phase type, the system is
closed-loop stable if the L(s)plot that corresponds to the Nyquist path
does not enclose the (−1, j0) point. If the (−1, j0) point is enclosed by the
Nyquist plot, the system is unstable.

Because the region that is enclosed by a trajectory is defined as the region
that lies to the left when the trajectory is traversed in the prescribed direction,
the Nyquist criterion can be checked simply by plotting the segment of L( jω)
from ω = ∞ to 0, or, points on the positive jω-axis. This simplifies the
procedure considerably, since the plot can be made easily on a computer. The
only drawback to this method is that the Nyquist plot that corresponds to the
jω-axis tells only whether the critical point is enclosed or not and, if it is, not
how many times. Thus, if the system is found to be unstable, the enclosure
property does not give information on how many roots of the characteristic



equation are in the right-half s-plane. However, in practice, this information
is not vital. From this point on, we shall define the L( jω) plot that
corresponds to the positive jω-axis of the s-plane as the Nyquist plot of L(s).

10-5-1  Application of the Nyquist Criterion to Minimum-
Phase Transfer Functions That Are Not Strictly Proper

Just as in the case of the root locus, it is often necessary in design to create
an equivalent loop transfer function Leq(s) so that a variable parameter K will
appear as a multiplying factor in Leq(s), that is, L(s) = KLeq(s). Because the
equivalent loop transfer function does not correspond to any physical entity,
it may not have more poles than zeros, and the transfer function is not strictly
proper, as defined in App. G. In principle, there is no difficulty in
constructing the Nyquist plot of a transfer function that is not strictly proper,
and the Nyquist criterion can be applied for stability studies without any
complications. However, some computer programs may not be prepared for
handling improper transfer functions, and it may be necessary to reformulate
the equation for compatibility with the computer program. To examine this
case, consider that the characteristic equation of a system with a variable
parameter K is conditioned to

If Leq(s) does not have more poles than zeros, we can rewrite Eq. (10-51)
as

by dividing both sides of the equation by KLeq(s). Now we can plot the
Nyquist plot of 1/Leq(s), and the critical point is still (−1, j0) for K > 0. The
variable parameter on the Nyquist plot is now 1/K. Thus, with this minor
adjustment, the Nyquist criterion can still be applied.

The Nyquist criterion presented here is cumbersome when the loop transfer
function is of the nonminimum-phase type, for example, when L(s) has poles
or/and zeros in the right-half s-plane. A generalized Nyquist criterion that
will take care of transfer functions of all types is presented in App. G.



10-6  RELATION BETWEEN THE ROOT LOCI
AND THE NYQUIST PLOT

Because both the root locus analysis and the Nyquist criterion deal with the
location of the roots of the characteristic equation of a linear SISO system,
the two analyses are closely related. Exploring the relationship between the
two methods will enhance the understanding of both methods. Given the
characteristic equation

the Nyquist plot of L(s) in the L(s)-plane is the mapping of the Nyquist
path in the s-plane. Because the root loci of Eq. (10-53) must satisfy the
conditions

for j = 0, ±1,±2, ..., the root loci simply represent a mapping of the real axis
of the L(s)-plane or the G(s)H(s)-plane onto the s-plane. In fact, for the RL K
≥ 0, the mapping points are on the negative real axis of the L(s)-plane, and,
for the RL K ≤ 0, the mapping points are on the positive real axis of the L(s)-
plane. It was pointed out earlier that the mapping from the s-plane to the
function plane for a rational function is single valued, but the reverse process
is multivalued. As a simple illustration, the Nyquist plot of a type-1 third-
order transfer function G(s)H(s) that corresponds to points on the jω-axis of
the s-plane is shown in Fig. 10-28. The root loci for the same system are
shown in Fig. 10-29 as a mapping of the real axis of the G(s)H(s)-plane onto
the s-plane. Note that, in this case, each point of the G(s)H(s)-plane
corresponds to three points in the s-plane. The (−1,j0) point of the G(s)H(s)-
plane corresponds to the two points where the root loci intersect the jω-axis
and a point on the real axis.



Figure 10-28   Polar plot of G(s)H(s) = K/[s(s + a)(s + b)] interpreted as a
mapping of the jω-axis of the s-plane onto the G(s)H(s)-plane.

Figure 10-29   Root-locus diagram of G(s)H(s) = K/[(s)(s+ a)(s + b)]
interpreted as a mapping of the real axis of the G(s)H(s)-plane onto the s-
plane.



The Nyquist plot and the root loci each represents the mapping of only a
very limited portion of one domain to the other. In general, it would be useful
to consider the mapping of points other than those on the jω-axis of the s-
plane and on the real axis of the G(s)H(s)-plane. For instance, we may use the
mapping of the constant-damping-ratio lines in the s-plane onto the G(s)H(s)-
plane for the purpose of determining relative stability of the closed-loop
system. Figure 10-30 illustrates the G(s)H(s) plots that correspond to
different constant-damping-ratio lines in the s-plane. As shown by curve (3)
in Fig. 10-30, when the G(s)H(s) curve passes through the (−1, j0) point, it
means that Eq. (10-67) is satisfied, and the corresponding trajectory in the s-
plane passes through the root of the characteristic equation. Similarly, we can
construct the root loci that correspond to the straight lines rotated at various
angles from the real axis in the G(s)H(s)-plane, as shown in Fig. 10-31.
Notice that these root loci now satisfy the condition of

Figure 10-30   G(s)H(s) plots that correspond to constant-damping-ratio



lines in the s-plane.

Figure 10-31   Root loci that correspond to different phase-angle loci in
the G(s)H(s)-plane.

Or the root loci of Fig. 10-24 must satisfy the equation

for the various values of θ indicated.

10-7  ILLUSTRATIVE EXAMPLES: NYQUIST
CRITERION FOR MINIMUM-PHASE
TRANSFER FUNCTIONS

The following examples serve to illustrate the application of the Nyquist



criterion to systems with minimum-phase loop transfer functions.

EXAMPLE 10-7-1 Consider that a single-loop feedback control system has
the loop transfer function

which is of minimum-phase type. The stability of the
closed-loop system can be conducted by investigating
whether the Nyquist plot of L(jω)/K for ω = ∞ to 0
encloses the (−1, j0) point. The Nyquist plot of L(jω)/K
may be plotted using freqtool. Figure 10-32 shows the
Nyquist plot of L(jω)/K for ω = ∞ to 0. However,
because we are interested only in whether the critical
point is enclosed, in general, it is not necessary to
produce an accurate Nyquist plot. Because the area that is
enclosed by the Nyquist plot is to the left of the curve,
traversed in the direction that corresponds to ω = ∞ to 0
on the Nyquist path, all that is necessary to determine
stability is to find the point or points at which the Nyquist
plot crosses the real axis in the L(jω)/K-plane. In many
cases, information on the intersection on the real axis and
the properties of L(jω)/K at ω = ∞ and ω = 0 would allow
the sketching of the Nyquist plot without actual plotting.
We can use the following steps to obtain a sketch of the
Nyquist plot of L(jω)/K.



Figure 10-32   Nyquist plot of 

1.   Substitute s = jω in L(s). Setting s = jω in Eq. (10-73), we get

2.   Substituting ω = 0 in the last equation, we get the zero-frequency
property of L( jω),

3.   Substituting ω = ∞ in Eq. (10-74), the property of the Nyquist plot at
infinite frequency is established.

These results are verified by the plot shown in Fig. 10-32—also check
App. G for more information on polar plots.
4.   To find the intersect(s) of the Nyquist plot with the real axis, if any,



we rationalize L(jω)/K by multiplying the numerator and the
denominator of the equation by the complex conjugate of the
denominator. Thus, Eq. (10-74) becomes

5.   To find the possible intersects on the real axis, we set the imaginary
part of L(jω)/K to zero. The result is

Toolbox 10-7-1
MATLAB code for Fig. 10-32.

The solutions of the last equation are ω = ∞, which is known to be a
solution at L(jω)/K = 0, and

Because ω is positive, the correct answer is  rad/s. Substituting this
frequency into Eq. (10-77), we have the intersect on the real axis of the L(
jω)-plane at



The last five steps should lead to an adequate sketch of the Nyquist plot of
L(jω)/K short of plotting it. Thus, we see that, if K is less than 240, the
intersect of the L( jω) locus on the real axis would be to the right of the
critical point (−1, j0); the latter is not enclosed, and the system is stable. If K
= 240, the Nyquist plot of L( jω) would intersect the real axis at the −1 point,
and the system would be marginally stable. In this case, the characteristic
equation would have two roots on the jω-axis in the s-plane at . If
the gain is increased to a value beyond 240, the intersect would be to the left
of the −1 point on the real axis, and the system would be unstable. When K is
negative, we can use the (+1, j0) point in the L( jw)-plane as the critical point.
Figure 10-32 shows that, under this condition, the +1 point on the real axis
would be enclosed for all negative values of K, and the system would always
be unstable. Thus, the Nyquist criterion leads to the conclusion that the
system is stable in the range of 0 < K < 2400. Note that application of the
Routh-Hurwitz stability criterion leads to this same result.

Figure 10-33 shows the root loci of the characteristic equation of the
system described by the loop transfer function in Eq. (10-73). The correlation
between the Nyquist criterion and the root loci is easily observed.



Figure 10-33   RL of .

Toolbox 10-7-2
MATLAB code for Fig. 10-33.

EXAMPLE 10-7-2  Consider the characteristic equation

Dividing both sides of the last equation by the terms that do not contain K,
we have

Thus,

which is an improper function. We can obtain the information to manually
sketch the Nyquist plot of Leq(s) to determine the stability of the system.
Setting s = jω in Eq. (10-83), we get

From the last equation, we obtain the two end points of the Nyquist plot:



Rationalizing Eq. (10-84) by multiplying its numerator and denominator
by the complex conjugate of the denominator, we get

To find the possible intersects of the Leq(jω) plot on the real axis, we set the
imaginary part of Eq. (10-86) to zero. We get ω = 0 and

Toolbox 10-7-3
MATLAB code for Fig. 10-34.

Using the MATLAB command “roots([1 0 7 0 2])” we can show that all
four roots of Eq. (10-87) are imaginary ((±j2.589, ±j0.546), which indicates
that the Leq(jω)/K locus intersects the real axis only at ω = 0. Using the
information given by Eq. (10-70) and the fact that there are no other
intersections on the real axis than at ω = 0, the Nyquist plot of Leq(jω)/K is
sketched as shown in Fig. 10-34. Notice that this plot is sketched without any
detailed data computed on Leq(jω)/K and, in fact, could be grossly inaccurate.
However, the sketch is adequate to determine the stability of the system.
Because the Nyquist plot in Fig. 10-34 does not enclose the (−1, j0) point as
ω varies from ∞ to 0, the system is stable for all finite positive values of K.



Figure 10-34   Nyquist plot of  for ω = ∞ to ω = 0.

Figure 10-35 shows the Nyquist plot of Eq. (10-81), based on the poles and
zeros of Leq(s)/K in Eq. (10-83). Notice that the RL stays in the left-half s-
plane for all positive values of K, and the results confirm the Nyquist
criterion results on system stability.



Figure 10-35   Nyquist plot of K/Leq for  for ω = ∞ to ω
= 0.

for ω = ∞ to 0. The plot again does not enclose the (−1, j0) point, and the
system is again stable for all positive values of K by interpreting the Nyquist
plot of K/Leq(jω).

Figure 10-36 shows the RL of Eq. (10-82) for K > 0, using the pole-zero
configuration of Leq(s) of Eq. (10-83). Because the RL stays in the left-half s-
plane for all positive values of K, the system is stable for 0 < K < ∞, which
agrees with the conclusion obtained with the Nyquist criterion. 

Figure 10-36   RL of 

10-8  EFFECTS OF ADDING POLES AND
ZEROS TO L(S) ON THE SHAPE OF THE



NYQUIST PLOT
Because the performance of a control system is often affected by adding

and moving poles and zeros of the loop transfer function, it is important to
investigate how the Nyquist plot is affected when poles and zeros are added
to L(s).

Let us begin with a first-order transfer function

where T1 is a positive real constant. The Nyquist plot of L( jω) for 0 ≤ ω ≤
∞ is a semicircle, as shown in Fig. 10-37. The figure also shows the
interpretation of the closed-loop stability with respect to the critical point for
all values of K between -∞ and ∞.

Figure 10-37   Nyquist plot of .

10-8-1 ADDITION OF POLES AT s = 0
Consider that a pole at s = 0 is added to the transfer function of Eq. (10-

74), then



Because adding a pole at s = 0 is equivalent to dividing L(s) by jω, the
phase of L( jω) is reduced by 90° at both zero and infinite frequencies. In
addition, the magnitude of L( jω) at ω = 0 becomes infinite. Figure 10-38
illustrates the Nyquist plot of L( jω) in Eq. (10-90) and the closed-loop
stability interpretations with respect to the critical points for −∞ < K ∞. In
general, adding a pole of multiplicity p at s = 0 to the transfer function of Eq.
(10-89) will give the following properties to the Nyquist plot of L( jω):

Figure 10-38   Nyquist plot of .



The following example illustrates the effects of adding multiple-order
poles to L(s).

EXAMPLE 10-8-1  Figure 10-39 shows the Nyquist plot of

Figure 10-39   Nyquist plot of .

and the critical points, with stability interpretations. Figure 10-40
illustrates the same for



Figure 10-40   Nyquist plot of .

The conclusion from these illustrations is that the addition of poles at s = 0
to a loop transfer function will affect the stability of the closed-loop system
adversely. A system that has a loop transfer function with more than one pole
at s = 0 (type 2 or higher) is likely to be unstable or difficult to stabilize.

10-8-2 Addition of Finite Nonzero Poles
When a pole at s = −1/T2T2 > 0) is added to the function L(s) of Eq. (10-89),

we have

The Nyquist plot of L( jω) at ω = 0 is not affected by the addition of the
pole, since



Adding poles at s = 0 to a loop transfer function will reduce stability
of the closed-loop system.

The value of L( jω) at ω = ∞ is

Thus, the effect of adding a pole at s = −1/T2 to the transfer function of Eq.
(10-75) is to shift the phase of the Nyquist plot by -90° at ω = ∞, as shown in
Fig. 10-41. The figure also shows the Nyquist plot of

Figure 10-41   Nyquist plots. Curve (1): . Curve (2): 

.

Adding nonzero poles to the loop transfer function also reduces
stability of the closed-loop system.



where two nonzero poles have been added to the transfer function of Eq.
(10-89) (T1, T2, T3, > 0). In this case, the Nyquist plot at ω = ∞ is rotated
clockwise by another 90° from that of Eq. (10-97). These examples show the
adverse effects on closed-loop stability when poles are added to the loop
transfer function. The closed-loop systems with the loop transfer functions of
Eqs. (10-89) and (10-97) are all stable as long as K is positive. The system
represented by Eq. (10-100) is unstable if the intersect of the Nyquist plot on
the negative real axis is to the left of the (−1, j0) point when K is positive.

10-8-3 Addition of Zeros

Adding zeros to the loop transfer function has the effect of stabilizing
the closed-loop system.

It was demonstrated in Chap. 7 that adding zeros to the loop transfer
function has the effect of reducing the overshoot and the general effect of
stabilization. In terms of the Nyquist criterion, this stabilization effect is
easily demonstrated, since the multiplication of the term (1 + Tds) to the loop
transfer function increases the phase of L(s) by 90° at ω = ∞. The following
example illustrates the effect on stability of adding a zero at −1/Td to a loop
transfer function.

EXAMPLE 10-8-2  Consider that the loop transfer function of a closed-loop
control system is

It can be shown that the closed-loop system is stable for



Suppose that a zero at s = −1/Td(Td > 0) is added to the transfer function of
Eq. (10-101); then,

The Nyquist plots of the two transfer functions of Eqs. (10-101) and (10-
103) are shown in Fig. 10-42. The effect of the zero in Eq. (10-103) is to add
90° to the phase of the L( jω) in Eq. (10-101) at ω = ∞ while not affecting the
value at ω = 0. The intersect on the negative real axis of the L( jw)-plane is
moved from −KT1T2/(T1 + T2) to −K(T1T2 − TdT1 − TdT2)/(T1 + T2). Thus, the
system with the loop transfer function in Eq. (10-103) is stable for

Figure 10-42   Nyquist plots. Curve (1): . Curve (2): 

.



which, for positive Td and K, has a higher upper bound than that of Eq. (10-
102). 

10-9  RELATIVE STABILITY: GAIN MARGIN
AND PHASE MARGIN

We have demonstrated in Sec. 10-2 the general relationship between the
resonance peak Mp of the frequency response and the maximum overshoot of
the time response. Comparisons and correlations between frequency-domain
and time-domain parameters such as these are useful in the prediction of the
performance of control systems. In general, we are interested not only in the
absolute stability of a system but also how stable it is. The latter is often
called relative stability. In the time domain, relative stability is measured by
parameters such as the maximum overshoot and the damping ratio. In the
frequency domain, the resonance peak Mp can be used to indicate relative
stability. Another way of measuring relative stability in the frequency domain
is by how close the Nyquist plot of L( jω) is to the (−1, j0) point.

Relative stability is used to indicate how stable a system is.

To demonstrate the concept of relative stability in the frequency domain,
the Nyquist plots and the corresponding step responses and frequency
responses of a typical third-order system are shown in Fig. 10-43 for four
different values of loop gain K. It is assumed that the function L( jω) is of
minimum-phase type, so that the enclosure of the (−1, j0) point is sufficient
for stability analysis. The four cases are evaluated as follows:

1.    Figure 10-43a; the loop gain K is low The Nyquist plot of L( jω)
intersects the negative real axis at a point that is quite far to the right of
the (−1, j0) point. The corresponding step response is quite well
damped, and the value of Mr of the frequency response is low.
2.    Figure 10-43b; K is increased. The intersect is moved closer to the
(−1, j0) point; the system is still stable because the critical point is not
enclosed, but the step response has a larger maximum overshoot, and Mr
is also larger.



3.    Figure 10-43c; K is increased further. The Nyquist plot now
passes through the (−1, j0) point, and the system is marginally stable.
The step response becomes oscillatory with constant amplitude, and Mr
becomes infinite.
4.    Figure 10-43d; K is relatively very large. The Nyquist plot now
encloses the (−1, j0) point, and the system is unstable. The step response
becomes unbounded. The magnitude curve of |M(jω)|-versus-ω ceases to
have any significance. In fact, for the unstable system, the value of Mr is
still finite! In all the above analysis, the phase curve π(jω) of the closed-
loop frequency response also gives qualitative information about
stability. Notice that the negative slope of the phase curve becomes
steeper as the relative stability decreases. When the system is unstable,
the slope beyond the resonant frequency becomes positive. In practice,
the phase characteristics of the closed-loop system are seldom used for
analysis and design purposes.





Figure 10-43   Correlation among Nyquist plots, step responses, and
frequency responses.

10-9-1  Gain Margin
Gain margin (GM) is one of the most frequently used criteria for

measuring relative stability of control systems. In the frequency domain, gain
margin is used to indicate the closeness of the intersection of the negative real
axis made by the Nyquist plot of L( jω) to the (−1, j0) point. Before giving
the definition of gain margin, let us first define the phase crossover on the
Nyquist plot and the phase-crossover frequency.

Gain margin is measured at the phase crossover.

Phase crossover. A phase-crossover on the L( jω) plot is a point at which
the plot intersects the negative real axis.

Phase-crossover frequency. The phase-crossover frequency ωp is the
frequency at the phase crossover, or where

Mr ceases to have any meaning when the closed-loop system is
unstable.

The Nyquist plot of a loop transfer function L( jω) that is of minimum-
phase type is shown in Fig. 10-44. The phase-crossover frequency is denoted
as ωp, and the magnitude of L( jω) at ω = ωp is designated as |L(jωp)|. Then,
the gain margin of the closed-loop system that has L(s) as its loop transfer
function is defined as



Figure 10-44   Definition of the gain margin in the polar coordinates.

On the basis of this definition, we can draw the following conclusions
about the gain margin of the system shown in Fig. 10-44, depending on the
properties of the Nyquist plot.

1.    The L( jω) plot does not intersect the negative real axis (no finite
nonzero phase crossover).

2.    The L( jω) plot intersects the negative real axis between (phase
crossover lies between) 0 and the −1 point.



3.    The L( jω) plot passes through (phase crossover is at) the (−1, j0)
point.

Gain margin is the amount of gain in dB that can be added to the loop
before the closed-loop system becomes unstable.

4.    The L( jω) plot encloses (phase crossover is to the left of) the (−1,
j0) point.

Based on the foregoing discussions, the physical significance of gain
margin can be summarized as: Gain margin is the amount of gain in
decibels (dB) that can be added to the loop before the closed-loop system
becomes unstable.

•   When the Nyquist plot does not intersect the negative real axis at any
finite nonzero frequency, the gain margin is infinite in dB; this means
that, theoretically, the value of the loop gain can be increased to infinity
before instability occurs.
•   When the Nyquist plot of L( jω) passes through the L(jω) point, the
gain margin is 0 dB, which implies that the loop gain can no longer be
increased, as the system is at the margin of instability.
•   When the phase-crossover is to the left of the (−1, j0) point, the phase
margin is negative in dB, and the loop gain must be reduced by the gain
margin to achieve stability.

10-9-2  Gain Margin of Nonminimum-Phase Systems
Care must be taken when attempting to extend gain margin as a measure of

relative stability to systems with nonminimum-phase loop transfer functions.
For such systems, a system may be stable even when the phase-crossover
point is to the left of (−1, j0) and thus a negative gain margin may still
correspond to a stable system. Nevertheless, the closeness of the phase-



crossover to the (−1, j0) point still gives an indication of relative stability.

10-9-3  Phase Margin

• Phase margin is measured at the gain crossover.
• Phase margin is the amount of pure phase delay that can be added

before the system becomes unstable.

The gain margin is only a one-dimensional representation of the relative
stability of a closed-loop system. As the name implies, gain margin indicates
system stability with respect to the variation in loop gain only. In principle,
one would believe a system with a large gain margin should always be
relatively more stable than one with a smaller gain margin. Unfortunately,
gain margin alone is inadequate to indicate relative stability when system
parameters other than the loop gain are subject to variation. For instance, the
two systems represented by the L( jω) plots in Fig. 10-45 apparently have the
same gain margin. However, locus A actually corresponds to a more stable
system than locus B because with any change in the system parameters that
affect the phase of L( jω), locus B may easily be altered to enclose the (−1,
j0) point. Furthermore, we can show that the system B actually has a larger
Mr than system A.



Figure 10-45   Nyquist plots showing systems with the same gain margin
but different degrees of relative stability.

The definition of phase margin given here is for a system with a
minimum-phase loop transfer function.

To include the effect of phase shift on stability, we introduce the phase
margin, which requires that we first make the following definitions:

Gain crossover. The gain crossover is a point on the L( jω) plot at
which the magnitude of L( jω) is equal to 1.

Gain-crossover frequency. The gain-crossover frequency, ωs, is the
frequency of L(jω) at the gain crossover. Or where

The definition of phase margin is stated as: Phase margin (PM) is defined
as the angle in degrees through which the L(jv) plot must be rotated about
the origin so that the gain crossover passes through the (−1,j0) point.



Figure 10-46 shows the Nyquist plot of a typical minimum-phase L( jω)
plot, and the phase margin is shown as the angle between the line that passes
through the gain crossover and the origin. In contrast to the gain margin,
which is determined by loop gain, phase margin indicates the effect on
system stability due to changes in system parameter, which theoretically alter
the phase of L( jω) by an equal amount at all frequencies. Phase margin is the
amount of pure phase delay that can be added to the loop before the closed-
loop system becomes unstable.

Figure 10-46   Phase margin defined in the L( jω)-plane.

When the system is of the minimum-phase type, the analytical expression
of the phase margin, as seen from Fig. 10-46, can be expressed as

where ωg is the gain-crossover frequency.
Care should be taken when interpreting the phase margin from the Nyquist



plot of a nonminimum-phase transfer function. When the loop transfer
function is of the nonminimum-phase type, the gain crossover can occur in
any quadrant of the L( jω)-plane, and the definition of phase margin given in
Eq. (10-112) is no longer valid.

EXAMPLE 10-9-1   As an illustrative example on gain and phase margins,
consider that the loop transfer function of a control
system is

The Nyquist plot of L( jω) is shown in Fig. 10-47. The following results
are obtained from the Nyquist plot:

Figure 10-47   Nyquist plot of .



The gain margin is measured at the phase crossover. The magnitude of
L(jωp) is 0.182. Thus, the gain margin is obtained from Eq. (10-105):

The phase margin is measured at the gain crossover. The phase of L(jωg) is
211.72°. Thus, the phase margin is obtained from Eq. (10-112):

Before embarking on the Bode plot technique of stability study, it would
be beneficial to summarize advantages and disadvantages of the Nyquist plot.

Advantages of the Nyquist plot

1.    The Nyquist plot can be used for the study of stability of systems
with nonminimum-phase transfer functions.
2.    The stability analysis of a closed-loop system can be easily
investigated by examining the Nyquist plot of the loop transfer function
with reference to the (− 1, j0) point once the plot is made.

Disadvantage of the Nyquist plot

1.    It is not so easy to carry out the design of the controller by referring
to the Nyquist plot.

10-10  STABILITY ANALYSIS WITH THE
BODE PLOT

The Bode plot of a transfer function described in App. G is a very useful
graphical tool for the analysis and design of linear control systems in the
frequency domain. Before the inception of computers, Bode plots were often
called the “asymptotic plots” because the magnitude and phase curves can be



sketched from their asymptotic properties without detailed plotting. Modern
applications of the Bode plot for control systems should be identified with the
following advantages and disadvantages:

Advantages of the Bode plot

1.    In the absence of a computer, a Bode diagram can be sketched by
approximating the magnitude and phase with straight line segments.
2.    Gain crossover, phase crossover, gain margin, and phase margin are
more easily determined on the Bode plot than from the Nyquist plot.
3.    For design purposes, the effects of adding controllers and their
parameters are more easily visualized on the Bode plot than on the
Nyquist plot.

Disadvantage of the Bode plot

1.    Absolute and relative stability of only minimum-phase systems can
be determined from the Bode plot. For instance, there is no way of
telling what the stability criterion is on the Bode plot.

Bode plots are useful only for stability studies of systems with
minimum-phase loop transfer functions.

With reference to the definitions of gain margin and phase margin given in
Figs. 10-44 and 10-46, respectively, the interpretation of these parameters
from the Bode diagram is illustrated in Fig. 10-48 for a typical minimum-
phase loop transfer function. The following observations can be made on
system stability with respect to the properties of the Bode plot:



Figure 10-48   Determination of gain margin and phase margin on the
Bode plot.

1.    The gain margin is positive and the system is stable if the magnitude
of L(jω) at the phase crossover is negative in dB. That is, the gain
margin is measured below the 0-dB axis. If the gain margin is measured
above the 0-dB axis, the gain margin is negative, and the system is
unstable.
2.    The phase margin is positive and the system is stable if the phase of
L(jω) is greater than −180° at the gain crossover. That is, the phase



margin is measured above the −180° axis. If the phase margin is
measured below the −180° axis, the phase margin is negative, and the
system is unstable.

EXAMPLE 10-10-1   Consider the loop transfer function given in Eq. (10-
113); the Bode plot of the function is drawn as
shown in Fig. 10-49. The following results are
observed easily from the magnitude and phase plots.
The gain crossover is the point where the magnitude
curve intersects the 0-dB axis.



Figure 10-49   Bode plot of 

The gain-crossover frequency ωg is 6.22 rad/s. The
phase margin is measured at the gain crossover. The



phase margin is measured from the −180° axis and is
31.72°. Because the phase margin is measured above the
−180° axis, the phase margin is positive, and the system
is stable.

The phase crossover is the point where the phase curve
intersects the −180° axis. The phase-crossover frequency
is ωp = 15.88 rad/s. The gain margin is measured at the
phase crossover and is 14.8 dB. Because the gain margin
is measured below the 0-dB axis, the gain margin is
positive, and the system is stable.

The reader should compare the Nyquist plot of Fig. 10-
47 with the Bode plot of Fig. 10-49, and the
interpretation of ωg, ωp, GM, and PM on these plots.

Toolbox 10-10-1
MATLAB code for Fig. 10-49.

10-10-1  Bode Plots of Systems with Pure Time Delays
The stability analysis of a closed-loop system with a pure time delay in the

loop was discussed in Sec. 10-4. This topic can also be conducted easily with
the Bode plot. The next example illustrates the standard procedure.

EXAMPLE 10-10-2   Consider that the loop transfer function of a closed-
loop system is

Figure 10-50 shows the Bode plot of L( jω) with K = 1
and Td = 0. The following results are obtained:





Figure 10-50   Bode plot of 

Gain-cross over frequency = 0.446 rad/sec
Phase margin = 53.4°
Phase-cross over frequency = 1.416 rad/sec
Gain margin = 15.57 dB

Thus, the system with the present parameters is stable.
The effect of the pure time delay is to add a phase of

−Td ω radians to the phase curve while not affecting the
magnitude curve. The adverse effect of the time delay on
stability is apparent because the negative phase shift
caused by the time delay increases rapidly with the
increase in ω. To find the critical value of the time delay
for stability, we set

Solving for Td from the last equation, we get the critical
value of Td to be 2.09 s.

Continuing with the example, we set Td arbitrarily at 1
s and find the critical value of K for stability. Figure 10-
50 shows the Bode plot of L(jω) with this new time
delay. With K still equal to 1, the magnitude curve is
unchanged. The phase curve droops with the increase in
ω, and the following results are obtained:

Thus, using the definition of gain margin of Eq. (10-
106), the critical value of K for stability is 104.5/20 = 1.68.



10-11  RELATIVE STABILITY RELATED TO
THE SLOPE OF THE MAGNITUDE CURVE OF
THE BODE PLOT

In addition to GM, PM, and Mp as relative stability measures, the slope of
the magnitude curve of the Bode plot of the loop transfer function at the gain
crossover also gives a qualitative indication on the relative stability of a
closed-loop system. For example, in Fig. 10-49, if the loop gain of the system
is decreased from the nominal value, the magnitude curve is shifted
downward, while the phase curve is unchanged. This causes the gain-
crossover frequency to be lower, and the slope of the magnitude curve at this
frequency is less negative; the corresponding phase margin is increased. On
the other hand, if the loop gain is increased, the gain-crossover frequency is
increased, and the slope of the magnitude curve is more negative. This
corresponds to a smaller phase margin, and the system is less stable. The
reason behind these stability evaluations is quite simple. For a minimum-
phase transfer function, the relation between its magnitude and phase is
unique. Because the negative slope of the magnitude curve is a result of
having more poles than zeros in the transfer function, the corresponding
phase is also negative. In general, the steeper the slope of the magnitude
curve, the more negative the phase. Thus, if the gain crossover is at a point
where the slope of the magnitude curve is steep, it is likely that the phase
margin will be small or negative.

10-11-1  Conditionally Stable System
The illustrative examples given thus far are uncomplicated in the sense that

the slopes of the magnitude and phase curves are monotonically decreasing as
ω increases. The following example illustrates a conditionally stable system
that is capable of going through stable/unstable conditions as the loop gain
varies.

EXAMPLE 10-11-1   Consider that the loop transfer function of a closed-
loop system is



The Bode plot of L( jω) is shown in Fig. 10-51 for K =
1. The following results on the system stability are
obtained:



Figure 10-51   Bode plot of 



There are two phase crossovers: one at 25.8 rad/s and
the other at 77.7 rad/s. The phase characteristics between
these two frequencies indicate that, if the gain crossover
lies in this range, the system would be stable. From the
magnitude curve, the range of K for stable operation is
found to be between 69 and 85.5 dB. For values of K
above and below this range, the phase of L( jω) is less
than −180°, and the system is unstable. This example
serves as a good example of the relation between relative
stability and the slope of the magnitude curve at the gain
crossover. As observed from Fig. 10-51, at both very low
and very high frequencies, the slope of the magnitude
curve is −60 dB/decade; if the gain crossover falls in
either one of these two regions, the phase margin is
negative, and the system is unstable. In the two sections
of the magnitude curve that have a slope of −40
dB/decade, the system is stable only if the gain crossover
falls in about half of these regions, but even then the
phase margin is small. If the gain crossover falls in the
region in which the magnitude curve has a slope of −20
dB/decade, the system is stable.

Figure 10-52 shows the Nyquist plot of L( jω). It is of
interest to compare the results on stability derived from
the Bode plot and the Nyquist plot. The root-locus
diagram of the system is shown in Fig. 10-53. The root
loci give a clear picture on the stability condition of the
system with respect to K. The number of crossings of the
root loci on the jω-axis of the s-plane equals the number
of crossings of the phase curve of L( jω) of the −180°
axis of the Bode plot, and the number of crossings of the
Nyquist plot of L( jω) with the negative real axis. The
reader should check the gain margins obtained from the
Bode plot and the coordinates of the crossover points on
the negative real axis of the Nyquist plot with the values



of K at the jω-axis crossings on the root loci.

Figure 10-52   Nyquist plot of .



Figure 10-53   Root loci of 

10-12  STABILITY ANALYSIS WITH THE
MAGNITUDE-PHASE PLOT



The magnitude-phase plot described in App. G is another form of the
frequency-domain plot that has certain advantages for analysis and design in
the frequency domain. The magnitude-phase plot of a transfer function L(jω)
is done in |L(jω)|(dB) versus ∠L(jω) (degrees). The magnitude-phase plot of
the transfer function in Eq. (10-113) is constructed in Fig. 10-54 by use of the
data from the Bode plot of Fig. 10-49. The gain and phase crossovers and the
gain and phase margins are clearly indicated on the magnitude-phase plot of
L(jω).



Figure 10-54   Gain-phase plot of 

•   The critical point is the intersect of the 0-dB-axis and the −180°-axis.



•   The phase crossover is where the locus intersects the −180°-axis.
•   The gain crossover is where the locus intersects the 0-dB axis.
•   The gain margin is the vertical distance in dB measured from the
phase crossover to the critical point.
•   The phase margin is the horizontal distance measured in degrees from
the gain crossover to the critical point.

The regions in which the gain and phase crossovers should be located for
stability are also indicated. Because the vertical axis for |L(jω)| is in dB, when
the loop gain of L( jω) changes, the locus is simply shifted up and down
along the vertical axis. Similarly, when a constant phase is added to L( jω),
the locus is shifted horizontally without distortion to the curve. If L( jω)
contains a pure time delay Td, the effect of the time delay is to add a phase
equal to –ωTd × 180°/π along the curve.

Another advantage of using the magnitude-phase plot is that, for unity-
feedback systems, closed-loop system parameters such as Mr, ωr, and BW can
all be determined from the plot with the help of the constant-M loci. These
closed-loop performance parameters are not represented on the Bode plot of
the forward-path transfer function of a unity-feedback system.

10-13  CONSTANT-M LOCI IN THE
MAGNITUDE-PHASE PLANE: THE NICHOLS
CHART

It was pointed out earlier that, analytically, the resonant peak Mr and
bandwidth BW are difficult to obtain for high-order systems, and the Bode
plot provides information on the closed-loop system only in the form of gain
margin and phase margin. It is necessary to develop a graphical method for
the determination of Mr, ωr, and BW using the forward-path transfer function
G( jω). As we shall see in the following development, the method is directly
applicable only to unity-feedback systems, although with some modification
it can also be applied to nonunity-feedback systems.

Consider that G(s) is the forward-path transfer function of a unity-feedback
system. The closed-loop transfer function is



For sinusoidal steady state, we replace s with jω ; G(s) becomes

where, for simplicity, x denotes ReG( jω) and y denotes ImG( jω). The
magnitude of the closed-loop transfer function is written

For simplicity of notation, let M denote |M(jω)|; then Eq. (10-121) leads to

Squaring both sides of Eq. (10-122) gives

Rearranging Eq. (10-108) yields

This equation is conditioned by dividing through by (1 − M2) and adding
the term [M2/(1 − M2)]2 on both sides. We have

which is finally simplified to



For a given value of M, Eq. (10-126) represents a circle with the center at

The radius of the circle is

• When the system is unstable, the constant-M loci and Mr no longer
have any meaning.
• BW is the frequency where the G( jω) curve intersects the M = −3 dB
locus of the Nichols chart.

When M takes on different values, Eq. (10-126) describes in the G(jω)-
plane a family of circles that are called the constant-M loci, or the constant-
M circles. Figure 10-55 illustrates a typical set of constant-M circles in the
G(jω)-plane. These circles are symmetrical with respect to the M = 1 line and
the real axis. The circles to the left of the M = 1 locus correspond to values of
M greater than 1, and those to the right of the M = 1 line are for M less than 1.
Equations (10-126) and (10-127) show that, when M becomes infinite, the
circle degenerates to a point at (−1, j0). Graphically, the intersection of the
G(jω) curve and the constant-M circle gives the value of M at the
corresponding frequency on the G(jω) curve. If we want to keep the value of
Mr less than a certain value, the G(jω) curve must not intersect the
corresponding M circle at any point and at the same time must not enclose the
(−1, j0) point. The constant-M circle with the smallest radius that is tangent to
the G(jω) curve gives the value of Mr, and the resonant frequency ωr is read
off at the tangent point on the G(jω) curve.



Figure 10-55   Constant-M circles in polar coordinates.

Figure 10-56a illustrates the Nyquist plot of G( jω) for a unity-feedback
control system together with several constant-M loci. For a given loop gain K
= K1, the intersects between the G( jω) curve and the constant-M loci give the
points on the |M(jω)|-versus-ω curve. The resonant peak Mr is found by
locating the smallest circle that is tangent to the G( jω) curve. The resonant
frequency is found at the point of tangency and is designated as ωr1. If the
loop gain is increased to K2, and if the system is still stable, a constant-M
circle with a smaller radius that corresponds to a larger M is found tangent to
the G( jω) curve, and thus the resonant peak will be larger. The resonant
frequency is shown to be ωr2, which is closer to the phase-crossover



frequency ωp than ωr1. When K is increased to K3, so that the G( jω) curve
now passes through the (−1, j0) point, the system is marginally stable, and Mr

is infinite; ωp3 is now the same as the resonant frequency ωr.





Figure 10-56   (a) Polar plots of G(s) and constant-M loci. (b)
Corresponding magnification curves.

When enough points of intersection between the G(jω) curve and the
constant-M loci are obtained, the magnification curves of |M(jω)|-versus-ω
are plotted, as shown in Fig. 10-56b.

The bandwidth of the closed-loop system is found at the intersect of the
G(jω) curve and the M = 0.707 locus. For values of K beyond K3, the system
is unstable, and the constant-M loci and Mr no longer have any meaning.

A major disadvantage in working in the polar coordinates of the Nyquist
plot of G(jω) is that the curve no longer retains its original shape when a
simple modification such as the change of the loop gain is made to the
system. Frequently, in design situations, not only must the loop gain be
altered, but a series controller may have to be added to the system. This
requires the complete reconstruction of the Nyquist plot of the modified
G(jω). For design work involving Mr and BW as specifications, it is more
convenient to work with the magnitude-phase plot of G(jω), because when
the loop gain is altered, the entire G(jω) curve is shifted up or down vertically
without distortion. When the phase properties of G(jω) are changed
independently, without affecting the gain, the magnitude-phase plot is
affected only in the horizontal direction.

For that reason, the constant-M loci in the polar coordinates are plotted in
magnitude-phase coordinates, and the resulting loci are called the Nichols
chart. A typical Nichols chart of selected constant-M loci is shown in Fig.
10-57. Once the G(jω) curve of the system is constructed in the Nichols
chart, the intersects between the constant-M loci and the G(jω) trajectory give
the value of M at the corresponding frequencies of G(jω). The resonant peak
Mr is found by locating the smallest of the constant-M locus (M ≥ 1) that is
tangent to the G(jω) curve from above. The resonant frequency is the
frequency of G(jω) at the point of tangency. The bandwidth of the closed-
loop system is the frequency at which the G( jω) curve intersects the M =
0.707 or M = −3dB locus.



Figure 10-57   Nichols chart.

The following example illustrates the relationship among the analysis
methods using the Bode plot and the Nichols chart.

EXAMPLE 10-13-1   Consider the position-control system of the control
surfaces of the airplane analyzed in Sec. 7-9. The
forward-path transfer function of the unity-feedback
system is given by Eq. (7-169), and is repeated here:

The Bode plots for G(jω) are shown in Fig. 10-58 for
K = 7.248, 14.5, 181.2, and 273.57. The gain and phase
margins of the closed-loop system for these values of K
are determined and shown on the Bode plots. The



magnitude-phase plots of G(jω) corresponding to the
Bode plots are shown in Fig. 10-59. These magnitude-
phase plots, together with the Nichols chart, give
information on the resonant peak Mr, resonant frequency
ωr, and the bandwidth BW. The gain and phase margins
are also clearly marked on the magnitude-phase plots.
Figure 10-60 shows the closed-loop frequency responses.
Table 10-3 summarizes the results of the frequency-
domain analysis for the four different values of K
together with the time-domain maximum overshoot Sec.
7-9.



Figure 10-58   Bode diagrams of the system in Example 10-13-1.





Figure 10-59   Gain-phase plots and Nichols chart of the system in
Example 10-13-1.

Figure 10-60   Closed-loop frequency response of the system in Example
10-13-1.

TABLE 10-3   Summary of Frequency-Domain Analysis

10-14  NICHOLS CHART APPLIED TO



NONUNITY-FEEDBACK SYSTEMS
The constant-M loci and the Nichols chart presented in the preceding

sections are limited to closed-loop systems with unity feedback whose
transfer function is given by Eq. (10-119). When a system has nonunity
feedback, the closed-loop transfer function of the system is expressed as

where H(s) ≠ 1. The constant-M loci and the Nichols chart cannot be
applied directly to obtain the closed-loop frequency response by plotting G(
jω)H( jω), since the numerator of M(s) does not contain H( jω).

By proper modification, the constant-M loci and Nichols chart can still be
applied to a nonunity-feedback system. Let us consider the function

Apparently, Eq. (10-131) is of the same form as Eq. (10-119). The
frequency response of P( jω) can be determined by plotting the function G(
jω)H( jω) in the amplitude-phase coordinates along with the Nichols chart.
Once this is done, the frequency-response information for M( jω) is obtained
as follows:

or, in terms of dB,

10-15  SENSITIVITY STUDIES IN THE
FREQUENCY DOMAIN



Sensitivity study is easily carried out in the frequency domain.

The advantage of using the frequency domain in linear control systems is
that higher-order systems can be handled more easily than in the time
domain. Furthermore, the sensitivity of the system with respect to parameter
variations can be easily interpreted using frequency-domain plots. We shall
show how the Nyquist plot and the Nichols chart can be utilized for the
analysis and design of control systems based on sensitivity considerations.

Consider a linear control system with unity feedback described by the
transfer function

The sensitivity of M(s) with respect to the loop gain K, which is a
multiplying factor in G(s), is defined as

Taking the derivative of M(s) with respect to G(s) and substituting the
result into Eq. (10-136) and simplifying, we have

Clearly, the sensitivity function SM
G(s) is a function of the complex variable

s. Figure 10-61 shows the magnitude plot of SM
G(s) when G(s) is the transfer

function given in Eq. (10-98).



Figure 10-61   

It is interesting to note that the sensitivity of the closed-loop system is
inferior at frequencies greater than 4.8 rad/s to the open-loop system whose
sensitivity to the variation of K is always unity. In general, it is desirable to
formulate a design criterion on sensitivity in the following manner:

where k is a positive real number. This sensitivity criterion is in addition to
the regular performance criteria on the steady-state error and the relative
stability.

Equation (10-138) is analogous to the magnitude of the closed-loop
transfer function, |M(jω)|, given in Eq. (10-121), with G( jω) replaced by
1/G( jω). Thus, the sensitivity function of Eq. (10-138) can be determined by
plotting 1/G( jω) in the magnitude-phase coordinates with the Nichols chart.
Figure 10-62 shows the magnitude-phase plots of G( jω) and 1/G( jω) of Eq.



(10-113). Notice that G( jω) is tangent to the M = 1.8 locus from below,
which means that Mr of the closed-loop system is 1.8. The 1/G( jω) curve is
tangent to the M = 2.2 curve from above and, according to Fig. 10-61, is the
maximum value of |SM

G(s)|. Equation (10-138) shows that, for low sensitivity,
the loop gain of G( jω) must be high, but it is known that, in general, high
gain could cause instability. Thus, the designer is again challenged by the
task of designing a system with both a high degree of stability and low
sensitivity.



Figure 10-62   Magnitude-phase plots of G( jω) and 1/G( jω) for 



The design of robust control systems (low sensitivity) with the frequency-
domain methods is discussed in Chap. 11.

10-16  MATLAB TOOLS AND CASE STUDIES
Apart from the MATLAB toolboxes in this chapter, this chapter does not

contain any software. In Chap. 11, we will introduce the MATLAB SISO
design tool, which provides a GUI (graphical user interface) approach for the
analysis of control engineering transfer functions.

10-17  SUMMARY
The chapter began by describing typical relationships between the open-

loop and closed-loop frequency responses of linear systems. Performance
specifications such as the resonance peak Mr, resonant frequency ωr, and
bandwidth BW were defined in the frequency domain. The relationships
among these parameters of a second-order prototype system were derived
analytically. The effects of adding simple poles and zeros to the loop transfer
function on Mr and BW were discussed.

The Nyquist criterion for stability analysis of linear control systems was
developed. The stability of a single-loop control system can be investigated
by studying the behavior of the Nyquist plot of the loop transfer function
G(s)H(s) for ω = 0 to ω = ∞ with respect to the critical point. If G(s)H(s) is a
minimum-phase transfer function, the condition of stability is simplified so
that the Nyquist plot will not enclose the critical point.

The relationship between the root loci and the Nyquist plot was described
in Sec. 10-6. The discussion should add more perspective to the
understanding of both subjects.

Relative stability was defined in terms of gain margin and phase margin.
These quantities were defined in the polar coordinates as well as on the Bode
diagram. The gain-phase plot allows the Nichols chart to be constructed for
closed-loop analysis. The values of Mr and BW can be easily found by



plotting the G(jω) locus on the Nichols chart.
The stability of systems with pure time delay is analyzed by use of the

Bode plot.
Sensitivity function SM

G(jω) was defined as a measure of the variation of M(
jω) due to variations in G( jω). It was shown that the frequency-response
plots of G( jω) and 1/G( jω) can be readily used for sensitivity studies.

Finally, using the MATLAB toolboxes developed in this chapter, the
reader may practice all the concepts discussed here.
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PROBLEMS



10-1.   The forward-path transfer function of a unity-feedback control
system is

Analytically, find the resonance peak Mr, resonant frequency ωr, and
bandwidth BW of the closed-loop system for the following values of K:

(a)  K = 5
(b)  K = 21.38
(c)  K = 100
Use the formulas for the second-order prototype system given in the text.
10-2.   Use MATLAB to verify your answer to Prob. 10-1.
10-3.   The transfer function of a system is

Determine when the system is a lead-network or lag-network.
10-4.   Use MATLAB to solve the following problems. Do not attempt to

obtain the solutions analytically. The forward-path transfer functions of
unity-feedback control systems are given in the following equations. Find the
resonance peak Mr, resonant frequency ωr, and bandwidth BW of the closed-
loop systems. (Reminder: Make certain that the system is stable.)



10-5.   The specifications on a second-order unity-feedback control system
with the closed-loop transfer function

are that the maximum overshoot must not exceed 10 percent and the rise
time must be less than 0.1 s. Find the corresponding limiting values of Mr and
BW analytically.

10-6.   Repeat Prob. 10-5 for maximum overshoot less than or equal to 20
percent and tr ≤ 0.2 s.

10-7.   Repeat Prob. 10-5 for maximum overshoot less than or equal to 30
percent and K = 10.

10-8.   Consider the forward-path of a unity-feedback control system given
by

(a)  Analytically find K such that the closed-loop bandwidth is about 1.5
rad/s (0.24 Hz).

(b)  Use MATLAB to verify your answer to part (a).
10-9.   Repeat Prob. 10-8 with a resonance peak of 2.2.
10-10.   The closed-loop frequency response |M(jω)|-versus-frequency of a



second-order prototype system is shown in Fig 10P-10. Sketch the
corresponding unit-step response of the system; indicate the values of the
maximum overshoot, peak time, and the steady-state error due to a unit-step
input.

Figure 10P-10

10-11.   The forward-path transfer function of a system with an integral

control  is

(a)  Find K when the closed-loop resonance peak is 1.4.
(b)  Determine the frequency at resonance, overshoot for step input, phase

margin, and closed-loop BW according to the result of part (a).
10-12.   The forward-path transfer function of a unity-feedback control

system is

Use MATLAB to find the values of BW and Mr of the closed-loop system
for T = 0.05, 1, 2, 3, 4, and 5.

10-13.   The forward-path transfer function of a unity-feedback control
system is



Use MATLAB to find the values of BW and Mr of the closed-loop system
for T = 0, 0.5, 1, 2, 3, 4, and 5. Use MATLAB to find the solutions.

10-14.   If a loop transfer function of a system is given by

(a)  Use the second-order approximation to find the BW and the damping
ratio.

(b)  If BW = 1.5 rad/s, find K and the damping ratio.
(c)  Use MATLAB to verify your answer to part (b).
10-15.   The loop transfer functions L(s) of single-feedback-loop systems

are given below. Sketch the Nyquist plot of L(jω) for ω = 0 to ω = ∞.
Determine the stability of the closed-loop system. If the system is unstable,
find the number of poles of the closed-loop transfer function that are in the
right-half s-plane. Solve for the intersect of L(jω) on the negative real axis of
the L(jω)-plane analytically. You may construct the Nyquist plot of L(jω)
using MATLAB.

10-16.   The loop transfer functions of single-feedback-loop control
systems are given in the following equations. Apply the Nyquist criterion and
determine the values of K for the system to be stable. Sketch the Nyquist plot



of L(jω) with K = 1 for ω = 0 to ω = ∞. You may use a computer program to
plot the Nyquist plots.

10-17.   The forward-path transfer function of a unity-feedback control
system is

Determine by means of the Nyquist criterion, the range of K(−∞ < K < ∞)
for the closed-loop system to be stable. Sketch the Nyquist plot of G(jω) for
ω = 0 to ω = ∞.

(a)  n = 2
(b)  n = 3
(c)  n = 4
10-18.   Sketch the Nyquist plot for the controlled system shown in Fig.

10P-18.

Figure 10P-18

Determine by means of the Nyquist criterion, the range of K(−∞ < K < ∞)



for the closed-loop system to be stable.
10-19.   The characteristic equation of a linear control system is given in

the following equation.

(a)  Apply the Nyquist criterion to determine the values of K for system
stability.

(b)  Check the answers by means of the Routh-Hurwitz criterion.
10-20.   Repeat Prob. 10-19 for s3 + 3s2 + 3s + 1 + K = 0.
10-21.   The forward-path transfer function of a unity-feedback control

system with a PD (proportional-derivative) controller is

Select the value of KP so that the parabolic-error constant Ka is 100. Find
the equivalent forward-path transfer function Geq(s) for ω = 0 to ω = ∞.
Determine the range of KD for stability by the Nyquist criterion.

10-22.   The block diagram of a feedback control system is shown in Fig.
10P-22.

Figure 10P-22

(a)  Apply the Nyquist criterion to determine the range of K for stability.
(b)  Check the answer obtained in part (a) with the Routh-Hurwitz

criterion.
10-23.   The forward-path transfer function of the liquid-level control



system shown in Prob. 2-36 is

The following system parameters are given: Ka = 50, Ki = 10, Kt = 50, J =
0.006, Kb = 0.0706, n = 0.01, and Ra = 10. The values of A, N, and Ko are
variable.

(a)  For A = 50 and Ko = 100, sketch the Nyquist plot of G(jω) for ω = 0 to
∞ to ∞ with N as a variable parameter. Find the maximum integer value of N
so that the closed-loop system is stable.

(b)  Let N = 10 and Ko = 100. Sketch the Nyquist plot of an equivalent
transfer function Geq (jω) that has A as a multiplying factor. Find the critical
value of Ko for stability.

(c)  For A = 50 and N = 10, sketch the Nyquist plot of an equivalent
transfer function Geq (jω) that has Ko as a multiplying factor. Find the critical
value of Ko for stability.

10-24.   The block diagram of a dc-motor control system is shown in Fig.
10P-24. Determine the range of K for stability using the Nyquist criterion
when Kt has the following values:

Figure 10P-24

(a)  Kt = 0
(b)  Kt = 0.01
(c)  Kt = 0.1
10-25.   For the system shown in Fig. 10P-24, let K = 10. Find the range of



Kt for stability with the Nyquist criterion.
10-26.   Figure 10P-26 shows the block diagram of a servomotor.

Figure 10P-26

Assume J = 1 kg·m2 and B = 1 N·m/rad/s. Determine the range of K for
stability using the Nyquist criterion when Kf has the following values:

(a)  Kf = 0
(b)  Kf = 0.1
(c)  Kf = 0.2
10-27.   For the system shown in Fig. 10P-26, let K = 10. Find the range of

Kf for stability with the Nyquist criterion.
10-28.   For the controlled system shown in Fig. 10P-28, draw the Nyquist

plot and apply the Nyquist criterion to determine the range of K for stability
and determine the number of roots in the right-half s-plane for the values of
K, where the system is unstable.

Figure 10P-28

(a)  



(b)  
10-29.   The steel-rolling control system shown in Fig. 4P-18 has the

forward-path transfer function

(a)  When K = 1, determine the maximum time delay Td in seconds for the
closed-loop system to be stable.

(b)  When the time delay Td is 1 s, find the maximum value of K for system
stability.

10-30.   Repeat Prob. 10-29 with the following conditions.
(a)  When K = 0.1, determine the maximum time delay Td in seconds for

the closed-loop system to be stable.
(b)  When the time delay Td is 0.1 s, find the maximum value of K for

system stability.
10-31.   The open-loop transfer function of a system is given by

Study the stability of the system for the following:
(a)    K is small.
(b)    K is large.
10-32.   The system schematic shown in Fig. 10P-32 is devised to control

the concentration of a chemical solution by mixing water and concentrated
solution in appropriate proportions. The transfer function of the system
components between the amplifier output ea (V) and the valve position x (in)
is



Figure 10P-32

When the sensor is viewing pure water, the amplifier output voltage ea is
zero; when it is viewing concentrated solution, ea = 10 V; and 0.1 in of the
valve motion changes the output concentration from zero to maximum. The
valve ports can be assumed to be shaped so that the output concentration
varies linearly with the valve position. The output tube has a cross-sectional
area of 0.1 in2, and the rate of flow is 103 in/s regardless of the valve position.
To make sure the sensor views a homogeneous solution, it is desirable to
place it at some distance D in from the valve.

(a)  Derive the loop transfer function of the system.
(b)  When K = 10, find the maximum distance D (in) so that the system is

stable. Use the Nyquist stability criterion.
(c)  Let D = 10 in. Find the maximum value of K for system stability.
10-33.   For the mixing system described in Prob. 10-32, the following

system parameters are given:
When the sensor is viewing pure water, the amplifier output voltage es = 0

V; when it is viewing concentrated solution, ea = 1 V; and 0.1 in of the valve
motion changes the output concentration from zero to maximum. The rest of
the system characteristics are the same as in Prob. 10-32. Repeat the three
parts of Prob. 10-32.



10-34.   Figure 10P-34 shows the block diagram of a controlled system.

Figure 10P-34

(a)  Draw the Nyquist plot and apply the Nyquist criterion to determine the
range of K for stability.

(b)  Determine the number of roots in the right-half s-plane for the values
of K, where the system is unstable.

(c)  Use Routh’s criterion to determine the range of K for stability.
10-35.   The forward-path transfer function of a unity-feedback control

system is

(a)  Find the values of Mr, ωr, and BW of the closed-loop system.
(b)  Find the parameters of the second-order system with the open-loop

transfer function

that will give the same values for Mr and ωr as the third-order system.
Compare the values of BW of the two systems.

10-36.   Sketch or plot the Bode diagrams of the forward-path transfer
functions given in Prob. 10-4. Find the gain margin, gain-crossover
frequency, phase margin, and the phase-crossover frequency for each system.

10-37.   The transfer function of a system is given by



Use MATLAB to plot the Bode diagrams of the system and find the phase
margin and gain margin of the system.

10-38.   Use MATLAB to plot the Bode diagrams of the system shown in
Fig. 10P-34, where K = 1, and determine the stable range of K by using phase
margin and gain margin.

10-39.   The forward-path transfer functions of unity-feedback control
systems are given in the following equations. Plot the Bode diagram of
G(jω)/K, and do the following: (1) Find the value of K so that the gain margin
of the system is 20 dB. (2) Find the value of K so that the phase margin of the
system is 45°.

10-40.   The forward-path transfer functions of unity-feedback control
systems are given in the following equations. Plot G(jω)/K in the gain-phase
coordinates of the Nichols chart, and do the following: (1) Find the value of
K so that the gain margin of the system is 10 dB. (2) Find the value of K so
that the phase margin of the system is 45°. (3) Find the value of K so that Mr

1.2.

10-41.   The forward-path of a unity-feedback system is given by



(a)  Plot the Bode diagram.
(b)  Plot the root locus.
(c)  Find the gain and frequency where instability occurs.
(d)  Find the gain at the phase margin of 20°.
(e)  Find the gain margin when the phase margin is 20°.
10-42.   The Bode diagram of the forward-path transfer function of a unity-

feedback control system is obtained experimentally (as shown in Fig. 10P-42
when the forward gain K is set at its nominal value.



Figure 10P-42

(a)  Find the gain and phase margins of the system from the diagram as
best you can read them. Find the gain- and phase-crossover frequencies.



(b)  Repeat part (a) if the gain is doubled from its nominal value.
(c)  Repeat part (a) if the gain is 10 times its nominal value.
(d)  Find out how much the gain must be changed from its nominal value if

the gain margin is 40 dB.
(e)  Find out how much the loop gain must be changed from its nominal

value if the phase margin is 45°.
(f)  Find the steady-state error of the system if the reference input to the

system is a unit-step function.
(g)  The forward path now has a pure time delay of Tds, so that the forward-

path transfer function is multiplied by e−Tds. Find the gain margin and the
phase margin for Td = 0.1 s. The gain is set at nominal.

(h)   With the gain set at nominal, find the maximum time delay Td the
system can tolerate without going into instability.

10-43.   Repeat Prob. 10-42 using Fig. 10P-42 for the following parts.
(a)  Find the gain and phase margins if the gain is four times its nominal

value. Find the gain- and phase-crossover frequencies.
(b)  Find out how much the gain must be changed from its nominal value if

the gain margin is 20 dB.
(c)  Find the marginal value of the forward-path gain for system stability.
(d)  Find out how much the gain must be changed from its nominal value if

the phase margin is 60°.
(e)  Find the steady-state error of the system if the reference input is a unit-

step function and the gain is twice its nominal value.
(f)  Find the steady-state error of the system if the reference input is a unit-

step function and the gain is 20 times its nominal value.
(g)  The system now has a pure time delay so that the forward-path transfer

function is multiplied by e−Tds. Find the gain and phase margins when Td = 0.1
s. The gain is set at its nominal value.

(h)  With the gain set at 10 times its nominal, find the maximum time
delay Td the system can tolerate without going into instability.

10-44.   The forward-path transfer function of a unity-feedback control
system is



(a)  Draw the Nyquist plot of the system.
(b)  Plot the Bode diagram of the system.
(c)  Find the phase margin and gain margin of the system.
10-45.   The forward-path transfer function of a unity-feedback control

system is

(a)  Construct the Bode and Nyquist plots of G(jω)/K and determine the
range of K for system stability.

(b)  Construct the root loci of the system for K ≥ 0. Determine the values
of K and ω at the points, where the root loci cross the jω-axis, using the
information found from the Bode plot.

10-46.   Repeat Prob. 10-45 for the following transfer function:

10-47.   Repeat Prob. 10-45 for the following transfer function:

10-48.   The forward-path transfer function of the dc-motor control system
described in Fig. 4P-11 is

Plot the Bode diagram of G(jω) with K = 1, and determine the gain margin
and phase margin of the system. Find the critical value of K for stability.

10-49.   The transfer function between the output position ΘL(s) and the
motor current Ia(s) of the robot arm modeled in Fig. 6P-20 is



where

The arm is controlled by a closed-loop system. The system parameters are

(a)  Derive the forward-path transfer function G(s) = ΘL(s)/E(s).
(b)  Draw the Bode diagram of G(jω). Find the gain and phase margins of

the system.
(c)  Draw |M(jω)| versus ω, where M(s) is the closed-loop transfer

function. Find Mr, ωr, and BW.
10-50.   For the ball-and-beam system described in Prob. 4-11 and shown

in Fig. 10P-50, assume the following:

Figure 10P-50



If the system is controlled by a proportional controller in a unity-feedback
control system,

(a)  Find the transfer function from the gear angle (θ) to the ball position
(P).

(b)  Find the closed-loop transfer function.
(c)  Find the range of K for stability.
(d)  Plot the Bode diagram for the system for K = 1, and find the gain and

phase margins of the system.
(e)  Draw |M(jω)| versus ω, where M(s) is the closed-loop transfer

function. Find Mr, ωr, and BW.
10-51.   The gain-phase plot of the forward-path transfer function of

G(jω)/K of a unity-feedback control system is shown in Fig. 10P-51. Find the
following performance characteristics of the system.



Figure 10P-51

(a)  Gain-crossover frequency (rad/s), when K = 1.



(b)  Phase-crossover frequency (rad/s) when K = 1.
(c)  Gain margin (dB) when K = 1.
(d)  Phase margin (deg) when K = 1.
(e)  Resonance peak Mr when K = 1.
(f)  Resonant frequency ωr (rad/s) when K = 1.
(g)  BW of the closed-loop system when K = 1.
(h)  The value of K so that the gain margin is 20 dB.
(i)  The value of K so that the system is marginally stable. Find the

frequency of sustained oscillation in rad/s.
(j)  Steady-state error when the reference input is a unit-step function.
10-52.   Repeat parts (a) through (g) of Prob. 10-51, when K = 10. Repeat

part (h) for gain margin = 40 dB.
10-53.   For the system in Prob. 10-44, plot the Nichols chart and find

magnitudes and phase angles of the closed-loop frequency response. Then
plot the Bode diagram of the closed-loop system.

10-54.   Use ACSYS or MATLAB to analyze the frequency response of
the following unity-feedback control systems. Plot the Bode diagrams, polar
plots, and gain-phase plots, and compute the phase margin, gain margin, Mr,
and BW.

10-55.   For the gain-phase plot of G(jω)/K shown in Fig. 10P-51, the
system now has a pure time delay of Td in the forward path, so that the
forward-path transfer function becomes G(s)e−Tds.



(a)  With K = 1, find Td so that the phase margin is 40°.
(b)  With K = 1, find the maximum value of Td so that the system will

remain stable.
10-56.   Repeat Prob. 10-55 with K = 10.
10-57.   Repeat Prob. 10-55 so that the gain margin is 5 dB when K = 1.
10-58.   The block diagram of a furnace-control system is shown in Fig.

10P-58. The transfer function of the process is

Figure 10P-58

The time delay Td is 2 s.
There are many ways of approximating e−Tds by a rational function. One way

is to approximate the exponential function by a Maclaurin series; that is,

or

where only three terms of the series are used. Apparently, the
approximations are not valid when the magnitude of Tds is large.

A better approximation is to use the Pade approximation, which is given in
the following for a two-term approximation:



This approximation of the transfer function contains a zero in the right-half
s-plane so that the step response of the approximating system may exhibit a
small negative undershoot near t = 0.

(a)  Plot the Bode diagram of G(s) = Y(s)/E(s), and find the gain-crossover
and phase-crossover frequencies. Find the gain margin and the phase margin.

(b)  Approximate the time delay by

and repeat part (a). Comment on the accuracy of the approximation. What
is the maximum frequency below which the polynomial approximation is
accurate?

(c)  Repeat part (b) for approximating the time delay term by

10-59.   Repeat Prob. 10-58 with Td = 1 s.
10-60.   Plot the SM

G(jω)|-versus-ω plot for the system described in Prob.
10-49 for K = 1. Find the frequency at which the sensitivity is maximum and
the value of the maximum sensitivity.

10-61.   Figure 10P-61 shows the pitch controller system for an aircraft, as
described in Sec. 7-9.



Figure 10P-61

If the system is controlled by a proportional controller in a unity-feedback
control system,

(a)  Find the transfer function between pitch angle and elevator deflection
angle.

(b)  Find the closed-loop transfer function.
(c)  Find the range of K for stability.
(d)  Plot the Bode diagram for the system for K = 1, and find the gain and

phase margins of the system.
(e)  Draw |M(jω)| versus ω, where M(s) is the closed-loop transfer

function. Find Mr, ωr, and BW.

1In the absence of delay, i.e., Td = 0, Eq. (10-52) takes the form:



CHAPTER 11



Design of Control Systems

11-1  INTRODUCTION
We now utilize all the foundations and analyses that we have provided in

the preceding chapters in the ultimate goal of design of control systems.
Starting with the controlled process such as that shown by the block diagram
in Fig. 11-1, control system design involves the following three steps:

Figure 11-1   Controlled process.

1.    Use design specifications to determine what the system should do
and how to do.
2.    Determine the controller or compensator configuration, relative to
how it is connected to the controlled process.
3.    Determine the parameter values of the controller to achieve the
design goals.

These design tasks are explored further in the following sections.

Learning Outcomes

After successful completion of this chapter, you will be able to
1.  Design simple control systems using time-domain and frequency-
domain approaches.
2.  Incorporate various controllers, including proportional, derivative,
integral, lead, and lag, into your control system for simple processes.



3.  Use MATLAB to investigate the time- and frequency-domain
performance of the control systems.
4.  Use the MATLAB SISO design tool to expedite the design process.

11-1-1 Design Specifications
As discussed in Chap. 7, we use design specifications to describe the

expected performance of a system for a given input. These specifications are
unique to individual applications and often include specifications about
relative stability, steady-state accuracy (error), transient-response
characteristics, and frequency-response characteristics. In some
applications, there may be additional specifications on sensitivity to
parameter variations, that is, robustness, or disturbance rejection.

The design of linear control systems can be carried out in either the time
domain or the frequency domain. For instance, steady-state accuracy is
often specified with respect to a step input, a ramp input, or a parabolic input,
and the design to meet a certain requirement is more conveniently carried out
in the time domain. Other specifications, such as maximum overshoot, rise
time, and settling time, are all defined for a unit-step input and, therefore,
are used specifically for time-domain design. We have learned that relative
stability is also measured in terms of gain margin, phase margin, and Mr.
These are typical frequency-domain specifications, which should be used in
conjunction with such tools as the Bode plot, polar plot, gain-phase plot, and
Nichols chart.

We have shown that, for a second-order prototype system, there are simple
analytical relationships between some of these time-domain and frequency-
domain specifications. However, for higher-order systems, correlations
between time-domain and frequency-domain specifications are difficult to
establish. As pointed out earlier, the analysis and design of control systems is
pretty much an exercise of selecting from several alternative methods for
solving the same problem.

Thus, the choice of whether the design should be conducted in the time
domain or the frequency domain depends often on the preference of the
designer. We should be quick to point out, however, that in most cases, time-
domain specifications such as maximum overshoot, rise time, and settling



time are usually used as the final measure of system performance. To an
inexperienced designer, it is difficult to comprehend the physical connection
between frequency-domain specifications such as gain and phase margins and
resonance peak to actual system performance. For instance, does a gain
margin of 20 dB guarantee a maximum overshoot of less than 10 percent? To
a designer it makes more sense to specify, for example, that the maximum
overshoot should be less than 5 percent and a settling time less than 0.01 s. It
is less obvious what, for example, a phase margin of 60° and an Mr of less
than 1.1 may bring in system performance. The following outline will
hopefully clarify and explain the choices and reasons for using time-domain
versus frequency-domain specifications.

1.    Historically, the design of linear control systems was developed
with a wealth of graphical tools such as the Bode plot, Nyquist plot,
gain-phase plot, and Nichols chart, which are all carried out in the
frequency domain. The advantage of these tools is that they can all be
sketched by following approximation methods without detailed plotting.
Therefore, the designer can carry out designs using frequency-domain
specifications such as gain margin, phase margin, Mr, and the like.
High-order systems do not generally pose any particular problem. For
certain types of controllers, design procedures in the frequency domain
are available to reduce the trial-and-error effort to a minimum.
2.    Design in the time domain using such performance specifications as
rise time, delay time, settling time, maximum overshoot, and the like
is possible analytically only for second-order systems or for systems that
can be approximated by second-order systems. General design
procedures using time-domain specifications are difficult to establish for
systems with an order higher than the second.

The development and availability of high-powered and user-friendly
computer software, such as MATLAB, is rapidly changing the practice of
control system design, which until recently had been dictated by historical
development. Now with MATLAB, the designer can go through a large
number of design runs using the time-domain specifications within a matter
of minutes. This diminishes considerably the historical edge of the frequency-
domain design, which is based on the convenience of performing graphical
design manually.



Throughout this chapter, we have incorporated small MATLAB toolboxes
to help your understanding of the examples, and, at the end of the chapter, we
introduce the MATLAB SISO design tool that would enhance your ability to
design controllers using the root-locus and frequency-domain approaches.

Finally, it is generally difficult (except for an experienced designer) to
select a meaningful set of frequency-domain specifications that will
correspond to the desired time-domain performance requirements. For
example, specifying a phase margin of 60° would be meaningless unless we
know that it corresponds to a certain maximum overshoot. As it turns out, to
control maximum overshoot, usually one has to specify at least phase margin
and Mr. Eventually, establishing an intelligent set of frequency-domain
specifications becomes a trial-and-error process that precedes the actual
design, which often is also a trial-and-error effort. However, frequency-
domain methods are still valuable in interpreting noise rejection and
sensitivity properties of the system, and, most important, they offer another
perspective to the design process. Therefore, in this chapter the design
techniques in the time domain and the frequency domain are treated side by
side, so that the methods can be easily compared.

11-1-2 Controller Configurations
In general, the dynamics of a linear controlled process can be represented

by the block diagram shown in Fig. 11-1. The design objective is to have the
controlled variables, represented by the output vector y(t), behave in certain
desirable ways. The problem essentially involves the determination of the
control signal u(t) over the prescribed time interval so that the design
objectives are all satisfied.

Most of the conventional design methods in control systems rely on the so-
called fixed-configuration design in that the designer at the outset decides
the basic configuration of the overall designed system and decides where the
controller is to be positioned relative to the controlled process. The problem
then involves the design of the elements of the controller. Because most
control efforts involve the modification or compensation of the system-
performance characteristics, the general design using fixed configuration is
also called compensation.

Figure 11-2 illustrates several commonly used system configurations with
controller compensation. These are described briefly as follows:





Figure 11-2   Various controller configurations in control-system
compensation. (a) Series or cascade compensation. (b) Feedback
compensation. (c) State-feedback control. (d ) Series-feedback compensation
(two degrees of freedom). (e) Forward compensation with series
compensation (two degrees of freedom). (f) Feedforward compensation (two
degrees of freedom).

•   Series (cascade) compensation. Figure 11-2a shows the most
commonly used system configuration with the controller placed in series
with the controlled process, and the configuration is referred to as series
or cascade compensation.
•   Feedback compensation. In Fig. 11-2b, the controller is placed in the
minor feedback path, and the scheme is called feedback compensation.
•   State-feedback compensation. Figure 11-2c shows a system that
generates the control signal by feeding back the state variables through
constant real gains, and the scheme is known as state feedback. The
problem with state-feedback control is that, for high-order systems, the
large number of state variables involved would require a large number
of transducers to sense the state variables for feedback. Thus, the actual
implementation of the state-feedback control scheme may be costly or
impractical. Even for low-order systems, often not all the state variables
are directly accessible, and an observer or estimator may be necessary
to create the estimated state variables from measurements of the output
variables.
•   Series-feedback compensation. Figure 11-2d shows the series-
feedback compensation for which a series controller and a feedback
controller are used.
•   Feedforward compensation. Figure 11-2e and f shows the so-called
feedforward compensation. In Fig. 11-2e, the feedforward controller
Gcf (s) is placed in series with the closed-loop system, which has a
controller Gc(s) in the forward path.

In Fig. 11-2f, the feedforward controller Gcf (s) is placed in parallel with
the forward path. The key to the feedforward compensation is that the
controller Gcf (s) is not in the loop of the system, so it does not affect the
roots of the characteristic equation of the original system. The poles and



zeros of Gcf (s) may be selected to add or cancel the poles and zeros of
the closed-loop system transfer function.

The compensation schemes shown in Fig. 11-2a to c all have one degree of
freedom in that there is only one controller in each system, even though the
controller may have more than one parameter that can be varied. The
disadvantage with a one-degree-of-freedom controller is that the performance
criteria that can be realized are limited. For example, if a system is to be
designed to achieve a certain amount of relative stability, it may have poor
sensitivity to parameter variations. Or if the roots of the characteristic
equation are selected to provide a certain amount of relative damping, the
maximum overshoot of the step response may still be excessive because of
the zeros of the closed-loop transfer function. The compensation schemes
shown in Fig. 11-2d to f all have two degrees of freedom.

One of the commonly used controllers in the compensation schemes just
described is a PID controller, which applies a signal to the process that is
proportional to the actuating signal in addition to adding integral and
derivative of the actuating signal. Because these signal components are easily
realized and visualized in the time domain, PID controllers are commonly
designed using time-domain methods. In addition to the PID-type controllers,
lead, lag, lead-lag, and notch controllers are also frequently used. The names
of these controllers come from properties of their respective frequency-
domain characteristics. As a result, these controllers are often designed using
frequency-domain concepts. Despite these design tendencies, however, all
control system designs will benefit by viewing the resulting design from both
time- and frequency-domain viewpoints. Thus, both methods will be used
extensively in this chapter.

PID controllers are the most common controllers used in industrial
applications.

It should be pointed out that these compensation schemes are by no means
exhaustive. The details of these compensation schemes will be discussed in
later sections of this chapter. Although the systems illustrated in Fig. 11-2 are
all for continuous-data control, the same configurations can be applied to
discrete-data control, in which case the controllers are all digital, with the



necessary interfacings and signal converters.

11-1-3 Fundamental Principles of Design
After a controller configuration is chosen, the designer must choose a

controller type that, with proper selection of its element values, will satisfy all
the design specifications. The types of controllers available for control-
system design are bounded only by one’s imagination. Engineering practice
usually dictates that one choose the simplest controller that meets all the
design specifications. In most cases, the more complex a controller is, the
more it costs, the less reliable it is, and the more difficult it is to design.
Choosing a specific controller for a specific application is often based on the
designer’s past experience and sometimes intuition, and it entails as much art
as it does science. As a novice, you may initially find it difficult to make
intelligent choices of controllers with confidence. By understanding that
confidence comes only through experience, this chapter provides guided
experiences that illustrate the basic elements of control system designs.

After a controller is chosen, the next task is to choose controller parameter
values. These parameter values are typically the coefficients of one or more
transfer functions making up the controller. The basic design approach is to
use the analysis tools discussed in the previous chapters to determine how
individual parameter values influence the design specifications and, finally,
system performance. Based on this information, controller parameters are
selected so that all design specifications are met. While this process is
sometimes straightforward, more often than not it involves many design
iterations since controller parameters usually interact with each other and
influence design specifications in conflicting ways. For example, a particular
parameter value may be chosen so that the maximum overshoot is satisfied,
but in the process of varying another parameter value in an attempt to meet
the rise-time requirement, the maximum overshoot specification may no
longer be met! Clearly, the more design specifications there are and the more
controller parameters there are, the more complicated the design process
becomes.

In carrying out the design either in the time domain or the frequency
domain, it is important to establish some basic guidelines or design rules.
Keep in mind that time-domain design usually relies heavily on the s-plane
and the root loci. Frequency-domain design is based on manipulating the gain



and phase of the loop transfer function so that the specifications are met.
In general, it is useful to summarize the time-domain and frequency-

domain characteristics so that they can be used as guidelines for design
purposes.

1.    Complex-conjugate poles of the closed-loop transfer function lead
to a step response that is underdamped. If all system poles are real, the
step response is overdamped. However, zeros of the closed-loop transfer
function may cause overshoot even if the system is overdamped.
2.    The response of a system is dominated by those poles closest to the
origin in the s-plane. Transients due to those poles farther to the left
decay faster.
3.    The farther to the left in the s-plane the system’s dominant poles
are, the faster the system will respond and the greater its bandwidth will
be.
4.    The farther to the left in the s-plane the system’s dominant poles
are, the more expensive it will be and the larger its internal signals will
be. While this can be justified analytically, it is obvious that striking a
nail harder with a hammer drives the nail in faster but requires more
energy per strike. Similarly, a sports car can accelerate faster, but it uses
more fuel than an average car.
5.    When a pole and zero of a system transfer function nearly cancel
each other, the portion of the system response associated with the pole
will have a small magnitude.
6.    Time-domain and frequency-domain specifications are loosely
associated with each other. Rise time and bandwidth are inversely
proportional. Larger phase margin, larger gain margin, and lower Mr will
improve damping.

11-2  DESIGN WITH THE PD CONTROLLER
In most examples of control systems we have discussed thus far, the

controller has been typically a simple amplifier with a constant gain K. This
type of control action is formally known as proportional control because the
control signal at the output of the controller is simply related to the input of
the controller by a proportional constant.



Intuitively, one should also be able to use the derivative or integral of the
input signal, in addition to the proportional operation. Therefore, we can
consider a more general continuous-data controller to be one that contains
such components as adders (addition or subtraction), amplifiers, attenuators,
differentiators, and integrators. The designer’s task is to determine which of
these components should be used, in what proportion, and how they are
connected. For example, one of the best-known controllers used in practice is
the PID controller, where the letters stand for proportional, integral, and
derivative. The integral and derivative components of the PID controller
have individual performance implications, and their applications require an
understanding of the basics of these elements. To gain an understanding of
this controller, we consider just the PD portion of the controller first.

Figure 11-3 shows the block diagram of a feedback control system that
arbitrarily has a second-order prototype process with the transfer function

Figure 11-3   Control system with PD controller.

The series controller is a proportional-derivative (PD) type with the
transfer function

Thus, the control signal applied to the process is



where KP and KD are the proportional and derivative constants, respectively.
Using the components given in Table 6-1, two electronic-circuit realizations
of the PD controller are shown in Fig. 11-4. The transfer function of the
circuit in Fig. 11-4a is

Figure 11-4   Op-amp circuit realization of the PD controller.

Comparing Eq. (11-2) with Eq. (11-4), we have



The transfer function of the circuit in Fig. 11-4b is

Comparing Eq. (11-2) with Eq. (11-6), we have

The advantage with the circuit in Fig. 11-4a is that only two op-amps are
used. However, the circuit does not allow the independent selection of KP and
KD because they are commonly dependent on R2. An important concern of the
PD controller is that, if the value of KD is large, a large capacitor C1 would be
required. The circuit in Fig. 11-4b allows KP and KD to be independently
controlled. A large KD can be compensated by choosing a large value for Rd,
thus resulting in a realistic value for Cd. Although the scope of this text does
not include all the practical issues involved in controller transfer function
implementation, these issues are of the utmost importance in practice.

The forward-path transfer function of the compensated system is

which shows that the PD control is equivalent to adding a simple zero at s
= -Kp/KD to the forward-path transfer function.

11-2-1 Time-Domain Interpretation of PD Control

PD control adds a simple zero at s = -Kp/KD to the forward-path
transfer function.

The effect of the PD control on the transient response of a control system
can be investigated by referring to the time responses shown in Fig. 11-5. Let
us assume that the unit-step response of a stable system with only
proportional control is as shown in Fig. 11-5a, which has a relatively high



maximum overshoot and is rather oscillatory. The corresponding error signal,
which is the difference between the unit-step input and the output y(t) and its
time derivative de(t)/dt are shown in Figs. 9.5b and c, respectively. The
overshoot and oscillation characteristics are also reflected in e(t) and de(t)/dt.
For the sake of illustration, we assume that the system contains a motor of
some kind with its torque proportional to e(t). The performance of the system
with proportional control is analyzed as follows:

Figure 11-5   Waveforms of y(t), e(t), and de(t)/dt, showing the effect of
derivative control. (a) Unit-step response. (b) Error signal. (c) Time rate of



change of the error signal.

1.    During the time interval 0<t<t1: The error signal e(t) is positive. The
motor torque is positive and rising rapidly. The large overshoot and
subsequent oscillations in the output y(t) are due to the excessive amount
of torque developed by the motor and the lack of damping during this
time interval.
2.    During the time interval t1<t<t3: The error signal e(t) is negative, and
the corresponding motor torque is negative. This negative torque tends
to slow down the output acceleration and eventually causes the direction
of the output y(t) to reverse and undershoot.
3.    During the time interval t3<t<t5: The motor torque is again positive,
thus tending to reduce the undershoot in the response caused by the
negative torque in the previous time interval. Because the system is
assumed to be stable, the error amplitude is reduced with each
oscillation, and the output eventually settles to its final value.

Considering the above analysis of the system time response, we can say
that the contributing factors to the high overshoot are as follows:

1.    The positive correcting torque in the interval 0<t<t1 is too large.
2.    The retarding torque in the time interval t1<t<t2 is inadequate.

Therefore, to reduce the overshoot in the step response, without
significantly increasing the rise time, a logical approach would be to

1.    Decrease the amount of positive correcting torque during 0<t<t1.
2.    Increase the retarding torque during t1<t<t2.

Similarly, during the time interval, t2<t<t4, the negative corrective torque in
t2<t<t3 should be reduced, and the retarding torque during t3<t<t4, which is
now in the positive direction, should be increased to improve the undershoot
of y(t).

The PD control described by Eq. (11-2) gives precisely the compensation
effect required. Because the control signal of the PD control is given by Eq.
(11-3), Fig. 11-5c shows the following effects provided by the PD controller:

1.    For 0<t<t1, de(t)/dt is negative; this will reduce the original torque



developed due to e(t) alone.
2.    For t1<t<t2, both e(t) and de(t)/dt are negative, which means that the
negative retarding torque developed will be greater than that with only
proportional control.
3.    For t2<t<t3, e(t) and de(t)/dt have opposite signs. Thus, the negative
torque that originally contributes to the undershoot is reduced also.

Therefore, all these effects will result in smaller overshoots and
undershoots in y(t).

PD is essentially an anticipatory control.

Another way of looking at the derivative control is that since de(t)/dt
represents the slope of e(t), the PD control is essentially an anticipatory
control. That is, by knowing the slope, the controller can anticipate direction
of the error and use it to better control the process. Normally, in linear
systems, if the slope of e(t) or y(t) due to a step input is large, a high
overshoot will subsequently occur. The derivative control measures the
instantaneous slope of e(t), predicts the large overshoot ahead of time, and
makes a proper corrective effort before the excessive overshoot actually
occurs.

Intuitively, derivative control affects the steady-state error of a system only
if the steady-state error varies with time. If the steady-state error of a system
is constant with respect to time, the time derivative of this error is zero, and
the derivative portion of the controller provides no input to the process. But if
the steady-state error increases with time, a torque is again developed in
proportion to de(t)/dt, which reduces the magnitude of the error. Equation
(11-8) also clearly shows that the PD control does not alter the system type
that governs the steady-state error of a unity-feedback system.

Derivative or PD control will have an effect on a steady-state error
only if the error varies with time.



11-2-2 Frequency-Domain Interpretation of PD Control
For frequency-domain design, the transfer function of the PD controller is

written as

so that it is more easily interpreted on the Bode plot. The Bode plot of Eq.
(11-9) is shown in Fig. 11-6 with Kp=1. In general, the proportional-control
gain KP can be combined with a series gain of the system, so that the zero-
frequency gain of the PD controller can be regarded as unity. The high-pass
filter characteristics of the PD controller are clearly shown by the Bode plot
in Fig. 11-6. The phase-lead property may be utilized to improve the phase
margin of a control system. Unfortunately, the magnitude characteristics of
the PD controller push the gain-crossover frequency to a higher value. Thus,
the design principle of the PD controller involves the placing of the corner
frequency of the controller, ω=Kp/KD, such that an effective improvement of
the phase margin is realized at the new gain-crossover frequency. For a given
system, there is a range of values of KP/KD that is optimal for improving the
damping of the system. Another practical consideration in selecting the
values of KP and KD is in the physical implementation of the PD controller.
Other apparent effects of the PD control in the frequency domain are that, due
to its high-pass characteristics, in most cases it will increase the BW of the
system and reduce the rise time of the step response. The practical
disadvantage of the PD controller is that the differentiator portion is a high-
pass filter, which usually accentuates any high-frequency noise that enters at
the input.



Figure 11-6   Bode diagram of 



The PD controller is a high-pass filter.
The PD controller has the disadvantage that it accentuates high-

frequency noise.
The PD controller will generally increase the BW and reduce the rise

time of the step response.

11-2-3 Summary of Effects of PD Control
Though it is not effective with lightly damped or initially unstable systems,

a properly designed PD controller can affect the performance of a control
system in the following ways:

1.    Improving damping and reducing maximum overshoot.
2.    Reducing rise time and settling time.
3.    Increasing BW.
4.    Improving GM, PM, and Mr.
5.    Possibly accentuating noise at higher frequencies.
6.    Possibly requiring a relatively large capacitor in circuit
implementation.

The following example illustrates the effects of the PD controller on the
time-domain and frequency-domain responses of a second-order system.

EXAMPLE 11-2-11  Let us reconsider the second-order model of the aircraft
attitude control system shown in Fig. 7-52. The
forward-path transfer function of the system is given
in Eq. (7-161) and is repeated here:

Control of a DC Motor: Small Time-Constant Model

Let us set the performance specifications as follows:

Steady-state error due to unit-ramp input ≤ 0.000443



Maximum overshoot ≤5%

Rise time tr≤0.005 s

2% settling time ts≤0.005 s

To satisfy the maximum value of the specified steady-state error
requirement, K should be set at 181.17. However, with this value of K, the
damping ratio of the system is 0.2, and the maximum overshoot is 52.7
percent, as shown by the unit-step response in Fig. 7-54. Let us consider
using a PD controller in the forward path of the system so that the damping
and the maximum overshoot of the system are improved while maintaining
the steady-state error due to the unit-ramp input at 0.000443.

Time-Domain Design With the PD controller of Eq. (11-9) and K =
181.17, the forward-path transfer function of the system becomes

The closed-loop transfer function is

Equation (11-12) shows that the effects of the PD controller are as follows:

1.    Adding a zero at s = -Kp/KD to the closed-loop transfer function
2.    Increasing the damping term, which is the coefficient of the s term
in the denominator, from 361.2 to 361.2+815,265KD

3.    No impact on steady-state response

From Eq. (11-12), the following observations are made:

The steady-state error due to a unit-step input is ess = 0.

The ramp-error constant is



The steady-state error due to a unit-ramp input is ess = 1/Kv = 0.000443/Kp. .

Also, from Eq. (11-12), the characteristic equation is written as

which clearly shows the positive effect of KD on damping. We should quickly
point out that Eq. (11-11) no longer represents a prototype second-order
system, since the transient response is also affected by the zero of the transfer
function at s = -Kp/KD. In order to design a PD controller, we first approximate
the system as a prototype second-order system. That is, from the discussions
surrounding Fig. 11-5, and earlier in Sec. 7-7-5, if we select a small KD

relative to KP, the controller zero at s = -Kp/KD can be assumed to have a small
effect on the time response, in comparison to the dominant poles of the
system. Hence upon neglecting the zero, if we use a prototype second-order
transfer function, from Eq. (11-14)

provides the desired damping ratio for a 5 percent overshoot. Hence, ζ = 0.69.
Using the 2-percent settling time formula, for a 0.005 s settling time,

the desired value of natural frequency is ωn = 1,159.2 rad/s. As a result,

or

Note that from Eq. (11-13), the value of KP in Eq. (11-17) automatically
satisfies the steady-state error due to unit-ramp input ≤0.000443. With these



values, the poles and the zero of the system are at

Or,

Recall from Eq. (8-19) in Chap. 8 that for the desired poles of the closed
loop system to be on the root locus, the poles must meet the angle criterion.
In our case, as shown in Fig. 11-7,

Figure 11-7   Root locus of Eq. (11-12) for the controller zero fixed at s =
-KP/KD = -1085.



the closed loop poles and zero from will obviously meet the root-locus angle
criterion.

Using Toolbox 11-2-1, we obtain the time response for a unit-step input
based on the PD controller parameter values from Eqs. (11-17) and (11-19).
The system response, shown in Fig. 11-8, meets the rise time and settling
time criteria while the maximum overshoot is well above the desired 5
percent. This is because of the influence of the controller zero, see Sec. 7-8.
In order to arrive at the desired response, we must move the poles of the
system, along the root locus, to a new location while exploring the time
response behavior. The easiest strategy is to substitute the fixed zero value s
= -Kp/KD =-1085 into Eq. (11-14) and solve for the closed loop poles as KD

increases. Fixing the zero of the controller has the advantage of reducing the
number of unknown controller parameters from two to one. As a result the
revised characteristic equation of the system is

Figure 11-8   Unit-step response of Eq. (11-12) for the controller zero
fixed at s = -Kp/KD = -1085 and poles at s1,2 =-800;±j838.9.

Always check whether the dc motor can provide the required torque



to achieve the desired response. You must operate the motor below its
stall torque limits.

Solving for the poles of the system in Eq. (11-14), we have

The root-locus diagram in Fig. 11-9 is obtained by varying KD in Eq. (11-
24). The desired response of the system is attained for KD = 0.01105 and KP =
13.1285, as shown in Fig. 11-10. From the root locus in Fig. 11-9, the poles
in Eq. (11-24) are located at s1 = -1200 and s2 = -8170. Notice, the two poles
are expected to exhibit a highly overdamped response. However, the
controller zero dominance contributes to a nonoscillatory overshoot. The
attributes of the unit-step responses of the system are shown in Table 11-1.



Figure 11-9   Root locus of Eq. (11-12) for the controller zero fixed at s =
-KP/KD = -1085. showing desired response poles for KD = 0.01105 and KP =
13.1285.



Figure 11-10   Desired unit-step response of Eq. (11-12) for KD = 0.01105
and KP = 13.1285.

Table 11-1   Attributes of the Unit-Step Responses of the System in
Example 11-2-1 with PD Controller Using a Fixed Zero at s = –KP/KD = –
1085

In practice, you must always check the required motor torque to achieve
this response. You can do this by finding the motor torque transfer function
and find its time response; see also the discussions in App. D regarding
actuator current saturation. Remember, if the required torque is higher than
the motor stall torque, your motor will not be able to provide the desired
response. If your controller parameters require a higher torque than what the



motor can provide, consider moving the controller zero to the right (as much
as you can) and repeat the process to find the desired response. For the zero
at s= - KP/KD = -565, a desired response may be obtained when KP = 1 and KD

= 0.00177; see the alternative design approach using the root contours
approach for the step response, and check Example 11-10-1 for the
MATLAB SISO design approach.

Toolbox 11-2-1
Root loci of Eq. (11-11) shown in Fig. 11-7 are obtained by the

following sequence of MATLAB functions:

Figure 11-8 is obtained by the following sequence of MATLAB
functions:

Figure 11-10 is obtained by the following sequence of MATLAB
functions:

Alternative Time-Domain Design Approach Using Root
Contours

Considering the characteristic equation in Eq. (11-14), we can set KP=1,
which is acceptable from the steady-state error requirement. The damping
ratio of the system is



It turns out that, for this second-order system, as the value of KD increases,
the zero will move very close to the origin and effectively cancels the pole of
G(s) at s = 0. Thus, as KD increases, the transfer function in Eq. (11-11)
approaches that of a first-order system with the pole at s = -361.2, and the
closed-loop system will not have any overshoot. In general, for higher-order
systems, however, the zero at s = -Kp/KD may increase the overshoot when KD

becomes very large.
We can apply the root-contour method to the characteristic equation in Eq.

(11-14) to examine the effect of varying KP and KD. First, by setting KD to
zero, Eq. (11-14) becomes

The root loci of the last equation as KP varies between 0 and ∞ are shown
in Fig. 11-11. You can use Toolbox 11-2-2 to draw the root locus. According
to the discussions in Chap. 9, when KD ≠ 0, the characteristic equation in Eq.
(11-14) is conditioned as:



Figure 11-11   Root loci of Eq. (11-26).



The root contours of Eq. (11-14) with KP = and KD varying are constructed
based on the pole-zero configuration of Geq(s). Alternatively, the root contours
may also be constructed by solving for the pole values of characteristic
equation of the system shown in Eq. (11-20). Using either approach, the root
contours are plotted by fixing the KP value and varying KD, as shown in Fig.
11-12 for KP is 0.25 and KP = 1.

When KP is 0.25 and KD = 0, the two characteristic equation roots are at –
180.6 + j413.76 and –180.6 – j413.76. As KD increases in value, the root
contours show the improved damping due to the PD controller. Note that this
value of KP is not acceptable as far as the steady-state requirements are
concerned.



Figure 11-12   Root loci of Eq. (11-14) when KP= 0.25 and 1.0; KD varies.

We see that, when KP = 1 and KD = 0, the characteristic equation roots are at
–180.6 + j884.67 and –180.6 – j884.67, and the damping ratio of the closed-
loop system is 0.2. When the value of KD is increased, the two characteristic
equation roots move toward the real axis along a circular arc. When KD is
increased to 0.00177, the roots are real and equal at -902.92, and the damping



is critical. When KD is increased beyond 0.00177, the two roots become real
and unequal at -900.065 and -905.78, and the system is overdamped, but
expect the effect of controller zero to cause a nonoscillatory response with an
overshoot. Figure 11-13 shows the unit-step responses of the closed-loop
system without PD control and with KP = 1 and KD. With the PD control, the
maximum overshoot is 4.2 percent. In the present case, although KD is chosen
for critical damping, the overshoot is due to the dominant zero at s = -Kp/KD =
-565 of the closed-loop transfer function.

Figure 11-13   Unit-step response of the attitude control system in 7-52
with and without PD controller.

Table 11-2 gives the results on maximum overshoot, rise time, and settling
time for KP = 1 and KD = 0, 0.0005, 0.00177, and 0.0025. The results in Table
11-2 show that the performance requirements are all satisfied with KD

≥0.00177. The performance specifications here are closer to desired values



and should place a smaller burden on the motor than in the previous design
approach. Please keep in mind that KD should only be large enough to satisfy
the performance requirements. Large KD corresponds to large BW, which may
cause high-frequency noise problems, and there is also the concern of the
capacitor value in the op-amp-circuit implementation. Finally, as discussed
earlier, do not forget to check if your motor can provide the required torque
for the desired response.

Table 11-2   Attributes of the Unit-Step Responses of the System in
Example 11-2-1 with PD Controller Using the Root-Contour Approach

The general conclusion is that the PD controller decreases the maximum
overshoot, the rise time, and the settling time.

Another analytic way of studying the effects of the parameters KP and KD is
to evaluate the performance characteristics in the parameter plane of KP and
KD. From the characteristic equation of Eq. (11-14), we have

Applying the stability requirement to Eq. (11-14), we find that, for system
stability, KP > 0 and KD >-0.000443

Toolbox 11-2-2
Root loci of Eq. (11-26) shown in Fig. 11-11 are obtained by the

following sequence of MATLAB functions:



Toolbox 11-2-3
Root contours of Eq. (11-14) shown in Fig. 11-12 are obtained by the

following sequence of MATLAB functions:

The boundaries of stability in the KP-versus-KD parameter plane are shown
in Fig. 11-14. The constant-damping-ratio trajectory is described by Eq. (11-
28) and is a parabola. Figure 11-14 illustrates the constant-ζ trajectories for ζ
= 0.5, 0.707, and 1.0. The ramp-error constant Kv is given by Eq. (11-13),
which describes a horizontal line in the parameter plane, as shown in Fig. 11-
10. The figure gives a clear picture as to how the values of KP and KD affect
the various performance criteria of the system. For instance, if Kv is set at
2257.1, which corresponds to KP = 1, the constant-ζ loci show that the
damping is increased monotonically with the increase in KD. The intersection
between the constant-Kv locus and the constant-ζ locus gives the value of KD



for the desired Kv and ζ.

Figure 11-14   KP-versus-KD parameter plane for the attitude control system
with a PD controller.

Frequency-Domain Design
Now let us carry out the design of the PD controller in the frequency

domain. Figure 11-15 shows the Bode plot of G(s) in Eq. (11-11) with KP = 1
and KD = 0. The phase margin of the uncompensated system is 22.68°, and the
resonant peak Mr is 2.522. These values correspond to a lightly damped



system. Let us give the following performance criteria:





Figure 11-15   Bode plot of 

Steady-state error due to a unit-ramp input ≤0.00443
Phasemargin ≥80°
Resonant peak Mr≤1.05
BW ≤2000 rad/s

The Bode plots of G(s) for KP = 1 and KD = 0, 0.005, 0.00177, and 0.0025
are shown in Fig. 11-15. The performance measures in the frequency domain
for the compensated system with these controller parameters are tabulated in
Table 11-3, along with the time-domain attributes for comparison. The Bode
plots as well as the performance data were generated by using Toolbox 11-2-
4.

Table 11-3   Frequency-Domain Characteristics of the System in
Example 11-2-1 with PD Controller

The results in Table 11-3 show that the gain margin is always infinite, and
thus the relative stability is measured by the phase margin. This is one
example where the gain margin is not an effective measure of the relative
stability of the system. When KD = 0.00177, which corresponds to critical
damping, the phase margin is 82.92°, the resonant peak Mr is 1.025, and BW
is 1669 rad/s. The performance requirements in the frequency domain are all
satisfied. Other effects of the PD control are that the BW and the gain-
crossover frequency are increased. The phase-crossover frequency is always
infinite in this case.



Toolbox 11-2-4
Figure 11-67 is obtained by the following sequence of MATLAB

functions:

EXAMPLE 11-2-22  Consider the third-order aircraft attitude control system
discussed in Sec. 7-9, with the forward-path transfer
function given in Eq. (7-169),

Control of a DC Motor: Electrical Time Constant Not Neglected

The same set of time-domain specifications given in Example 11-2-1 is to
be used. It was shown in Sec. 7-9 that, when k = 181.17, the maximum
overshoot of the system is 78.88 percent.

Let us attempt to meet the transient performance requirements by use of a
PD controller with the transfer function given in Eq. (11-2). The forward-path
transfer function of the system with the PD controller and k = 181.17 is

Note that because the system transfer function is third order, it may
become unstable for a choice of controller parameters.

If a system is unstable, the PD control may not be effective in improving
the stability of the system.



Time-Domain Design Setting KP = 1 arbitrarily, the characteristic equation
of the closed-loop system is written as

To apply the root-contour method, we condition Eq. (11-31) as

where

The root contours of Eq. (11-31) are plotted as shown in Fig. 11-16, based
on the pole-zero configuration of Geq(s). The root contours of Fig. 11-16
reveal the effectiveness of the PD controller for the improvement on the
relative stability of the system. Notice that, as the value of KD increases, one
root of the characteristic equation moves from –3293.3 toward the origin,
while the two complex roots start out toward the left and eventually approach
the vertical asymptotes that intersect at s= -1704. The immediate assessment
of the situation is that, if the value of KD is too large, the two complex roots
will actually have reduced damping while increasing the natural frequency of
the system. It appears that the ideal location for the two complex
characteristic equation roots, from the standpoint of relative stability, is near
the bend of the root contour, where the relative damping ratio is
approximately 0.707. The root contours of Fig. 11-16 clearly show that, if the
original system has low damping or is unstable, the zero introduced by the
PD controller may not be able to add sufficient damping or even stabilize the
system.





Figure 11-16   Root contours of 

Toolbox 11-2-5
Root contours of Eq. (11-232) shown in Fig. 11-83 are obtained by

the following sequence of MATLAB functions:

Table 11-4 gives the results of maximum overshoot, rise time, settling
time, and the roots of the characteristic equation as functions of the parameter
KD. The following conclusions are drawn on the effects of the PD controller
on the third-order system.

Table 11-4   Time-Domain Attributes of the Third-Order System in
Example 11-2-2 with PD Controller



1.    The minimum value of the maximum overshoot, 11.37 percent,
occurs when KD is approximately 0.002.
2.    Rise time is improved (reduced) with the increase of KD.
3.    Too high a value of KD will actually increase the maximum
overshoot and the settling time substantially. The latter is because the
damping is reduced as KD is increased indefinitely.

Figure 11-17 shows the unit-step responses of the system with the PD
controller for several values of KD. The conclusion is that, while the PD
control does improve the damping of the system, it does not meet the
maximum-overshoot requirement.

Figure 11-17   Unit-step responses of the system in Example 11-2-2 with
PD controller.



Frequency-Domain Design The Bode plot of Eq. (11-30) is used to
conduct the frequency-domain design of the PD controller. Figure 11-18
shows the Bode plot for KP = 1 and KD = 0. The following performance data
are obtained for the uncompensated system:

Gain margin = 3.6 dB

Phase margin = 7.77°

Resonant peak Mr = 7.62

Bandwidth BW = 1408.83 rad/s

Gain crossover (GCO) = 888.94 rad/s

Phase crossover (PCO) = 1103.69 rad/s

Let us use the same set of frequency-domain performance requirements
listed in Example 11-2-1. The logical way to approach this problem is to first
examine how much additional phase is needed to realize a phase margin of
80°. Because the uncompensated system with the gain set to meet the steady-
state requirement is only 7.77°, the PD controller must provide an additional
phase of 72.23°. This additional phase must be placed at the gain crossover of
the compensated system in order to realize a PM of 80°. Referring to the
Bode plot of the PD controller in Fig. 11-6, we see that the additional phase is
always accompanied by a gain in the magnitude curve. As a result, the gain
crossover of the compensated system will be pushed to a higher frequency at
which the phase of the uncompensated system would correspond to an even
smaller PM. Thus, we may run into the problem of diminishing returns. This
symptom is parallel to the situation illustrated by the root-contour plot in Fig.
11-16, in which case the larger KD would simply push the roots to a higher
frequency, and the damping would actually be decreased. The frequency-
domain performance data of the compensated system with the values of KD

used in Table 11-4 are obtained from the Bode plots for each case, and the
results are shown in Table 11-5. The Bode plots of some of these cases are
shown in Fig. 11-18. Notice that the gain margin becomes infinite when the
PD controller is added, and the phase margin becomes the dominant measure
of relative stability. This is because the phase curve of the PD-compensated
system stays above the –180°-axis, and the phase crossover is at infinity.

Table 11-5   Frequency-Domain Characteristics of the Third-Order



System in Example 11-2-2 with PD Controller





Figure 11-18   Bode diagram of G(s) of the system in Example 11-2-2
with PD controller.

Toolbox 11-2-6
Bode plot of Fig. 11-15 is obtained by the following sequence of

MATLAB functions:

When KD = 0.002, the phase margin is at a maximum of 58.42°, and Mr is
also minimum at 1.07, which happens to agree with the optimal value
obtained in the time-domain design summarized in Table 11-4. When the
value of KD is increased beyond 0.002, the phase margin decreases, which
agrees with the findings from the time-domain design that large values of KD

actually decreases damping. However, the BW and the gain crossover
increase continuously with the increase in KD. The frequency-domain design
again shows that the PD control falls short in meeting the performance
requirements imposed on the system. Just as in the time-domain design, we
have demonstrated that if the original system has very low damping, or is
unstable, PD control may not be effective in improving the stability of the
system. Another situation under which PD control may be ineffective is if the
slope of the phase curve near the gain-crossover frequency is steep, in which
case the rapid decrease of the phase margin due to the increase of the gain
crossover from the added gain of the PD controller may render the additional
phase ineffective.



Toolbox 11-2-7
Bode diagram of G(s) in Example 11-2-2 in Fig. 11-18 is obtained by

the following sequence of MATLAB functions:

11-3  DESIGN WITH THE PI CONTROLLER
We see from Sec. 11-2 that the PD controller can improve the damping and

rise time of a control system at the expense of higher bandwidth and resonant
frequency, and the steady-state error is not affected unless it varies with time,
which is typically not the case for step-function inputs. Thus, the PD
controller may not fulfill the compensation objectives in many situations.

The integral part of the PID controller produces a signal that is
proportional to the time integral of the input of the controller. Figure 11-19
illustrates the block diagram of a prototype second-order system with a series
PI controller. The transfer function of the PI controller is



Figure 11-19   Control system with PI controller.

Using the circuit elements given in Table 6-1, two op-amp-circuit
realizations of Eq. (11-34) are shown in Fig. 11-20. The transfer function of
the two-op-amp circuit in Fig. 11-20a is

Figure 11-20   Op-amp-circuit realization of the PI controller, 

 (a) Two-op-amp circuit. (b) Three-op-amp circuit.



Comparing Eq. (11-34) with Eq. (11-35), we have

The transfer function of the three-op-amp circuit in Fig. 11-20b is

Thus, the parameters of the PI controller are related to the circuit
parameters as

The advantage with the circuit in Fig. 11-20b is that the values of KP and KI

are independently related to the circuit parameters. However, in either circuit,
KI is inversely proportional to the value of the capacitor. Unfortunately,
effective PI-control designs usually result in small values of KI, and thus we
must again watch out for unrealistically large capacitor values.

The forward-path transfer function of the compensated system is

Clearly, the immediate effects of the PI controller are as follows:

1.    Adding a zero at s = -K1/KP to the forward-path transfer function.
2.    Adding a pole at s = 0 to the forward-path transfer function. This
means that the system type is increased by 1 to a type 2 system. Thus,
the steady-state error of the original system is improved by one order;
that is, if the steady-state error to a given input is constant, the PI control
reduces it to zero (provided that the compensated system remains
stable).

The system in Fig. 11-19, with the forward-path transfer function in Eq.



(11-39), will now have a zero steady-state error when the reference input is a
ramp function. However, because the system is now of the third order, it may
be less stable than the original second-order system or even become unstable
if the parameters KP and KI are not properly chosen.

In the case of a type 1 system with a PD control, the value of KP is
important because the ramp-error constant Kv is directly proportional to KP,
and thus the magnitude of the steady-state error is inversely proportional to
KP when the input is a ramp. On the other hand, if KP is too large, the system
may become unstable. Similarly, for a type 0 system, the steady-state error
due to a step input will be inversely proportional to KP.

When a type 1 system is converted to type 2 by the PI controller, KP no
longer affects the steady-state error, and the latter is always zero for a stable
system with a ramp input. The problem is then to choose the proper
combination of KP and KI so that the transient response is satisfactory.

11-3-1 Time-Domain Interpretation and Design of PI Control
The pole-zero configuration of the PI controller in Eq. (11-34) is shown in

Fig. 11-21. At first glance, it may seem that PI control will improve the
steady-state error at the expense of stability. However, we can show that, if
the location of the zero of Gc(s) is selected properly, both the damping and the
steady-state error can be improved. Because the PI controller is essentially a
low-pass filter, the compensated system usually will have a slower rise time
and longer settling time. A viable method of designing the PI control is to
select the zero at s = -K1/KP so that it is relatively close to the origin and
away from the most significant poles of the process; the values of KP and KI

should be relatively small.



Figure 11-21   Pole-zero configuration of a PI controller.

11-3-2 Frequency-Domain Interpretation and Design of PI
Control

For frequency-domain design, the transfer function of the PI controller is
written as

The Bode plot of Gc( jω) is shown in Fig. 11-22. Notice that the magnitude
of Gc( jω) at ω = ∞ is 20 log10KP dB, which represents an attenuation if the
value of KP is less than 1. This attenuation may be utilized to improve the
stability of the system. The phase of Gc( jω) is always negative, which is
detrimental to stability. Thus, we should place the corner frequency of the
controller, ω = K1/KP, as far to the left as the bandwidth requirement allows,
so the phase-lag properties of Gc( jω) do not degrade the achieved phase
margin of the system.





Figure 11-22   Bode diagram of the PI controller. 

The frequency-domain design procedure for the PI control to realize a
given phase margin is outlined as follows:

1.    The Bode plot of the forward-path transfer function Gp(s) of the
uncompensated system is made with the loop gain set according to the
steady-state performance requirement.
2.    The phase margin and the gain margin of the uncompensated system
are determined from the Bode plot. For a specified phase margin
requirement, the new gain-crossover frequency ω´g corresponding to this
phase margin is found on the Bode plot. The magnitude plot of the
compensated transfer function must pass through the 0-dB axis at this
new gain-crossover frequency in order to realize the desired phase
margin.

As a general guideline, KI/KP should correspond to a frequency that is
at least one decade, sometimes as much as two decades, below ω´g.

3.    To bring the magnitude curve of the uncompensated transfer
function down to 0 dB at the new gain-crossover frequency ω´g, the PI
controller must provide the amount of attenuation equal to the gain of
the magnitude curve at the new gain-crossover frequency. In other
words, set

from which we have

Once the value of KP is determined, it is necessary only to select the proper
value of KI to complete the design. Up to this point, we have assumed that,
although the gain-crossover frequency is altered by attenuating the magnitude



of Gc( jω) at ω´g, the original phase is not affected by the PI controller. This is
not possible, however, since, as shown in Fig. 11-22, the attenuation property
of the PI controller is accompanied with a phase lag that is detrimental to the
phase margin. It is apparent that, if the corner frequency ω = K1/KP is placed
far below ω´g, the phase lag of the PI controller will have a negligible effect
on the phase of the compensated system near ω´g. On the other hand, the
value of KI/KP should not be too small or the bandwidth of the system will be
too low, causing the rise time and settling time to be too large. As a general
guideline, KI/KP should correspond to a frequency that is at least one decade,
sometimes as much as two decades, below ω´g. That is, we set

Within the general guideline, the selection of the value of KI/KP is pretty
much at the discretion of the designer, who should be mindful of its effect on
BW and its practical implementation by an op-amp circuit.

4.    The Bode plot of the compensated system is investigated to see if
the performance specifications are all met.
5.    The values of KI and KP are substituted in Eq. (11-40) to give the
desired transfer function of the PI controller.

If the controlled process GP(s) is type 0, the value of KI may be selected
based on the ramp-error-constant requirement, and then there would only be
one parameter, KP, to determine. By computing the phase margin, gain
margin, Mr, and BW of the closed-loop system with a range of values of KP,
the best value for KP can be easily selected.

Based on the preceding discussions, we can summarize the advantages and
disadvantages of a properly designed PI controller as the following:

1.    Improving damping and reducing maximum overshoot.
2.    Increasing rise time.
3.    Decreasing BW.
4.    Improving gain margin, phase margin, and Mr.
5.    Filtering out high-frequency noise.



It should be noted that in the PI controller design process, selection of a
proper combination of KI and KP, so that the capacitor in the circuit
implementation of the controller is not excessively large, is more difficult
than in the case of the PD controller.

The following examples will illustrate how the PI control is designed and
what its effects are.

EXAMPLE 11-3-1  Control of a DC Motor: Small Time-Constant Model
Consider the second-order attitude-control system discussed in Example

11-2-1. Applying the PI controller of Eq. (11-34), the forward-path transfer
function of the system becomes

Time-Domain Design Let the time-domain performance requirements be

Steady-state error due to parabolic input t2us(t)/2≤0.2

Maximum overshoot ≤5%

Rise time tr≤0.01 s

Settling time ts≤0.02 s

The significance of the requirement on the steady-state error due to a
parabolic input is that it indirectly places a minimum requirement on the
speed of the transient response.

The parabolic-error constant is

The steady-state error due to the parabolic input t2us(t)/2 is



Let us set K = 181.17, simply because this was the value used in Example
11-2-1. As it appears, to satisfy a given steady-state error requirement for a
parabolic input, the larger the K, the smaller KI can be. Substituting K =
181.17 in Eq. (11-46) and solving KI for the minimum steady-state error
requirement of 0.2, we get the minimum value of KI to be 0.002215. If
necessary, the value of K can be adjusted later.

With K = 181.17, the characteristic equation of the closed-loop system is

Check Stability. Applying Routh’s test to Eq. (11-47) yields the result that
the system is stable for 0<K1/KP. This means that the zero of G(s) at s = -K1/KP

cannot be placed too far to the left in the left-half s-plane, or the system will
be unstable. For the present case, the most significant pole of GP(S), besides
the pole at s = 0, is at −361.2. Thus, KI/KP should be chosen so that the
following condition is satisfied:

Let us place the zero at -K1/KP relatively close to the origin. The root loci of
Eq. (11-47) with K1/KP = 10 are shown in Fig. 11-23. Notice that, other than
the small loop around the zero at s = -10, these root loci for the most part are
very similar to those shown in Fig. 11-11, which are for Eq. (11-26). Let us
assume that we wish to have a relative damping ratio of 0.707. In this case,
given the similarity of the two root loci, Eq. (11-44) can be approximated by



Figure 11-23   Root loci of Eq. (11-37) with KI/KP = 10; KP varies.

where the term KI/KP in the numerator is neglected. From Eq. (11-49), the
required value of KP for this damping ratio is 0.08—compared to the
prototype second-order system equivalent. This should also be true for the



third-order system with the PI controller if the value of KI/KP satisfies Eq. (11-
48). Thus, with KP = 0.08, K1 = 0.8, the root-locus diagram in Fig. 11-23
shows that the relative damping ratio of the two complex roots is
approximately 0.707, and the three characteristic equation roots are at s1 =
-10.605, and s2,3 =-175.3±j175.4.

In fact, we can show that, as long as KP=0.08 and the value of KI is chosen
such that Eq. (11-48) is satisfied, the relative damping ratio of the complex
roots will be very close to 0.707. For example, let us select K1/KP = 5; the
three characteristic equation roots are at

and the relative damping ratio is still 0.707. Although the real pole of the
closed-loop transfer function is moved, it is close enough to the zero at s = -
K1/KP so that the transient due to the real pole is negligible. As another
example, when KP = 0.08 and KI, = 0.08 the closed-loop transfer function of
the compensated system is

Because the pole at s = 5.145 is very close to the zero at s = -5, the
transient response due to this pole is negligible, and the system dynamics are
essentially dominated by the two complex poles.

Toolbox 11-3-1
Root loci of Eq. (11-47) in Fig. 11-23 are obtained by the following

sequence of MATLAB functions:



Table 11-6 gives the attributes of the unit-step responses of the system
with PI control for various values of KI/KP, with KP = 0.08, which corresponds
to a relative damping ratio of 0.707.

Table 11-6   Attributes of the Unit-Step Responses of the System in
Example 11-3-1 with PI Controller

The results in Table 11-6 verify the fact that PI control reduces the
overshoot but at the expense of longer rise time. For KP = 0.08, the settling
times in Table 11-6 actually show a sharp reduction, which is misleading.
This is because the settling times for these cases are measured at the points
where the response enters the band between 0.95 and 1.00, since the
maximum overshoots are less than 5 percent.

The maximum overshoot of the system can still be reduced further than
those shown in Table 11-6 by using smaller values of KP than 0.08. However,
the rise time and settling time will be excessive. For example, with KP = 0.04
and K1 = 0.04, the maximum overshoot is 1.1 percent, but the rise time is
increased to 0.0182 s, and the settling time is 0.024 s.

For the system considered, improvement on the maximum overshoot slows
the response down, for KI less than 0.08, unless KP is also reduced. As
mentioned earlier, the value of the capacitor C2, in Fig. 11-20, is inversely
proportional to KI. Thus, for practical reasons, there is a lower limit on the



value of KI.
Figure 11-24 shows the unit-step responses of the attitude-control system

with PI control, with KP = 0.08 and several values of KP. The unit-step
response of the same system with the PD controller designed in Example 11-
2-1, with KP = 1 and KD = 0.00177, is also plotted in the same figure as a
comparison. You can obtain these results by modifying Toolbox 11-2-1.

Figure 11-24   Unit-step responses of the system in Example 11-3-1 with
PI control, compared to unit-step response of the system in Example 11-2-1
with a PD controller.

Toolbox 11-3-2
Figure 11-24 is obtained by the following sequence of MATLAB

functions:



Frequency-Domain Design The forward-path transfer function of the
uncompensated system is obtained by setting KP = 1 and KP = 0 in the G(s) in
Eq. (11-44), and the Bode plot is shown in Fig. 11-25. The phase margin is
22.68°, and the gain-crossover frequency is 868 rad/s.





Figure 11-25   Bode plots of the control system in Example 11-3-1 with PI

controller. 

Toolbox 11-3-3
Bode plots of the control system in Example 11-3-1—Fig. 11-25 is

obtained by the following sequence of MATLAB functions:

Let us specify that the required phase margin should be at least 65°, and
this is to be achieved with the PI controller of Eq. (11-40). Following the
procedure outlined earlier in Eqs. (11-41) through (11-43) on the design of
the PI controller, we conduct the following steps:

1.    Look for the new gain-crossover frequency ω´g at which the phase
margin of 65° is realized. From Fig. 11-25, ω´g is found to be 170 rad/s.
The magnitude of G( jω) at this frequency is 21.5 dB. Thus, the PI
controller should provide an attenuation of -21.5 dB at ω´g = 170 rad/s
Substituting |G (jω´g)| into Eq. (11-42), and solving for KP, we get



Notice that, in the time-domain design conducted earlier, KP was
selected to be 0.08 so that the relative damping ratio of the complex
characteristic equation roots will be approximately 0.707. (Note that in
this case, for the sake of comparison with the time domain response, we
have cheated a little by selecting the desired phase margin to be PM =
65°.)
2.    Let us choose KP = 0.08, so that we can compare the design results
of the frequency domain with those of the time-domain design obtained
earlier. Equation (11-43) gives the general guideline of finding KI once
KP is determined. Thus,

As pointed out earlier, the value of KI is not rigid, as long as the
ratio KI/KP is sufficiently smaller than the magnitude of the pole of G(s)
at −361.2. As it turns out, the value of KI given by Eq. (11-52) is not
sufficiently small for this system.

The Bode plots of the forward-path transfer function with KP = 0.08
and K1 = 0, 0.008, 0.008, 0.08, 0.8, and 1.6 are shown in Fig. 11-25.
Table 11-7 shows the frequency-domain properties of the
uncompensated system and the compensated system with various values
of KI. Notice that, for values of KI/KP that are sufficiently small, the
phase margin, Mr, BW, and gain-crossover (CO) frequency all vary a
little.

Table 11-7   Frequency-Domain Performance Data of the System in
Example 11-3-1 with PI Controller



It should be noted that the phase margin of the system can be
improved further by reducing the value of KP below 0.08. However, the
bandwidth of the system will be further reduced. For example, for KP =
0.04 and KI = 0.04, the phase margin is increased to 75.7°, and Mr =
1.01, but BW is reduced to 117.3 rad/s. ▴

EXAMPLE 11-3-2  Control of a DC Motor: Electrical Time Constant
Not Neglected

Now let us consider using the PI control for the third-order attitude control
system described by Eq. (11-19). First, the time-domain design is carried out
as follows.
Time-Domain Design Let the time-domain specifications be as follows:

Steady-state error due to the parabolic input t2us(t)/2≤0.2

Maximum overshoot ≤5%

Rise time tr ≤0.01 s

Settling time ts ≤0.02 s

These are identical to the specifications given for the second-order system
in Example 11-3-1.

Applying the PI controller of Eq. (11-24), the forward-path transfer
function of the system becomes



We can show that the steady-state error of the system due to the parabolic
input is again given by Eq. (11-46), and, arbitrarily setting K = 181.17, the
minimum value of KI is 0.002215.

The characteristic equation of the closed-loop system with K = 181.17 is

The Routh’s tabulation of the last equation is performed as follows:

The stability requirements are

The design of the PI controller calls for the selection of a small value for
KI/KP, relative to the nearest pole of G(s) to the origin, which is at −400.26.
The root loci of Eq. (11-54) are plotted using the pole–zero configuration of
Eq. (11-53). Figure 11-26a shows the root loci as KP varies for K1/KP = 2. The
root loci near the origin due to the pole and zero of the PI controller again
form a small loop, and the root loci at a distance away from the origin will be
very similar to those of the uncompensated system, which are shown in Fig.
7-53. By selecting the value of KP properly along the root loci, it may be



possible to satisfy the performance specifications given above. To minimize
the rise time and settling time, we should select KP so that the dominant roots
are complex conjugate. Table 11-8 gives the performance attributes of several
combinations of KI/KP and KP. Notice that, although several combinations of
these parameters correspond to systems that satisfy the performance
specifications, the one with KP = 0.075 and KI = 0.075 gives the best rise and
settling times among those shown.





Figure 11-26   (a) Root loci of the control system in Example 11-3-2 with
PI controller  (b) Bode plots of the control system in
Example 11-3-2 with PI control.

Table 11-8   Attributes of the Unit-Step Responses of the System in
Example 11-3-2 with PI Controller

Frequency-Domain Design The Bode plot of Eq. (11-53) for K = 181.17, KP

= 1, and KI = 0 is shown in Fig. 11-26b. The performance data of the
uncompensated system are as follows:

Gainmargin = 3.578 dB

Phasemargin = 7.788°

Mr. = 6.572

BW = 1378rad/s



Let us require that the compensated system has a phase margin of at least
65°, and this is to be achieved with the PI controller of Eq. (11-40).
Following the procedure outlined in Eqs. (11-41) through (11-43) on the
design of the PI controller, we carry out the following steps.

1.    Look for the new gain-crossover frequency ω´g at which the phase
margin of 65° is realized. From Fig. 11-20, ω´g is found to be 163 rad/s,
and the magnitude of G( jω) at this frequency is 22.5 dB. Thus, the PI
controller should provide an attenuation of −22.5 dB at ω´g = 163 rad/s.
Substituting |G (jω´g)| into Eq. (11-42), and solving for KP, we get

This is exactly the same result that was selected for the time-
domain design that resulted in a system with a maximum overshoot of
4.9 percent when KI = 0.15, or KI/K2 = 2.
2.    The suggested value of KI is found from Eq. (11-43):

Toolbox 11-3-4
Bode plots of the control system in Fig. 11-26b are obtained by the

following sequence of MATLAB functions:



Thus, KI/KP. However, the phase margin of the system with these design
parameters is only 59.52.

To realize the desired PM of 65°, we can reduce the value of KP or KI.
Table 11-9 gives the results of several designs with various combinations of
KP and KI. Notice that the last three designs in the table all satisfy the PM
requirements. However, the design ramifications show the following:

Table 11-9   Performance Summary of the System in Example 11-3-2
with PI Controller

Reducing KP would reduce BW and increase Mr.
Reducing KI would increase the capacitor value in the implementing

circuit.

Toolbox 11-3-5
Figure 11-27 is obtained by the following sequence of MATLAB

functions:



In fact, only the KI = KP = 0.075 case gives the best all-around performance
in both the frequency domain and the time domain. In attempting to increase
KI, the maximum overshoot becomes excessive. This is one example that
shows the inadequacy of specifying phase margin only. The purpose of this
example is to bring out the properties of the PI controller and the important
considerations in its design. No details are explored further.

Figure 11-27 shows the unit-step responses of the uncompensated system
and several systems with PI control. ▴



Figure 11-27   Unit-step response of system with PI controller in Example
11-3-2.

11-4  DESIGN WITH THE PID CONTROLLER

PD controllers enhance damping of a system, but the steady-state
response is not affected.

PI controllers improve the relative stability and improve the steady-
state error at the same time, but the rise time is increased.

PID controllers combine the features of PD and PI controllers.



From the preceding discussions, we see that the PD controller could add
damping to a system, but the steady-state response is not affected. The PI
controller could improve the relative stability and improve the steady-state
error at the same time, but the rise time is increased. This leads to the
motivation of using a PID controller so that the best features of each of the PI
and PD controllers are utilized. We can outline the following procedure for
the design of the PID controller.

1.    Consider that the PID controller consists of a PI portion connected
in cascade with a PD portion. The transfer function of the PID controller
is written as

The proportional constant of the PD portion is set to unity, KP1 = 1,
since we need only three parameters in the PID controller. Equating both
sides of Eq. (11-58), we have

2.    Consider that the PD portion only is in effect. Select the value of KD1

so that a portion of the desired relative stability is achieved. In the time
domain, this relative stability may be measured by the maximum
overshoot, and in the frequency domain it is the phase margin.
3.    Select the parameters KI2 and KP2 so that the total requirement on
relative stability is satisfied.

Note that setting KPI = 1 is in line with our PD controller design in
Examples 11-2-1 and 11-2-2. The following example illustrates how the PID
controller is designed in the time domain and the frequency domain.

EXAMPLE 11-4-1  Control of a DC Motor: Small Time-Constant Model
Consider the third-order attitude control system represented by the



forward-path transfer function given in Eq. (11-29). With K = 181.17, the
transfer function is

Time-Domain Design Let the time-domain performance specifications be as
follows:

Steady-state error due to a ramp input t2us(t)/2≤0.2

Maximum overshoot ≤5%

Rise time tr ≤0.005 s

Settling time ts ≤0.0005 s

We realize from the previous examples that these requirements cannot be
fulfilled by either the PI or PD control acting alone. Let us apply the PD
control with the transfer function (1+KDIs). The forward-path transfer function
becomes

Table 11-4 shows that the best PD controller that can be obtained from the
maximum overshoot standpoint is with KPI = 1 and KPI = 0.002, and the
maximum overshoot is 11.37 percent. The rise time and settling time are well
within the required values. Next, we add the PI controller, and the forward-
path transfer function becomes

Following the guideline of choosing a relatively small value for KI2/KP2 (see
Examples 11-3-1 and 11-3-2), we let KI2/KP2 =15. Equation (11-64) becomes



Table 11-10 gives the time-domain performance characteristics along with
the roots of the characteristic equation for various values of KP2. Apparently,
the optimal value of KP2 is in the neighborhood of between 0.2 and 0.4.

Table 11-10   Time-Domain Performance Characteristics of Third-
Order Attitude Control System with PID Controller Designed in
Example 11-4-1

Selecting KP2=0.3, and with KD1=0.002 and KI2 = 15KP2=4.5, the following
results are obtained for the parameters of the PID controller using Eqs. (11-
59) through (11-61):

Notice that the PID design resulted in a smaller KD and a larger KI, which
correspond to smaller capacitors in the implementing circuit.



Figure 11-28 shows the unit-step responses of the system with the PID
controller, as well as those with PD and PI controls designed in Examples 11-
2-2 and 11-3-2, respectively. Notice that the PID control, when designed
properly, captures the advantages of both the PD and the PI controls.

Toolbox 11-4-1
Figure 11-28 is obtained by the following sequence of MATLAB

functions:



Figure 11-28   Step responses of the system in Example 11-4-1 with PD,
PI, and PID controllers.

Frequency-Domain Design The PD control of the third-order attitude
control systems was already carried out in Example 11-2-2, and the results
were tabulated in Table 11-4. When KP = 1 and KD = 0.002, the maximum
overshoot is 11.37 percent, but this is the best that the PD control could offer.
Using this PD controller, the forward-path transfer function of the system is



and its Bode plot is shown in Fig. 11-29. Let us estimate that the following
set of frequency-domain criteria corresponds to the time-domain
specifications given in this problem.

Figure 11-29   Bode plot of the system in Example 11-4-1 with PD and
PID controllers.

Phase margin ≥ 70°

Mr ≤1.1

BW ≥1.000 rad/s

From the Bode diagram in Fig. 11-29, we see that, to achieve a phase



margin of 70°, the new phase-crossover frequency should be ω´g=811, at
which the magnitude of G( jω) is 7 dB. Thus, using Eq. (11-42), the value of
KP2 is calculated to be

Notice that the desirable range of KP2 found from the time-domain design
with KI2/KP2=15 is from 0.2 to 0.4. The result given in Eq. (11-68) is slightly
out of the range. Table 11-11 shows the frequency-domain performance
results with KD=0.002, KI2/KP2=15, and several values of KP2 starting with 0.45.
It is interesting to note that, as KP2 continues to decrease, the phase margin
increases monotonically, but below KP2=0.2, the maximum overshoot actually
increases. In this case, the phase margin results are misleading, but the
resonant peak Mr is a more accurate indication of this. ▴

Table 11-11   Frequency-Domain Performance of System in Example
11-4-1 with PID Controller

11-5  DESIGN WITH PHASE-LEAD AND
PHASE-LAG CONTROLLERS

The high-pass filter is often referred to as a phase-lead controller,
because positive phase is introduced to the system over some frequency
range.



The low-pass filter is also known as a phase-lag controller, because
the corresponding phase introduced is negative.

The PID controller and its components in the form of PD and PI controls
represent simple forms of controllers that utilize derivative and integration
operations in the compensation of control systems. In general, we can regard
the design of controllers of control systems as a filter design problem; then
there are a large number of possible schemes. From the filtering standpoint,
the PD controller is a high-pass filter, the PI controller is a low-pass filter,
and the PID controller is a band-pass or band-attenuate filter, depending on
the values of the controller parameters. In this section, we introduce the high-
pass filter that is often referred to as a phase-lead controller because positive
phase is introduced to the system over some frequency range. The low-pass
filter is also known as a phase-lag controller because the corresponding
phase introduced is negative. Both cases can be represented by the circuit
diagram shown in Fig. 11-30.

Figure 11-30   Op-amp circuit implementation of 

The transfer function of a simple lead or lag controller is expressed as

PD controller is a high-pass filter.
PI controller is a low-pass filter.



PID controller is a band-pass or band-attenuate filter.

where the controller is high-pass or phase-lead if p1>z1, and low-pass or
phase-lag if p1<z1.

The op-amp circuit implementation of Eq. (11-69) is given in Table 6-1g
of Chap. 6 and is repeated in Fig. 11-30 with an inverting amplifier. The
transfer function of the circuit is

Comparing the last two equations, we have

We can reduce the number of design parameters from four to three by
setting C = C1 = C2. Then Eq. (11-70) is written as

where



11-5-1 Time-Domain Interpretation and Design of Phase-
Lead Control

In this section, we consider that Eqs. (11-70) and (11-72) represent a
phase-lead controller (z1 < P1 or a > 1). In order that the phase-lead controller
will not degrade the steady-state error, the factor a in Eq. (11-72) should be
absorbed by the forward-path gain K. Then, for design purposes, Gc(s) can be
written as

The pole-zero configuration of Eq. (11-75) is shown in Fig. 11-31. Based
on the discussions given in Chap. 7 on the effects of adding a pole-zero pair
(with the zero closer to the origin) to the forward-path transfer function, the
phase-lead controller can improve the stability of the closed-loop system if its
parameters are chosen properly. The design of phase-lead control is
essentially that of placing the pole and zero of Gc(s) so that the design
specifications are satisfied. The root-contour method can be used to indicate
the proper ranges of the parameters. The following guidelines can be made
with regard to the selection of the parameters a and T.



Figure 11-31   Pole-zero configuration of the phase-lead controller.

1.    Moving the zero -1/aT toward the origin should improve rise time
and settling time. If the zero is moved too close to the origin, the
maximum overshoot may again increase, because -1/aT also appears as a
zero of the closed-loop transfer function.
2.    Moving the pole at -1/T farther away from the zero and the origin
should reduce the maximum overshoot, but if the value of T is too small,
rise time and settling time will again increase.

We can make the following general statements with respect to the effects
of phase-lead control on the time-domain performance of a control system:

1.    When used properly, it can increase damping of the system.
2.    It improves rise time and settling time.
3.    In the form of Eq. (11-75), phase-lead control does not affect the
steady-state error because Gc(0) = 1.

11-5-2 Frequency-Domain Interpretation and Design of
Phase-Lead Control



The Bode plot of the phase-lead controller of Eq. (11-75) is shown in Fig.
11-32. The two corner frequencies are at ω = 1/aT and ω = 1/T. The
maximum value of the phase, Φm, and the frequency at which it occurs, ωm,
are derived as follows. Because ωm is the geometric mean of the two corner
frequencies, we write

Figure 11-32   Bode plot of phase-lead controller 

Thus,



To determine the maximum phase Φm, the phase of Gc( jω) is written

from which we get

Substituting Eq. (11-77) into Eq. (11-79), we have

or

Thus, by knowing Φm, the value of a is determined from

The relationship between the phase Φm and a and the general properties of
the Bode plot of the phase-lead controller provide an advantage of designing
in the frequency domain. The difficulty is, of course, in the correlation
between the time-domain and frequency-domain specifications. The general
outline of phase-lead controller design in the frequency domain is given as
follows. It is assumed that the design specifications simply include steady-
state error and phase-margin requirements.

1.    The Bode diagram of the uncompensated process Gp( jω) is
constructed with the gain constant K set according to the steady-state
error requirement. The value of K has to be adjusted upward once the



value of a is determined.
2.    The phase margin and the gain margin of the uncompensated system
are determined, and the additional amount of phase lead needed to
realize the phase margin is determined. From the additional phase lead
required, the desired value of Φm is estimated accordingly, and the value
of a is calculated from Eq. (11-82).
3.    Once a is determined, it is necessary only to determine the value of
T, and the design is in principle completed. This is accomplished by
placing the corner frequencies of the phase-lead controller, 1/aT and 1/T,
such that Φm is located at the new gain-crossover frequency ω´g, so the
phase margin of the compensated system is benefited by Φm. It is known
that the high-frequency gain of the phase-lead controller is 20 log10a dB.
Thus, to have the new gain crossover at ωm, which is the geometric mean
of 1/aT and 1/T, we need to place ωm at the frequency where the
magnitude of the uncompensated Gp( jω) is 10log10 so that adding the
controller gain of 10 log10adB to this makes the magnitude curve go
through 0 dB at ωm.
4.    The Bode diagram of the forward-path transfer function of the
compensated system is investigated to check that all performance
specifications are met; if not, a new value of ωm must be chosen and the
steps repeated.
5.    If the design specifications are all satisfied, the transfer function of
the phase-lead controller is established from the values of a and T.

If the design specifications also include Mr and/or BW, then these must be
checked using either the Nichols chart or the output data from a computer
program.

We use the following example to illustrate the design of the phase-lead
controller in the time domain and frequency domain.

EXAMPLE 11-5-1  The block diagram of the sun-seeker control system
described in Example 6-5-1 is again shown in Fig. 11-
33. The system may be mounted on a space vehicle to
track the sun with high accuracy. The variable θr

represents the reference angle of the solar ray, and θ0

denotes the vehicle axis. The objective of the sun-



seeker system is to maintain the error ω between ωr

and ω0 near zero. The parameters of the system, for
small motor time constant, are as follows:

Figure 11-33   Block diagram of sun-seeker control system.

The forward-path transfer of the uncompensated system is

where Θ0(s) and A(s) are the Laplace transforms of θ0(t) and α(t),
respectively. Substituting the numerical values of the system parameters in
Eq. (11-83), we get

Time-Domain Design The time-domain specifications of the system are as



follows:

1.    The steady-state error of α(t) due to a unit-ramp function input for
θr(t) should be ≤0.01 rad per rad/s of the final steady-state output
velocity. In other words, the steady-state error due to a ramp input
should be ≤1%.
2.    The maximum overshoot of the step response should be less than 5
percent or as small as possible.
3.    Rise time tr≤0.002 s.
4.    Settling time tr≤0.002 s.

The minimum value of the amplifier gain, K, is determined initially from
the steady-state requirement. Applying the final-value theorem to α(t), we
have

For a unit-ramp input, Θr(s) = 1/s2. By using Eq. (11-84), Eq. (11-85) leads
to

Thus, for the steady-state value of α(t) to be ≤0.01, K must be ≥1. Let us
set K = 1, the worst case from the steady-state error standpoint, the
characteristic equation of the uncompensated system is

We can show that the damping ratio of the uncompensated system with K
= 1 is only 0.25, which corresponds to a maximum overshoot of 44.4 percent.
Figure 11-34 shows the unit-step response of the system with K =1 —shown
as the uncompensated system.



Figure 11-34   Unit-step response of sun-seeker system in Example 11-5-
1.

Let us now consider using the phase-lead controller of Eq. (11-75). The
forward-path transfer function of the compensated system is written as

For the compensated system to satisfy the steady-state error requirement, K
must satisfy



Let us set K = a. The characteristic equation of the system is

We can use the root-contour method to show the effects of varying a and T
of the phase-lead controller. Let us first set a = 0. The characteristic equation
of Eq. (11-90) becomes

Dividing both sides of the last equation by the terms that do not contain T,
we get

Thus, the root contours of Eq. (11-91) when T varies are determined using
the pole-zero configuration of Geq1(s) in Eq. (11-92). These root contours are
obtained using Toolbox 11-5-2 and are drawn as shown in Fig. 11-35. Notice
that the poles of Geq1(s) are the roots of the characteristic equation in Eq. (11-
90), when a = 0 and T = 0. The root contours in Fig. 11-35 clearly show that
adding the factor (1+Ts) to the denominator of Eq. (11-84) alone would not
improve the system performance, since the characteristic equation roots are
pushed toward the right-half plane. In fact, the system becomes unstable
when T is greater than 0.0133. To achieve the full effect of the phase-lead
controller, we must ensure that a>0 in Eq. (11-90). To prepare for the root
contours with a as the variable parameter, we divide both sides of Eq. (11-90)
by the terms that do not contain a, and the following equation results:



Figure 11-35   Root contours of the sun-seeker system with a = 0, and T
varies from 0 to ∞.

For a given T, the root contours of Eq. (11-90) when a varies are obtained
based on the poles and zeros of Geq2(s). Notice that the poles of Geq2(s) are the



same as the roots of Eq. (11-91). Thus, for a given T, the root contours of Eq.
(11-90) when a varies must start (a = 0) at points on the root contours of Fig.
11-35. These root contours end (a = ∞) at s = 0, ∞, ∞, which are the zeros of
Geq2(s). The complete root contours of Eq. (11-90) are now shown in Fig. 11-
36 for several values of T, and a varies from 0 to ∞.

Figure 11-36   Root contours of the sun-seeker system with a phase-lead
controller.



Toolbox 11-5-1
Unit-step responses in Fig. 11-34 are obtained by the following

sequence of MATLAB functions:

Toolbox 11-5-2
Root contours for Fig. 11-35 are obtained by the following sequence

of MATLAB functions:

From the root contours of Fig. 11-36, we see that, for effective phase-lead



control, the value of T should be small. For large values of T, the natural
frequency of the system increases rapidly as a increases, and very little
improvement is made on the damping of the system.

Let us choose T = 0.01 arbitrarily. Table 11-12 shows the attributes of the
unit-step response when the value of aT is varied from 0.02 to 0.1. MATLAB
Toolbox 11-5-3 was used for the calculations of the time responses. The
results show that the smallest maximum overshoot is obtained when aT =
0.05, although the rise and settling times decrease continuously as aT
increases. However, the smallest value of the maximum overshoot is 16.2
percent, which exceeds the design specification.

Table 11-12   Attributes of Unit-Step Response of System with Phase-
Lead Controller in Example 11-5-1: T = 0.01

Toolbox 11-5-3
Root contours for Fig. 11-36 are obtained by the following sequence

of MATLAB functions:



Next, we set aT = 0.05 and vary T from 0.01 to 0.001, as shown in Table
11-13. Table 11-13 shows the attributes of the unit-step responses. As the
value of T decreases, the maximum overshoot decreases, but the rise time and
settling time increase. The cases that satisfy the design requirements are
indicated in Table 11-13 for aT = 0.05. Figure 11-34 shows the unit-step
responses of the phase-lead-compensated system with three sets of controller
parameters. You can use Toolbox 11-5-1 to arrive at these results.

Table 11-13   Attributes of Unit-Step Responses of System with Phase-
Lead Controller in Example 11-5-1: aT = 0.05



Choosing T = 0.004, a = 12.5, the transfer function of the phase-lead
controller is

The transfer function of the compensated system is

To find the op-amp-circuit realization of the phase-lead controller, we
arbitrarily set C = 0.1μf, and the resistors of the circuit are found using Eqs.
(11-73) and (11-74) as R1 = 500,000 Ω and R2 = 40,000 Ω.

Frequency-Domain Design Let us specify that the steady-state error
requirement is the same as that given earlier. For frequency-domain design
specification, the phase margin is required to be greater than 45°. The
following design steps are taken:

1.    The Bode diagram of Eq. (11-84) with K = 1 is plotted as shown in
Fig. 11-37.
2.    The phase margin of the uncompensated system, read at the gain-
crossover frequency, ω´c rad/s, is 28°. Because the minimum desired
phase margin is 45°, at least 17° more phase lead should be added to the
loop at the gain-crossover frequency.



3.    The phase-lead controller of Eq. (11-75) must provide the additional
17° at the gain-crossover frequency of the compensated system.
However, by applying the phase-lead controller, the magnitude curve of
the Bode plot is also affected in such a way that the gain-crossover
frequency is shifted to a higher frequency. Although it is a simple matter
to adjust the corner frequencies, 1/aT and 1/T, of the controller so that
the maximum phase of the controller φm falls exactly at the new gain-
crossover frequency, the original phase curve at this point is no longer
28° (and could be considerably less) because the phase of most control
processes decreases with the increase in frequency. In fact, if the phase
of the uncompensated process decreases rapidly with increasing
frequency near the gain-crossover frequency, the single-stage phase-lead
controller will no longer be effective.

In view of the difficulty estimating the necessary amount of phase
lead, it is essential to include some safety margin to account for the
inevitable phase drop-off. Therefore, in the present case, instead of
selecting a φm of a mere 17°, let φm be 25°. Using Eq. (11-82), we have

4.    To determine the proper location of the two corner frequencies
(1/aT and 1/T) of the controller, it is known from Eq. (11-77) that the
maximum phase lead φm occurs at the geometric mean of the two corner
frequencies. To achieve the maximum phase margin with the value of a
determined, φm should occur at the new gain-crossover frequency ω´g,
which is not known. The following steps are taken to ensure that φm

occurs at ω´g.
a. The high-frequency gain of the phase-lead controller of Eq. (11-75) is

b. The geometric mean ωm of the two corner frequencies, 1/aT and 1/T,
should be located at the frequency at which the magnitude of the
uncompensated process transfer function Gp( jω) in dB is equal to the
negative value in dB of one-half of this gain. This way, the magnitude
curve of the compensated transfer function will pass through the 0-dB



axis at ω = ωm. Thus, ωm should be located at the frequency where

Toolbox 11-5-4
Bode diagram for Fig. 11-37 is obtained by the following sequence of

MATLAB functions:

Toolbox 11-5-5
Nichols plot of G(s) for Fig. 11-38 is obtained by the following

sequence of MATLAB functions:

From Fig. 11-37, this frequency is found to be ωm. Now using Eq. (11-77), we
have



Then, 1/aT=94.1/2.46=38.21 rad/s. The transfer function of the phase-lead
controller is

The forward-path transfer function of the compensated system is

Figure 11-37 shows that the phase margin of the compensated system is
actually 47.6°.



Figure 11-37   Bode diagram of the phase-lead compensation and

uncompensated systems in Example 11-5-1. 



In Fig. 11-38, the magnitude and phase of the original and the
compensated systems are plotted on the Nichols chart for display only. These
plots can be made by taking the data directly from the Bode plots of Fig. 11-
37. The values of Mr, ωr, and BW can all be determined from the Nichols
chart.

Checking the time-domain performance of the compensated system, we
have the following results:

which fall short of the time-domain specifications listed earlier. Figure 11-37
also shows the Bode plot of the system compensated with a phase-lead
controller with a = 5.828 and T = 0.00588. The phase margin is improved to
62.4°. Using Eq. (11-81), we can show that the result of a = 12.5 obtained in
the time-domain design actually corresponds to φm = 58.41. Adding this to the
original phase of 28°, the corresponding phase margin would be 86.41°. The
time-domain and frequency-domain attributes of the system with the three
phase-lead controllers are summarized in Table 11-14. The results show that,
with a = 12.5 and T = 0.0004, even the projected phase margin is 86.41°; the
actual value is 68.12° due to the fall-off of the phase curve at the new gain
crossover. ▴





Figure 11-38   Plots of G(s) in the Nichols chart for the system in Example

11-5-1. 

Table 11-14   Attributes of System with Phase-Lead Controller in
Example 11-5-1

EXAMPLE 11-5-23  In this example, we illustrate the application of a phase-
lead controller to a third-order system with relatively
high loop gain.

Let us consider that the inductance of the dc motor of the sun-seeker
system described in Fig. 11-33 is not zero. The following set of system
parameters is given:

The transfer function of the dc motor is written

The forward-path transfer function of the system is



Substituting the values of the system parameters in Eq. (11-102), we get

Time-Domain Design The time-domain specifications of the system are
given as follows:

1.    The steady-state error of α(t) due to a unit-ramp function input for
θr(t) should be ≤1/300 rad/rad/s of the final steady-state output velocity.
2.    The maximum overshoot of the step response should be less than 5
percent or as small as possible.
3.    Rise time tr≤0.004 s.
4.    Settling time tr≤0.02 s.

The minimum value of the amplifier gain K is determined initially from the
steady-state requirement. Applying the final-value theorem to α(t), we get

Substituting Eq. (11-104) into Eq. (11-105), and Θr(s)=1/s2, we have

Thus, for the steady-state value of α(t) to be ≤1/300, K must be ≥1. Let us
set K =1; the forward-path transfer function in Eq. (11-104) becomes

We can show that the closed-loop sun-seeker system with K =1 has the
following attributes for the unit-step response:

To improve the system response, let us select the phase-lead controller
described by Eq. (11-75). The forward-path transfer function of the



compensated system is

Now to satisfy the steady-state requirement, K must be readjusted so that
K≥a. Let us set K =a. The characteristic equation of the phase-lead
compensated system becomes

We can use the root-contour method to examine the effects of varying a
and T of the phase-lead controller. Let us first set a to zero. The characteristic
equation of Eq. (11-109) becomes

Dividing both sides of the last equation by the terms that do not contain T,
we get

The root contours of Eq. (11-110) when T varies are determined from the
pole-zero configuration of Geq1(s) in Eq. (11-111) and are drawn as shown in
Fig. 11-39. When a varies from 0 to ∞, we divide both sides of Eq. (11-109)
by the terms that do not contain a, and we have

For a given T, the root contours of Eq. (11-109) when a varies are obtained
based on the poles and zeros of Geq2(s). The poles of Geq2(s) are the same as the
roots of Eq. (11-110). Thus, the root contours when a varies start (a = 0) at
the root contours for variable T. Figure 11-39 shows the dominant portions of
the root contours when a varies for T = 0.01, 0.0045, 0.001, 0.0005, 0.0001,
and 0.00001. Notice that, because the uncompensated system is lightly
damped, for the phase-lead controller to be effective, the value of T should be
very small. Even for very small values of T, there is only a small range of a



that could bring increased damping, but the natural frequency of the system
increases with the increase in a. The root contours in Fig. 11-39 show the
approximate locations of the dominant characteristic equation roots where
maximum damping occurs. Table 11-15 gives the roots of the characteristic
equation and the unit-step-response attributes for the cases that correspond to
near-smallest maximum overshoot for the T selected. Figure 11-40 shows the
unit-step response, when a=500 and T=0.00001. Although the maximum
overshoot is only 3.8 percent, the undershoot in this case is greater than the
overshoot.

Figure 11-39   Root contours of sun-seeker system in Example 11-5-2



with phase-lead controller. 

Figure 11-40   Unit-step responses of sun-seeker system in Example 11-5-

2 with phase-lead controller. 

Table 11-15   Roots of Characteristic Equation and Time Response
Attributes of System with Phase-Lead Controller in Example 11-5-2



Toolbox 11-5-6
Unit-step responses in Fig. 11-40 are obtained by the following

sequence of MATLAB functions:

Frequency-Domain Design The Bode plot of Gp(s) in Eq. (11-104) is shown
in Fig. 11-41. The performance attributes of the uncompensated system are

PM = 29.74°

Mr = 2.156

BW = 426.5 rad/s

We would like to show that the frequency-domain design procedure



outlined earlier does not work effectively here because the phase curve of Gp(
jω) shown in Fig. 11-41 has a very steep slope near the gain crossover. For
example, if we wish to realize a phase margin of 65°, we need at least 65-
29.74=35.26° of phase lead. Or, φm = 35.26°. Using Eq. (11-82), the value of
a is calculated to be

Toolbox 11-5-7
Bode plots shown in Fig. 11-41 are obtained by the following

sequence of MATLAB functions:

Let us choose a = 4. Theoretically, to maximize the utilization of ωm, ωm

should be placed at the new gain crossover, which is located at the frequency
where the magnitude of Gp( jω) is -10log10 a dB=-10log104=-6. From the Bode
plot in Fig. 11-41, this frequency is found to be 380 rad/s. Thus, we let φm =
380 rad/s. The value of T is found by using Eq. (11-77):





Figure 11-41   Bode plots of phase-lead controller and forward-path

transfer function of sun-seeker system in Example 

However, checking the frequency response of the phase-lead compensated
system with a = 4 and T = 0.0013, we found that the phase margin is only
improved to 38.27°, and Mr = 1.69. The reason is the steep negative slope of
the phase curve of Gp( jω). The fact is that, at the new gain-crossover
frequency of 380 rad/s, the phase of Gp( jω) is -170°, as against -150-26° at
the original gain crossover—a drop of almost 20°! From the time-domain
design, the first line in Table 11-16 shows that, when a = 4 and T = 0.00001,
the maximum overshoot is 21.7 percent.

Table 11-16   Attributes of System with Phase-Lead Controller in
Example 11-5-2

Checking the frequency response of the phase-lead compensated system
with a = 500, and T = 0.00001, the following performance data are obtained:

This shows that the value of a has to be increased substantially just to
overcome the steep drop of the phase characteristics when the gain crossover
is moved upward.

Figure 11-41 shows the Bode plots of the phase-lead controller and the
forward-path transfer functions of the compensated system with a = 100, T =



0.00005, and a = 500, T = 0.00001. A summary of performance data is given
in Table 11-16.

Selecting a = 100 and T = 0.00005, the phase-lead controller is described
by the transfer function

Using Eqs. (11-73) and (11-74), and letting C = 0.01μF, the circuit
parameters of the phase-lead controller are found to be

The forward-path transfer function of the compensated system is

where the amplifier gain K has been set to 100 to satisfy the steady-state
requirement. ▴

11-5-3 Effects of Phase-Lead Compensation
From the results of the last two illustrative examples, we can summarize

the effects and limitations of the single-stage phase-lead controller as follows:

1.    The phase-lead controller adds a zero and a pole, with the zero to
the right of the pole, to the forward-path transfer function. The general
effect is to add more damping to the closed-loop system. The rise time
and settling time are reduced in general.
2.    The phase of the forward-path transfer function in the vicinity of the
gain-crossover frequency is increased. This improves the phase margin
of the closed-loop system.
3.    The slope of the magnitude curve of the Bode plot of the forward-
path transfer function is reduced at the gain-crossover frequency. This
usually corresponds to an improvement in the relative stability of the



system in the form of improved gain and phase margins.
4.    The bandwidth of the closed-loop system is increased. This
corresponds to faster time response.
5.    The steady-state error of the system is not affected.

11-5-4 Limitations of Single-Stage Phase-Lead Control
In general, phase-lead control is not suitable for all systems. Successful

application of single-stage phase-lead compensation to improve the stability
of a control system is hinged on the following conditions:

1.    Bandwidth considerations: If the original system is unstable or with
a low stability margin, the additional phase lead required to realize a
certain desired phase margin may be excessive. This may require a
relatively large value of a for the controller, which, as a result, will give
rise to a large bandwidth for the compensated system, and the
transmission of high-frequency noise entering the system at the input
may become objectionable. However, if the noise enters the system near
the output, then the increased bandwidth may be beneficial to noise
rejection. The larger bandwidth also has the advantage of robustness;
that is, the system is insensitive to parameter variations and noise
rejection as described before.
2.    If the original system is unstable, or with low stability margin, the
phase curve of the Bode plot of the forward-path transfer function has a
steep negative slope near the gain-crossover frequency. Under this
condition, the single-stage phase-lead controller may not be effective
because the additional phase lead at the new gain crossover is added to a
much smaller phase angle than that at the old gain crossover. The
desired phase margin can be realized only by using a very large value of
a for the controller. The amplifier gain K must be set to compensate a,
so a large value for a requires a high-gain amplifier, which could be
costly.

As shown in Example 11-5-2, the compensated system may have a
larger undershoot than overshoot. Often, a portion of the phase curve
may still dip below the 180°, resulting in a conditionally stable system,
even though the desired phase margin is satisfied.
3.    The maximum phase lead available from a single-stage phase-lead



controller is less than 90°. Thus, if a phase lead of more than 90° is
required, a multistage controller should be used.

11-5-5 Multistage Phase-Lead Controller
When the design with a phase-lead controller requires an additional phase

of more than 90°, a multistage controller should be used. Figure 11-42 shows
an op-amp-circuit realization of a two-stage phase-lead controller. The input-
output transfer function of the circuit is

Figure 11-42   Two-stage phase-lead (phase-lag) controller.

or



where a1 = R1/R2, a2 = R3/R4, T1 = R2C, and T2 = R4C. and T2 = R4C.
The design of a multistage phase-lead controller in the time domain

becomes more cumbersome, since now there are more poles and zeros to be
placed. The root-contour method also becomes impractical, since there are
more variable parameters. The frequency-domain design in this case does
represent a better choice of the design method. For example, for a two-stage
controller, we can choose the parameters of the first stage of a two-stage
controller so that a portion of the phase margin requirement is satisfied, and
then the second stage fulfills the remaining requirement. In general, there is
no reason why the two stages cannot be identical. The following example
illustrates the design of a system with a two-stage phase-lead controller.

EXAMPLE 11-5-3  For the sun-seeker system designed in Example 11-5-2,
let us alter the rise time and settling time requirements
to be

Rise time tr ≤0.001 s

Settling time ts ≤0.005 s

The other requirements are not altered. One way to meet faster rise time
and settling time requirements is to increase the forward-path gain of the
system. Let us consider that the forward-path transfer function is

Another way of interpreting the change in the forward-path gain is that the
ramp-error constant is increased to 1000 (up from 300 in Example 11-5-1).
The Bode plot of Gp(s) is shown in Fig. 11-43. The closed-loop system is
unstable, with a phase margin of -15.43°.

Toolbox 11-5-8
Bode plots shown in Fig. 11-43 are obtained by the following

sequence of MATLAB functions:



Because the compensated system in Example 11-5-2 had a phase margin of
60.55°, we would expect that, to satisfy the more stringent time response
requirements in this example, the corresponding phase margin would have to
be greater. Apparently, this increased phase margin cannot be realized with a
single-stage phase-lead controller. It appears that a two-stage controller
would be adequate.

The design involves some trial-and-error steps in arriving at a satisfied
controller. Because we have two stages of controllers at our disposal, the
design has a multitude of flexibility. We can set out by arbitrarily setting a1 =
100 for the first stage of the phase-lead controller. The phase lead provided
by the controller is obtained from Eq. (11-81),

To maximize the effect of fm, the new gain crossover should be at

From Fig. 11-43 the frequency that corresponds to this gain on the
amplitude curve is approximately 1150 rad/s. Substituting ωm1 and a1 = 100 in
Eq. (11-67), we get





Figure 11-43   Bode plots of uncompensated and compensated sun-seeker
systems in Example 11-5-2 with two-state phase-lead controller. 

The forward-path transfer function with the one-stage phase-lead controller
is

The Bode plot of the last equation is drawn as curve (2) in Fig. 11-43. We
see that the phase margin of the interim design is only 20.36°. Next, we
arbitrarily set the value of a2 of the second stage at 100. From the Bode plot
of the transfer function of Eq. (11-125) in Fig. 11-43, we find that the
frequency at which the magnitude of G( jω) is –20 dB is approximately 3600
rad/s. Thus,

The forward-path transfer function of the sun-seeker system with the two-
stage phase-lead controller is (a1 = a2 = 100)

Figure 11-43 shows the Bode plot of the sun-seeker system with the two-
stage phase-lead controller designed above [curve (3)]. As seen from Fig. 11-
43, the phase margin of the system with G(s) given in Eq. (11-127) is 69.34º.
As shown by the system attributes in Table 11-17, the system satisfies all the
time-domain specifications. In fact, the selection of a1 = a2 = 100 appears to
be overly stringent. To show that the design is not critical, we can select a1 =
a2 = 80, and then 70 and the time-domain specifications are still satisfied.



Following similar design steps, we arrived at T1 = 0.0001117 and T2 =
0.000039 for a1 = a2 = 70, and T1 = T2 = 0.0000484 for a1 = a2 = 80. Curve (4)
of Fig. 11-43 shows the Bode plot of the compensated system with a1 = a2 =
80. Table 11-17 summarizes all the attributes of the system performance with
these three controllers.

Table 11-17   Attributes of Sun-Seeker System in Example 11-5-3 with
Two-Stage Phase-Lead Controller

The unit-step responses of the system with the two-stage phase-lead
controller for a1 = a2 = 80 and 100 are shown in Fig. 11-44.



Figure 11-44   Unit-step responses of sun-seeker system in Example 11-5-
2 with two-stage phase-lead controller. 

Toolbox 11-5-9
Figure 11-44 is obtained by the following sequence of MATLAB

functions:



11-5-6 Sensitivity Considerations
The sensitivity function defined in Sec. 10-15, Eq. (11-138), can be used as

a design specification to indicate the robustness of the system. The sensitivity
of the closed-loop transfer function with respect to the variations of the
forward-path transfer function is defined as

The plot of  versus frequency gives an indication of the sensitivity
of the system as a function of frequency. The ideal robust situation is for 

 to assume a small value (<<1) over a wide range of frequencies. As
an example, the sensitivity function of the sun-seeker system designed in
Example 11-5-2 with the one-stage phase-lead controller with a = 100 and T
= 0.00005 is plotted as shown in Fig. 11-45. Note that the sensitivity function
is low at low frequencies and is less than unity for ω <400 rad/s. Although
the sun-seeker system in Example 11-5-2 does not need a multistage phase-
lead controller, we shall show that, if a two-stage phase-lead controller is
used, not only the value of a will be substantially reduced, resulting in lower
gains for the op-amps, but the system will be more robust. Following the
design procedure outlined in Example 11-5-3, a two-stage phase-lead
controller is designed for the sun-seeker system with the process transfer
function described by Eq. (11-104).



Figure 11-45   Sensitivity functions of sun-seeker system in Example 11-
5-2.

The parameters of the controller are a1 = a2 = 5.83 and T1 = T2 = 0.000673.
The forward-path transfer function of the compensated system is

Figure 11-45 shows that the sensitivity function of the system with the
two-stage phase-lead controller is less than unity for ω<600 rad/s. Thus, the
system with the two-stage phase-lead controller is more robust than the
system with the single-stage controller. The reason for this is that the more
robust system has a higher bandwidth. In general, systems with phase-lead
control will be more robust due to the higher bandwidth. However, Fig. 11-45
shows that the system with the two-stage phase-lead controller has a higher
sensitivity at high frequencies.

11-5-7 Time-Domain Interpretation and Design of Phase-Lag
Control

The transfer function in Eq. (11-72) represents a phase-lag controller or
low-pass filter when a < 1. The transfer function is repeated as follows:



The pole-zero configuration of Gc(s) is shown in Fig. 11-46. Unlike the PI
controller, which provides a pole at s = 0, the phase-lag controller affects the
steady-state error only in the sense that the zero-frequency gain of Gc(s) is
greater than unity. Thus, any error constant that is finite and nonzero will be
increased by the factor 1/a from the phase-lag controller.

Figure 11-46   Pole-zero configuration of phase-lag controller.

Because the pole at s=-1/T is to the right of the zero at -1/aT , effective use
of the phase-lag controller to improve damping would have to follow the
same design principle of the PI control presented in Sec. 11-3. Thus, the
proper way of applying the phase-lag control is to place the pole and zero
close together. For type 0 and type 1 systems, the combination should be
located near the origin in the s-plane. Figure 11-47 illustrates the design
strategies in the s-plane for type 0 and type 1 systems. Phase-lag control
should not be applied to a type 2 system.

The design principle described above can be explained by considering that
the controlled process of a type 0 control system is



where p1 and  are complex-conjugate poles, such as the situation shown
in Fig. 11-47.





Figure 11-47   Design strategies for phase-lag control for type 0 and type 1
systems.

Just as in the case of the phase-lead controller, we can drop the gain factor
1/a in Eq. (11-131) because whatever the value of a is, the value of K can be
adjusted to compensate for it. Applying the phase-lag controller of Eq. (11-
131), without the factor 1/a, to the system, the forward-path transfer function
becomes

Let us assume that the value of K is set to meet the steady-state-error
requirement. Also assume that, with the selected value of K, the system
damping is low or even unstable. Now let , and place the pole-zero
pair near the pole at -1/p3, as shown in Fig. 11-47. Figure 11-48 shows the
root loci of the system with and without the phase-lag controller. Because the
pole-zero combination of the controller is very close to the pole at -1/p3, the
shape of the loci of the dominant roots with and without the phase-lag control
will be very similar. This is easily explained by writing Eq. (11-132) as





Figure 11-48   Root loci of uncompensated and phase-lag-compensated
systems.

Because a is less than 1, the application of phase-lag control is equivalent
to reducing the forward-path gain from K to Ka, while not affecting the
steady-state performance of the system. Figure 11-48 shows that the value of
a can be chosen so that the damping of the compensated system is
satisfactory. Apparently, the amount of damping that can be added is limited
if the poles -p1 and -p.macr1 are very close to the imaginary axis. Thus, we
can select a using the following equation:

The value of T should be so chosen that the pole and zero of the controller
are very close together and close to -1/p3.

In the time domain, phase-lag control generally has the effect of increasing
the rise time and settling time.



11-5-8 Frequency-Domain Interpretation and Design of
Phase-Lag Control

The transfer function of the phase-lag controller can again be written as

by assuming that the gain factor -1/a is eventually absorbed by the forward
gain K. The Bode diagram of Eq. (11-135) is shown in Fig. 11-49. The
magnitude curve has corner frequencies at ω = 1/aT and 1/T. Because the
transfer functions of the phase-lead and phase-lag controllers are identical in
form, except for the value of a, the maximum phase lag φm of the phase curve
of Fig. 11-49 is given by



Figure 11-49   Bode diagram of the phase-lag controller. 

Figure 11-49 shows that the phase-lag controller essentially provides an
attenuation of 20 log10a at high frequencies. Thus, unlike the phase-lead
control that utilizes the maximum phase lead of the controller, phase-lag
control utilizes the attenuation of the controller at high frequencies. This is
parallel to the situation of introducing an attenuation of a to the forward-path
gain in the root-locus design. For phase-lead control, the objective of the
controller is to increase the phase of the open-loop system in the vicinity of
the gain crossover while attempting to locate the maximum phase lead at the
new gain crossover. In phase-lag control, the objective is to move the gain
crossover to a lower frequency where the desired phase margin is realized,
while keeping the phase curve of the Bode plot relatively unchanged at the
new gain crossover.

The design procedure for phase-lag control using the Bode plot is outlined
as follows:

1.    The Bode plot of the forward-path transfer function of the
uncompensated system is drawn. The forward-path gain K is set
according to the steady-state performance requirement.
2.    The phase and gain margins of the uncompensated system are
determined from the Bode plot.
3.    Assuming that the phase margin is to be increased, the frequency at
which the desired phase margin is obtained is located on the Bode plot.
This frequency is also the new gain crossover frequency ω´g, where the
compensated magnitude curve crosses the 0-dB-axis.
4.    To bring the magnitude curve down to 0 dB at the new gain-
crossover frequency ω´g, the phase-lag controller must provide the
amount of attenuation equal to the value of the magnitude curve at ω´g.
In other words,



Solving for a from the last equation, we get

Once the value of a is determined, it is necessary only to select the
proper value of T to complete the design. Using the phase characteristics
shown in Fig. 11-45, if the corner frequency 1/aT is placed far below the
new gain-crossover frequency ω´g, the phase lag of the controller will
not appreciably affect the phase of the compensated system near ω´g. On
the other hand, the value of 1/aT should not be too small because the
bandwidth of the system will be too low, causing the system to be too
sluggish and less robust. Usually, as a general guideline, the frequency
1/aT should be approximately one decade below ω´g; that is,

Then,

5.    The Bode plot of the compensated system is investigated to see if
the phase margin requirement is met; if not, the values of a and T are
readjusted, and the procedure is repeated. If design specifications
involve gain margin, Mr, or BW, then these values should be checked
and satisfied.

Because the phase-lag control brings in more attenuation to a system, then
if the design is proper, the stability margins will be improved but at the
expense of lower bandwidth. The only benefit of lower bandwidth is reduced
sensitivity to high-frequency noise and disturbances.

The following example illustrates the design of the phase-lag controller
and all its ramifications.

EXAMPLE 11-5-4  For the sun-seeker system designed in Example 11-5-1,
the forward-path transfer function of the



uncompensated system is

Time-Domain Design The time-domain specifications of the system are as
follows:

1.    The steady-state error of α(t) due to a unit-ramp function input for
θr(t) should be ≤1/300 rad/rad/s of the final steady-state output velocity.
2.    The maximum overshoot of the step response should be less than
5% or as small as possible.
3.    Rise time tr ≤0.5 s.
4.    Settling time ts ≤0.5 s.
5.    Due to noise problems, the bandwidth of the system must be <50
rad/s.

Notice that the rise-time and settling-time requirements have been relaxed
considerably from the phase-lead design in Example 11-5-1. The root loci of
the uncompensated system are shown in Fig. 11-50a.



Figure 11-50   Root loci of sun-seeker system in Example 11-5-4. 

As in Example 11-5-1, we set K = 1 initially. The damping ratio of the
uncompensated system is 0.25, and the maximum overshoot is 44.4 percent.
Figure 11-51 shows the unit-step response of the system with K = 1 .



Figure 11-51Unit-step responses of uncompensated and compensated sun-
seeker systems with phase-lag controller in Example 11-5-4. 

Let us select the phase-lag controller with the transfer function given in Eq.
(11-130). The forward-path transfer function of the compensated system is

If the value of K is maintained at 1, the steady-state error will be a percent,
which is better than that of the uncompensated system, since a < 1. For



effective phase-lag control, the pole and zero of the controller transfer
function should be placed close together, and then for the type 1 system, the
combination should be located relatively close to the origin of the s-plane.
From the root loci of the uncompensated system in Fig. 11-50a, we see that,
if K could be set to 0.125, the damping ratio would be 0.707, and the
maximum overshoot of the system would be 4.32 percent. By setting the pole
and zero of the controller close to s = 0, the shape of the loci of the dominant
roots of the compensated system will be very similar to those of the
uncompensated system. We can find the value of a using Eq. (11-124), that
is,

Thus, if the value of T is sufficiently large, when K = 1, the dominant roots
of the characteristic equation will correspond to a damping ratio of
approximately 0.707. Let us arbitrarily select T = 100. The root loci of the
compensated system are shown in Fig. 11-50b. The roots of the characteristic
equation when K = 1, a = 0.125, and T = 100 are

which corresponds to a damping ratio of exactly 0.707. If we had chosen a
smaller value for T, then the damping ratio would be slightly off 0.707. From
a practical standpoint, the value of T cannot be too large, since from Eq. (11-
74), T = R2C, a large T would correspond to either a large capacitor or an
unrealistically large resistor. To reduce the value of T and simultaneously
satisfy the maximum overshoot requirement, a should also be reduced.
However, a cannot be reduced indefinitely, or the zero of the controller at
-1/aT would be too far to the left on the real axis. Table 11-18 gives the
attributes of the time-domain performance of the phase-lag compensated sun-
seeker system with various values for a and T. The ramifications of the
various design parameters are clearly displayed.

Table 11-18   Attributes of Performance of Sun-Seeker System in
Example 11-6-1 with Phase-Lag Controller



Thus, a suitable set of controller parameters would be a = 0.09 and T = 30.
With T = 30, selecting C = 1 μF would require R2 to be 30 M Ω. A smaller
value for T can be realized by using a two-stage phase-lag controller. The
unit-step response of the compensated system with a = 0.09 and T = 30 is
shown in Fig. 11-52. Notice that the maximum overshoot is reduced at the
expense of rise time and settling time. Although the settling time of the
compensated system is shorter than that of the uncompensated system, it
actually takes much longer for the phase-lag-compensated system to reach
steady state.





Figure 11-52   Root contours of sun-seeker system in Example 11-5-4
with phase-lag controller.

The root-contour design conducted earlier in Example 11-5-1 using Eqs.
(11-90) through (11-93) for phase-lead control and Figs. 11-35 and 11-36 is
still valid for phase-lag control, except that in the present case, a < 1. Thus, in
Fig. 11-36 only the portions of the root contours that correspond to a < 1 are
applicable for phase-lag control. These root contours clearly show that, for
effective phase-lag control, the value of T should be relatively large. In Fig.
11-52, we illustrate further that the complex poles of the closed-loop transfer
function are rather insensitive to the value of T when the latter is relatively
large.

Frequency-Domain Design The Bode plot of Gp( jω) of Eq. (11-141) is
shown in Fig. 11-53 for K = 1. The Bode plot shows that the phase margin of
the uncompensated system is only 28°. Not knowing what phase margin will
correspond to a maximum overshoot of less than 5 percent, we conduct the
following series of designs using the Bode plot in Fig. 11-53. Starting with a
phase margin of 45°, we observe that this phase margin can be realized if the
gain-crossover frequency ω´g is at 25 rad/s. This means that the phase-lag
controller must reduce the magnitude curve of Gp( jω) to 0 dB at ω = 25 rad/s
while it does not appreciably affect the phase curve near this frequency.
Because the phase-lag controller still contributes a small negative phase when
the corner frequency 1/aT is placed at 1/10 of the value of ω´g, it is a safe
measure to choose ω´g at somewhat less than 25 rad/s, say, 20 rad/s.





Figure 11-53   Bode plot of uncompensated and compensated systems

with phase-lag controller in Example 11-5-4. 

From the Bode plot, the value of  at ω´g = 20 is 11.7 dB. Thus,
using Eq. (11-138), we have

The value of 1/aT is chosen to be at 1/10 the value of ω´g = 20 rad/s. Thus,

and

Checking out the unit-step response of the system with the designed phase-
lag control, we found that the maximum overshoot is 24.5 percent. The next
step is to try aiming at a higher phase margin. Table 11-19 gives the various
design results by using various desired phase margins up to 80°.

Table 11-19   Performance Attributes of Sun-Seeker System in
Example 11-5-4 with Phase-Lag Controller

Examining the results in Table 11-18, we see that none of the cases
satisfies the maximum overshoot requirement of ≤5%. The a = 0.044 and T =



52.5 case yields the best maximum overshoot, but the value of T is too large
to be practical. Thus, we single out the case with a = 0.1 and T = 10 and
refine the design by increasing the value of T. As shown in Table 11-19,
when a = 0.1 and T = 30, the maximum overshoot is reduced to 4.5 percent.
The Bode plot of the compensated system is shown in Fig. 11-49. The phase
margin is 67.61°.

The unit-step response of the phase-lag-compensated system shown in Fig.
11-52 points out a major disadvantage of the phase-lag control. Because the
phase-lag controller is essentially a low-pass filter, the rise time and settling
time of the compensated system are usually increased. However, we shall
show by the following example that phase-lag control can be more versatile
and has a wider range of effectiveness in improving stability than the single-
stage phase-lead controller, especially if the system has low or negative
damping. ▴

EXAMPLE 11-5-5  Consider the sun-seeker system designed in Example
11-5-3, with the forward-path transfer function given
in Eq. (11-121). Let us restore the gain K, so that a
root-locus plot can be made for the system. Then, Eq.
(11-121) is written

The root loci of the closed-loop system are shown in Fig. 11-54. When K =
1, the system is unstable, and the characteristic equation roots are at
-713.14,44.07+j466.01.





Figure 11-54   Root loci of uncompensated system in Example 11-5-5. 

Example 11-5-3 shows that the performance specification on stability
cannot be achieved with a single-stage phase-lead controller. Let the
performance criteria be as follows:

Maximum overshoot ≤5%

Rise time tr≤0.02 s

settling time tr≤0.02 s

Let us assume that the desired relative damping ratio is 0.707. Figure 11-
54 shows that, when K = 0.10675, the dominant characteristic equation roots
of the uncompensated system are at -172.77±j172.73, which correspond to a
damping ratio of 0.707. Thus, the value of a is determined from Eq. (11-134),

Let a = 0.1. Because the loci of the dominant roots are far away from the
origin in the s-plane, the value of T has a wide range of flexibility. Table 11-
20 shows the performance results when a = 0.1 and for various values of T.

Table 11-20   Performance Attributes of Sun-Seeker System in
Example 11-5-6 with Phase-Lag Controller

Therefore, the conclusion is that only one stage of the phase-lag controller



is needed to satisfy the stability requirement, whereas two stages of the
phase-lead controller are needed, as shown in Example 11-5-3.

Sensitivity Function The sensitivity function  of the phase-lag
compensated system with a = 0.1 and T = 20 is shown in Fig. 11-55. Notice
that the sensitivity function is less than unity for frequencies up to only 102
rad/s. This is due to the low bandwidth of the system as a result of phase-lag
control. ▴

Figure 11-55   Sensitivity function of phase-lag-compensated system in
Example 11-5-6.

11-5-9 Effects and Limitations of Phase-Lag Control
From the results of the preceding illustrative examples, the effects and

limitations of phase-lag control on the performance of linear control systems
can be summarized as follows:

1.    For a given forward-path gain K, the magnitude of the forward-path
transfer function is attenuated near the gain-crossover frequency, thus
improving the relative stability of the system.
2.    The gain-crossover frequency is decreased, and thus the bandwidth
of the system is reduced.
3.    The rise time and settling time of the system are usually longer
because the bandwidth is usually decreased.
4.    The system is more sensitive to parameter variations because the
sensitivity function is greater than unity for all frequencies



approximately greater than the bandwidth of the system.

11-5-10 Design with Lead-Lag Controller
We have learned from preceding sections that phase-lead control generally

improves rise time and damping but increases the natural frequency of the
closed-loop system. However, phase-lag control when applied properly
improves damping but usually results in a longer rise time and settling time.
Therefore, each of these control schemes has its advantages, disadvantages,
and limitations, and there are many systems that cannot be satisfactorily
compensated by either scheme acting alone. It is natural, therefore, whenever
necessary, to consider using a combination of the lead and lag controllers, so
that the advantages of both schemes are utilized.

The transfer function of a simple lag-lead (or lead-lag) controller can be
written

The gain factors of the lead and lag controllers are not included because, as
shown previously, these gain and attenuation are compensated eventually by
the adjustment of the forward gain K.

Because the lead-lag controller transfer function in Eq. (11-149) now has
four unknown parameters, its design is not as straightforward as the single-
stage phase-lead or phase-lag controller. In general, the phase-lead portion of
the controller is used mainly to achieve a shorter rise time and higher
bandwidth, and the phase-lag portion is brought in to provide major damping
of the system. Either the phase-lead or the phase-lag control can be designed
first. We shall use the next example to illustrate the design steps.

EXAMPLE 11-5-6  Consider the sun-seeker system of Example 11-5-3. The
uncompensated system with K = 1 was shown to be
unstable. A two-stage phase-lead controller was
designed in Example 11-5-4, and a single-stage phase-
lag controller was designed in Example 11-5-5.

Based on the design in Example 11-5-3, we can first select a phase-lead



control with a = 70 and T1 = 0.00004. The remaining phase-lag control can be
designed using either the root-locus method or the Bode plot method. Table
11-21 gives the results for and various values of a. The results in Table 11-21
show that the optimal value of a2, from the standpoint of minimizing the
maximum overshoot, for a1 = 70 and T2 = 0.00004, is approximately 0.2.

Table 11-21   Performance Attributes of Sun-Seeker System in
Example 11-7-1 with Lead-Lag Controller: a1 = 70, T1 = 0.00004

Compared with the phase-lag controller designed in Example 11-5-4, the
BW is increased to 351.4 rad/s from 66.94 rad/s, and the rise time is reduced
to 0.00668 s from 0.01273 s. The system with the lead-lag controller is more
robust because the magnitude of the sensitivity function does not increase to
unity until near the BW of 351.4 rad/s. As a comparison, the unit-step
responses of the system with the two-stage phase-lead control, the single-
stage phase-lag control, and the lead-lag control are shown in Fig. 11-56.



Figure 11-56   Sun-seeker system in Example 11-5-6 with single-stage
phase-lag controller, lead-lag controller, and two-stage phase-lead controller.

It should be noted that the bandwidth and rise time of the sun-seeker
system can be further increased and reduced, respectively, by using a larger
value of a1 for the phase-lead portion of the controller. However, the resulting
step response will have a large undershoot, although the maximum overshoot
can be kept small. ▴

11-6  POLE-ZERO-CANCELLATION DESIGN:
NOTCH FILTER



The transfer functions of many controlled processes contain one or more
pairs of complex-conjugate poles that are very close to the imaginary axis of
the s-plane. These complex poles usually cause the closed-loop system to be
lightly damped or unstable. One immediate solution is to use a controller that
has a transfer function with zeros selected to cancel the undesirable poles of
the system, and controller poles at more desirable locations in the s-plane to
achieve the desired dynamic performance. For example, if the transfer
function of a process is

in which the complex-conjugate poles may cause stability problems in the
closed-loop system when the value of K is large, the suggested series
controller may be of the form

The constants a and b may be selected according to the performance
specifications of the closed-loop system.

While this type of controller may be an ideal one, it requires an exact
model of the process, Gp(s), which is rarely possible in practice. No matter
how accurate, the transfer function model of the process, Gp(s), usually
deviates from the actual system because of unmodeled plant dynamics or
nonlinear behavior. Thus, the true poles and zeros of the transfer function of
the process may not be accurately modeled. In fact, the true order of the
system may even be higher than that represented by the transfer function used
for modeling purposes. Another difficulty is that the dynamic properties of
the process may vary, even very slowly, due to aging of the system
components or changes in the operating environment, so the poles and zeros
of the transfer function may move during the operation of the system. The
parameters of the controller are constrained by the actual physical
components available and cannot be assigned arbitrarily. For these and other
reasons, even if we could precisely design the poles and zeros of the transfer
function of the controller, exact pole-zero cancellation is almost never
possible in practice. We will now show that, in most cases, exact cancellation



is not really necessary to effectively negate the influence of the undesirable
poles using pole-zero-cancellation compensation schemes.

In practice, exact pole–zero cancellation is almost never possible
because of modeling inaccuracies.

Let us assume that a controlled process is represented by

where p1 and p.macr1 are the two complex-conjugate poles that are to be
canceled. Let the transfer function of the series controller be

where є1 is a complex number whose magnitude is very small and є.macr1

is its complex conjugate. The open-loop transfer function of the compensated
system is

Because of inexact cancellation, we cannot discard the terms (s+p1)
(s+p.macr1) in the denominator of Eq. (11-154). The closed-loop transfer
function is

The root-locus diagram in Fig. 11-57 explains the effect of inexact pole-
zero cancellation. Notice that the two closed-loop poles as a result of inexact
cancellation lie between the pairs of poles and zeros at  and 

 respectively. Thus, these closed-loop poles are very
close to the open-loop poles and zeros that are meant to be canceled. Eq. (11-



155) can be approximated as

Figure 11-57   Pole-zero configuration and root loci of inexact
cancellation.

where δ1 and δ1 are a pair of very small complex-conjugate numbers that
depend on є1, є.macr1, and all the other parameters. The partial-fraction
expansion of Eq. (11-156) is



We can show that K1 is proportional to ε1 - δ1, which is a very small
number. Similarly, K2 is also very small. This exercise simply shows that,
although the poles at −p1 and −p2 cannot be canceled precisely, the resulting
transient-response terms due to inexact cancellation will have insignificant
amplitudes, so unless the controller zeros earmarked for cancellation are too
far off target, the effect can be neglected for all practical purposes. Another
way of viewing this problem is that the zeros of G(s) are retained as the zeros
of closed-loop transfer function Y(s)/R(s), so from Eq. (11-156), we see that
the two pairs of poles and zeros are close enough to be canceled from the
transient-response standpoint.

Keep in mind that we should never attempt to cancel poles that are in the
right-half s-plane because any inexact cancellation will result in an unstable
system. Inexact cancellation of poles could cause difficulties if the unwanted
poles of the process transfer function are very close to or right on the
imaginary axis of the s-plane. In this case, inexact cancellation may also
result in an unstable system. Figure 11-58a illustrates a situation in which the
relative positions of the poles and zeros intended for cancellation result in a
stable system, whereas in Fig. 11-58b, the inexact cancellation is
unacceptable. The relative distance between the poles and zeros intended for
cancellation is small, which results in residual terms in the time response
solution. Although these terms have very small amplitudes, they tend to grow
without bound as time increases. Hence the system response becomes
unstable.



Figure 11-58   Root loci showing the effects of inexact pole-zero
cancellations.

11-6-1 Second-Order Active Filter
Transfer functions with complex poles and/or zeros can be realized by

electric circuits with op-amps. Consider the transfer function

where a1, a2, b1, and b2 are real constants. The active-filter realization of Eq.



(11-158) can be accomplished by using the direct decomposition scheme of
state variables discussed in Sec. 11-10. A typical op-amp circuit is shown in
Fig. 11-59. The parameters of the transfer function in Eq. (11-158) are related
to the circuit parameters as follows:

Figure 11-59   Op-amp circuit realization of the second-order transfer

function 



Because b1<a1, the zeros of Gc(s) in Eq. (11-158) are less damped and are
closer to the origin in the s-plane than the poles. By setting various
combinations of R7 and R8, and R9 to infinity, a variety of second-order
transfer functions can be realized. Note that all the parameters can be
adjusted independently of one another. For example, R1 can be adjusted to set
a1; R4 can be adjusted to set a2; and b1 and b2 are set by adjusting R8 and R9,
respectively. The gain factor K is controlled independently by R6.

11-6-2 Frequency-Domain Interpretation and Design
While it is simple to grasp the idea of pole-zero-cancellation design in the

s-domain, the frequency-domain provides added perspective to the design
principles. Figure 11-60 illustrates the Bode plot of the transfer function of a
typical second-order controller with complex zeros. The magnitude plot of
the controller typically has a “notch” at the resonant frequency ωn. The phase
plot is negative below and positive above the resonant frequency, while
passing through zero degrees at the resonant frequency. The attenuation of
the magnitude curve and the positive-phase characteristics can be used
effectively to improve the stability of a linear system. Because of the “notch”
characteristic in the magnitude curve, the controller is also referred to in the
industry as a notch filter or notch controller.



Figure 11-60   Bode plot of a notch controller with the transfer function. 



From the frequency-domain standpoint, the notch controller has
advantages over the phase-lead and phase-lag controllers in certain design
conditions because the magnitude and phase characteristics do not affect the
high- and low-frequency properties of the system. Without using the pole-
zero-cancellation principle, the design of the notch controller for
compensation in the frequency domain involves the determination of the
amount of attenuation required and the resonant frequency of the controller.

Let us express the transfer function of the notch controller in Eq. (11-158)
as

where we have made the simplification by assuming that a2 = b2.
The attenuation provided by the magnitude of Gc( jω) at the resonant

frequency ωn is

Thus, knowing the maximum attenuation required at ωn, the ratio of ωz/ωp

is known.
The following example illustrates the design of the notch controller based

on pole-zero cancellation and required attenuation at the resonant frequency.

EXAMPLE 11-6-1  Complex-conjugate poles in system transfer functions
are often due to compliances in the coupling between
mechanical elements. For instance, if the shaft
between the motor and load is nonrigid, the shaft is
modeled as a torsional spring, which could lead to
complex-conjugate poles in the process transfer
function. Figure 11-61 shows a speed-control system
in which the coupling between the motor and the load
is modeled as a torsional spring. The system equations
are



Figure 11-61   Block diagram of speed-control system in Example 11-6-1.

where Tm(t) = motor torque

ωm(t) = motor angular velocity

ωL(t) = load angular velocity

ωL(t) = load angular displacement

ωm(t) = motor angular displacement

Jm = motor inertia 0.0001 oz-in.-s2

JL = load inertia 0.0005 oz-in.-s2

Bm = viscous-friction coefficient of motor 0.01 oz-in.-s

BL = viscous-friction coefficient of shaft 0.001 oz-in.-s

KL = spring constant of shaft 100 ozin./rad

K = amplifier gain = 1



The loop transfer function of the system is

By substituting the system parameters in the last equation, Gp(s) becomes

Thus, the shaft compliance between the motor and the load creates two
complex-conjugate poles in Gp(s) that are lightly damped. The resonant
frequency is approximately 1095 rad/s, and the closed-loop system is
unstable. The complex poles of Gp(s) would cause the speed response to
oscillate even if the system were stable.

Pole-Zero-Cancellation Design with Notch Controller The following are
the performance specifications of the system:

The steady-state speed of the load due to a unit-step input should have an
error of not more than 1%.

Maximum overshoot of output speed ≤ 5%.

Rise time tr <0.5s.

Settling time ts <0.5s.

To compensate the system, we need to get rid, or, perhaps more
realistically, minimize the effect, of the complex poles of Gp(s) at s =
-47.66+j1094 and -47.66+j1094. Let us select a notch controller with the
transfer function given in Eq. (11-164) to improve the performance of the
system. The complex-conjugate zeros of the controller should be so placed
that they will cancel the undesirable poles of the process. Therefore, the
transfer function of the notch controller should be



The forward-path transfer function of the compensated system is

Because the system is type 0, the step-error constant is

For a unit-step input, the steady-state error of the system is written

Thus, for the steady-state error to be less than or equal to 1 percent, Kp≥99.
The corresponding requirement on ωn is found from Eq. (11-174),

We can show that, from the stability standpoint, it is better to select a large
value for ωn. Thus, let ωn = 1200 rad/s, which is at the high end of the
allowable range from the steady-state error standpoint. However, the design
specifications given above can only be achieved by using a very large value
for ζp. For example, when ζp =15,000, the time response has the following
performance attributes:

Maximum overshoot = 3.7%

Rise time tr = 0.1897 s

settling time ts = 0.256 s

Although the performance requirements are satisfied, the solution is
unrealistic because the extremely large value for ζp cannot be realized by
physically available controller components.

Let us choose ζp = 10 and ωn = 1000 rad/s. The forward-path transfer
function of the system with the notch controller is



We can show that the system is stable, but the maximum overshoot is 71.6
percent. Now we can regard the transfer function in Eq. (11-177) as a new
design problem. There are a number of possible solutions to the problem of
meeting the design specifications given. We can introduce a phase-lag
controller or a PI controller, among other possibilities.

Second-Stage Phase-Lag Controller Design Let us design a phase-lag
controller as the second-stage controller for the system. The roots of the
characteristic equation of the system with the notch controller are at
s=-19954, -31.328 + j316.36, and -31.328 + j316.36. The transfer function of
the phase-lag controller is

where for design purposes we have omitted the gain factor 1/a in Eq. (11-
178).

Let us select T = 10 for the phase-lag controller. Table 11-22 gives time-
domain performance attributes for various values of a. The best value of a
from the overall performance standpoint appears to be 0.005. Thus, the
transfer function of the phase-lag controller is

Table 11-22   Time-Domain Performance Attributes of System in
Example 11-6-1 with Notch-Phase-Lag Controller



The forward-path transfer function of the compensated system with the
notch-phase-lag controller is

The unit-step response of the system is shown in Fig. 11-62. Because the
step-error constant is 120.13, the steady-state speed error due to a step input
is 1/120.13, or 0.83 percent.

Figure 11-62   Unit-step responses of speed-control system in Example



11-6-1.

Second-Stage PI Controller Design A PI controller can be applied to the
system to improve the steady-state error and the stability simultaneously. The
transfer function of the PI control is written

We can design the PI controller based on the phase-lag controller by
writing Eq. (11-179) as

Thus, we can set Kp = 0.005 and K1/kp = 20. Then, K1 = 0.1. Figure 11-62
shows the unit-step response of the system with the notch-PI controller. The
attributes of the step response are as follows:

% Maximumovershoot = 1%

Rise time tr = 0.1380 s

settling time ts = 0.1818 s

which are extremely close to those with the notch-phase-lag controller,
except that in the notch-PI case the steady-state velocity error is zero when
the input is a step function.

Sensitivity Due to Imperfect Pole-Zero Cancellation As mentioned
earlier, exact cancellation of poles and zeros is almost never possible in real
life. Let us consider that the numerator polynomial of the notch controller in
Eq. (11-152) cannot be exactly realized by physical resistor and capacitor
components. Rather, the transfer function of the notch controller is more
realistically chosen as

Figure 11-62 shows the unit-step response of the system with the notch
controller in Eq. (11-183). The attributes of the unit-step response are as



follows:
% Maximumovershoot = 0.4%

Rise time tr = 0.17 s

settling time ts = 0.2323 s

Frequency-Domain Design To carry out the design of the notch
controller, we refer to the Bode plot of Eq. (11-171) shown in Fig. 11-63.
Due to the complex-conjugate poles of Gp(s), the magnitude plot has a peak
of 24.86 dB at 1095 rad/s. From the Bode plot in Fig. 11-63 we see that we
may want to bring the magnitude plot down to –20 dB at the resonant
frequency of 1095 rad/s so that the resonance is smoothed out. This requires
an attenuation of –44.86 dB. Thus, from Eq. (11-165),





Figure 11-63   Bode plots of the uncompensated speed-control system in
Example 11-6-1, with notch controller and with notch-PI controller.

where  is found from the numerator of Eq. (11-
172). Solving for ζp from the last equation, we get ζp = 7.612. The attenuation
should be placed at the resonant frequency of 1095 rad/s; thus, ωn = 1095
rad/s. The notch controller of Eq. (11-162) becomes

The Bode plot of the system with the notch controller in Eq. (11-185) is
shown in Fig. 11-63. We can see that the system with the notch controller has
a phase margin of only 13.7°, and Mr is 3.92.

To complete the design, we can use a PI controller as a second-stage
controller. Following the guideline given in Sec. 11-3 on the design of a PI
controller, we assume that the desired phase margin is 80°. From the Bode
plot in Fig. 11-63, we see that, to realize a phase margin of 80°, the new gain-
crossover frequency should be ωg = 43 rad/s, and the magnitude of G(jωg) is
30 dB. Thus, from Eq. (11-42),

The value of KI is determined using the guideline given by Eq. (11-43),

Because the original system is type 0, the final design needs to be refined
by adjusting the value of K1. Table 11-23 gives the performance attributes
when Kp = 0.0316 and KI is varied from 0.135. From the best maximum
overshoot, rise time, and settling time measures, the best value of KI appears
to be 0.35. The forward-path transfer function of the compensated system



with the notch-PI controller is

Table 11-23   Performance Attributes of System in Example 11-6-1
with Notch-PI Controller Designed in Frequency Domain

Figure 11-63 shows the Bode plot of the system with the notch-PI
controller, with KP = 0.0316 and KI = 0.35. The unit-step responses of the
compensated system with KP = 0.0316 and KI = 0.135,0.35 and 0.40 are
shown in Fig. 11-64. 



Figure 11-64   Unit-step responses of speed-control system in Example
11-6-1 with notch-PI controller, 

11-7  FORWARD AND FEEDFORWARD
CONTROLLERS

The compensation schemes discussed in the preceding sections all have
one degree of freedom in that there is essentially one controller in the system,
although the controller can contain several stages connected in series or in



parallel. The limitations of a one-degree-of-freedom controller were
discussed in Sec. 11-1. The two-degree-of-freedom compensation scheme
shown in Fig. 11-2d through f offer design flexibility when a multiple number
of design criteria have to be satisfied simultaneously.

From Fig. 11-2e, the closed-loop transfer function of the system is

and the error transfer function is

Thus, the controller Gc(s) can be designed so that the error transfer function
will have certain desirable characteristics, and the controller Gcf(s) can be
selected to satisfy performance requirements with reference to the input-
output relationship. Another way of describing the flexibility of a two-
degree-of-freedom design is that the controller Gc(s) is usually designed to
provide a certain degree of system stability and performance, but because the
zeros of Gc(s) always become the zeros of the closed-loop transfer function,
unless some of the zeros are canceled by the poles of the process transfer
function, Gp(s), these zeros may cause a large overshoot in the system output
even when the relative damping as determined by the characteristic equation
is satisfactory. In this case and for other reasons, the transfer function Gcf(s)
may be used for the control or cancellation of the undesirable zeros of the
closed-loop transfer function, while keeping the characteristic equation intact.
Of course, we can also introduce zeros in Gcf(s) to cancel some of the
undesirable poles of the closed-loop transfer function that could not be
otherwise affected by the controller Gc(s). The feedforward compensation
scheme shown in Fig. 11-2f serves the same purpose as the forward
compensation, and the difference between the two configurations depends on
system and hardware implementation considerations.

It should be kept in mind that, while the forward and feedforward
compensations may seem powerful because they can be used directly for the
addition or deletion of poles and zeros of the closed-loop transfer function,



there is a fundamental question involving the basic characteristics of
feedback. If the forward or feedforward controller is so powerful, then why
do we need feedback at all? Because Gcf(s) in the systems of Fig. 11-2e and f
are outside the feedback loop, the system is susceptible to parameter
variations in Gcf(s). Therefore, in reality, these types of compensation cannot
be satisfactorily applied to all situations.

EXAMPLE 11-7-1   As an illustration of the design of the forward and
feedforward compensators, consider the second-order
sun-seeker system with phase-lag control designed in
Example 11-5-4. One of the disadvantages of phase-lag
compensation is that the rise time is usually quite long.
Let us consider that the phase-lag-compensated sun-
seeker system has the forward-path transfer function:

The time-response attributes are as follows:
Maximumovershoot = 2.5%
tr = 0.1637 s
tr = 0.2020 s

We can improve the rise time and the settling time while not appreciably
increasing the overshoot by adding a PD controller Gcf(s) to the system, as
shown in Fig. 11-65a. This effectively adds a zero to the closed-loop transfer
function while not affecting the characteristic equation. Selecting the PD
controller as

the time-domain performance attributes are as follows:

Maximumovershoot = 4.3%
tr = 0.1069 s
tr = 0.1313 s



Figure 11-65   (a) Forward compensation with series compensation. (b)
Feedforward compensation with series compensations.

If instead the feedforward configuration of Fig. 11-65b is chosen, the
transfer function of Gcf1(s) is directly related to Gcf(s), that is, equating the
closed-loop transfer functions of the two systems in Fig. 11-65a and b, we
have

Solving for Gcf1(s) from Eq. (11-193) yields

Thus, with Gcf(s) as given in Eq. (11-189), we have the transfer function of
the feedforward controller:

11-8  DESIGN OF ROBUST CONTROL SYSTEMS



In many control-system applications, not only must the system satisfy the
damping and accuracy specifications, but the control must also yield
performance that is robust (insensitive) to external disturbance and
parameter variations. We have shown that feedback in conventional control
systems has the inherent ability to reduce the effects of external disturbance
and parameter variations. Unfortunately, robustness with the conventional
feedback configuration is achieved only with a high loop gain, which is
normally detrimental to stability. Let us consider the control system shown in
Fig. 11-66. The external disturbance is denoted by the signal d(t), and we
assume that the amplifier gain K is subject to variation during operation. The
input-output transfer function of the system when d(t)is

and the disturbance-output transfer function when r(t) is

In general, the design strategy is to select the controller Gc(s) so that the
output y(t) is insensitive to the disturbance over the frequency range in which
the latter is dominant and to design the feedforward controller Gcf(s) to
achieve the desired transfer function between the input r(t) and the output
y(t).

Let us define the sensitivity of M(s) due to the variation of K as

Then, for the system in Fig. 11-66,

which is identical to Eq. (11-197). Thus, the sensitivity function and the
disturbance-output transfer function are identical, which means that



disturbance suppression and robustness with respect to variations of K can be
designed with the same control schemes.

The following example shows how the two-degree-of-freedom control
system of Fig. 11-66 can be used to achieve a high-gain system that will
satisfy the performance and robustness requirements, as well as noise
rejection.

Figure 11-66   Control system with disturbance.

EXAMPLE 11-8-1   Let us consider the second-order sun-seeker system in
Example 11-5-4, which is compensated with phase-lag
control. The forward-path transfer function is

where K = 1. The forward-path transfer function of the phase-lag-
compensated system with a = 0.1 and T = 100 is

Because the phase-lag controller is a low-pass filter, the sensitivity of the
closed-loop transfer function M(s) with respect to K is poor. The bandwidth
of the system is only 13.97 rad/s, but it is expected that  will be greater
than unity at frequencies beyond 13.97 rad/s. Figure 11-67 shows the unit-
step responses of the system when K = 1, the nominal value, and K = 0.5 and
2.0. Notice that, if for some reason, the forward gain K is changed from its
nominal value, the system response of the phase-lag-compensated system
would vary substantially. The attributes of the step responses and the
characteristic equation roots are shown in Table 11-24 for the three values of



K. Figure 11-68 shows the root loci of the system with the phase-lag
controller. The two complex roots of the characteristic equation vary
substantially as K varies from 0.5 to 2.0.

Figure 11-67   Unit-step responses of the second-order sun-seeker system

with phase-lag controller, 



Figure 11-68   Root loci of the second-order sun-seeker system with

phase-lag controller, .

Table 11-24 Attributes of Unit-Step Response of Second-Order Sun-
Seeker System with Phase-Lag Controller in Example 11-8-1



Toolbox 11-8-1
Figure 11-67 is obtained by the following sequence of MATLAB

functions:

The design strategy of the robust controller is to place two zeros of the
controller near the desired closed-loop poles, which according to the phase-
lag-compensated system are at . Thus, we let the controller
transfer function be



The forward-path transfer function of the system with the robust controller
is

Figure 11-69 shows the root loci of the system with the robust controller.
By placing the two zeros of Gc(s) near the desired characteristic equation
roots, the sensitivity of the system is greatly improved. In fact, the root
sensitivity near the two complex zeros at which the root loci terminate is very
low. Figure 11-69 shows that, when K approaches infinity, the two
characteristic equation roots approach .



Figure 11-69   Root loci of the second-order sun-seeker system with

robust controller, .

Toolbox 11-8-2
Figure 11-68 is obtained by the following sequence of MATLAB

functions:



Toolbox 11-8-3
Figure 11-69 is obtained by the following sequence of MATLAB

functions:

Because the zeros of the forward-path transfer function are identical to the
zeros of the closed-loop transfer function, the design is not complete by using
only the series controller Gc(s) because the closed-loop zeros will essentially
cancel the closed-loop poles. This means we must add the forward controller,
as shown in Fig. 11-70, where Gcf(s) should contain poles to cancel the zeros
of s2 + 26s + 269 of the closed-loop transfer function. Thus, the transfer
function of the forward controller is

Figure 11-70   Second-order sun-seeker system with robust controller and
forward controller.



The block diagram of the overall system is shown in Fig. 11-70. The
closed-loop transfer function of the compensated system with K = 1 is

The unit-step responses of the system for K = 0.5, 1.0, and 2.0 are shown
in Fig. 11-71, and their attributes are given in Table 11-25. As shown, the
system is now very insensitive to the variation of K.

Figure 11-71   Unit-step responses of the second-order sun-seeker system
with robust controller and forward controller.



Table 11-25 Attributes of Unit-Step Response of Second-Order Sun-
Seeker System with Robust Controller in Example 11-8-1

Because the system in Fig. 11-70 is now more robust, it is expected that
the disturbance effect will be reduced. However, we cannot evaluate the
effect of the controllers in the system of Fig. 11-70 by applying a unit-step
function as d(t). The true improvement on the noise rejection properties is
more appropriately analyzed by investigating the frequency response of
Θ0(s)/D(s). The noise-to-output transfer function, written from Fig. 11-70, is

The amplitude Bode plot of Eq. (11-206) is shown in Fig. 11-72, along
with those of the uncompensated system and the system with phase-lag
control. Notice that the magnitude of the frequency response between D(s)
and Θ0(s) is much smaller than those of the system without compensation and
with phase-lag control. The phase-lag control also accentuates the noise for
frequencies up to approximately 40 rad/s, adding more stability to the system.



Figure 11-72   Amplitude Bode plot of response due to noise of second-
order sun-seeker system.

EXAMPLE 11-8-2   In this example, a robust controller with forward
compensation is designed for the third-order sun-seeker
system in Example 11-5-5 with phase-lag control. The
forward-path transfer function of the uncompensated
system is

where K = 1. The root loci of the closed-loop system are shown in Fig. 11-



54, which lead to the phase-lag control with results shown in Table 11-20.
Let us select the parameters of the phase-lag controller as a = 0.1 and T = 20.
The dominant roots of the characteristic equation are .

Let us place the two zeros of the second-order robust controller at 
, so that the controller transfer function is

To ease the high-frequency realization problem of the controller, we may
add two nondominant poles to Gc(s). The following analysis is carried out
with Gc(s) given in Eq. (11-208), however. The root loci of the compensated
system are shown in Fig. 11-73. Thus, by placing the zeros of the controller
very close to the desired dominant roots, the system is very insensitive to
changing values of K near and beyond the nominal value of K. The forward
controller has the transfer function



Figure 11-73   Root loci of the third-order sun-seeker system with robust
and forward controllers.

The attributes of the unit-step response for K = 0.5, 1.0, 2.0, and 10.0 and
the corresponding characteristic equation roots are given in Table 11-26.

Table 11-26 Attributes of Unit-Step Response and Characteristic
Equation Roots of Third-Order Sun-Seeker System with Robust and



Forward Controllers in Example 11-8-2

EXAMPLE 11-8-3   In this example, we consider the design of a position-
control system that has a variable load inertia. This type
of situation is quite common in control systems. For
example, the load inertia seen by the motor in an
electronic printer will change when different
printwheels are used. The system should have
satisfactory performance for all the printwheels intended
to be used with the system.

To illustrate the design of a robust system that is insensitive to the
variation of load inertia, consider that the forward-path transfer function of a
unity-feedback control system is

The system parameters are as follows:

Ki = motor torque constant = 1 N·m/A
Kb = motor back-emf constant = 1 V/rad/s
R = motor resistance = 1 Ω
L = motor inductance = 0.01 H
B = motor and load viscous-friction coefficient 
J = motor and load inertia, varies between 0.01 and 0.02 N·m/rad/s2

K = amplifier again



Substituting these system parameters into Eq. (11-210), we get

The performance specifications are as follows:

Ramp error constant Kv ≥ 200
Maximum overshoot ≥ 5% or as small as possible
Rise time tr ≥ 0.05 s
Settling time ts ≥ 0.05 s

These specifications are to be maintained for 0.01 ≤ J ≤ 0.02.
Figure 11-74 shows the root loci of the uncompensated system for J = 0.01

and J = 0.02. We see that, regardless of the value of J, the uncompensated
system is unstable for K > 100.





Figure 11-74   Root loci of the position-control system in Example 11-8-3
with robust and forward controllers.

To achieve robust control, let us choose the system configuration of Fig.
11-65a. We introduce a second-order series controller with the zeros placed
near the desired dominant characteristic equation of the compensated system.
The zeros should be so placed that the dominant characteristic equation roots
would be insensitive to the variation in J. This is done by placing the two
zeros at –55 ± j45, although the exact location is unimportant. By choosing
the two controller zeros as designated, the root loci of the compensated
system show that the two complex roots of the characteristic equation will be
very close to these zeros for various values of J, especially when the value of
K is large. The transfer function of the robust controller is

As in the last example, we may add two nondominant poles to Gc(s) to ease
the high-frequency realization problem of the controller. The analysis is
carried out with Gc(s) given in Eq. (11-213).

Let K = 1000, although 200 would have been adequate to satisfy the Kv

requirement. Then, for J = 0.01, the forward-path transfer function of the
compensated system is

and for J = 0.02,

To cancel the two zeros of the closed-loop transfer function, the transfer
function of the forward controller is



The attributes of the unit-step response and the characteristic equation
roots of the compensated system with K = 1000, J = 0.01 and J = 0.02, are
given in Table 11-27.

Table 11-27 Attributes of Unit-Step Response and Characteristic
Equation Roots of System with Robust and Forward Controllers in
Example 11-8-3

11-9  MINOR-LOOP FEEDBACK CONTROL
The control schemes discussed in the preceding sections have all utilized

series controllers in the forward path of the main loop or feedforward path of
the control system. Although series controllers are the most common because
of their simplicity in implementation, depending on the nature of the system,
sometimes there are advantages in placing the controller in a minor feedback
loop, as shown in Fig. 11-2b. For example, a tachometer may be coupled
directly to a dc motor not only for the purpose of speed indication but more
often for improving the stability of the closed-loop system by feeding back
the output signal of the tachometer. The motor speed can also be generated
by processing the back emf of the motor electronically. In principle, the PID
controller or phase-lead and phase-lag controllers can all, with varying
degrees of effectiveness, be applied as minor-loop feedback controllers.
Under certain conditions, minor-loop control can yield systems that are more
robust, that is, less sensitive to external disturbance or internal parameter
variations.

11-9-1 Rate-Feedback or Tachometer-Feedback Control
The principle of using the derivative of the actuating signal to improve the



damping of a closed-loop system can be applied to the output signal to
achieve a similar effect. In other words, the derivative of the input signal is
fed back and added algebraically to the actuating signal of the system. In
practice, if the output variable is mechanical displacement, a tachometer may
be used to convert mechanical displacement into an electrical signal that is
proportional to the derivative of the displacement. Figure 11-75 shows the
block diagram of a control system with a secondary path that feeds back the
derivative of the output. The transfer function of the tachometer is denoted by
Kts, where Kt is the tachometer constant, usually expressed in volts per radian
per second for analytical purposes. Commercially, Kt is given in the data
sheet of the tachometer, typically in volts per 1000 rpm. The effects of rate or
tachometer feedback can be illustrated by applying it to a second-order
prototype system. Consider that the controlled process of the system shown
in Fig. 11-75 has the transfer function

Figure 11-75   Control system with tachometer feedback.

The closed-loop transfer function of the system is

and the characteristic equation is



From the characteristic equation, it is apparent that the effect of the
tachometer feedback is the increase of the damping of the system, since Kt

appears in the same term as the damping ratio ζ.
In this respect, tachometer-feedback control has exactly the same effect as

the PD control. However, the closed-loop transfer function of the system with
PD control in Fig. 11-3 is

Comparing the two transfer functions in Eqs. (11-218) and (11-220), we
see that the two characteristic equations are identical if KP = 1 and KD = Kt.
However, Eq. (11-220) has a zero at s = –KP/KD, whereas Eq. (11-208) does
not. Thus, the response of the system with tachometer feedback is uniquely
defined by the characteristic equation, whereas the response of the system
with the PD control also depends on the zero at s = –KP/KD, which could have
a significant effect on the overshoot of the step response.

With reference to the steady-state analysis, the forward-path transfer
function of the system with tachometer feedback is

Because the system is still type 1, the basic characteristics of the steady-
state error are not altered by the tachometer feedback; that is, when the input
is a step function, the steady-state error is zero. For a unit-ramp function
input, the steady-state error of the system is (2ζ + Ktωn)/ωn , whereas that of
the system with PD control in Fig. 11-3 is 2ζ/ωn. Thus, for a type 1 system,
tachometer feedback decreases the ramp-error constant Kv but does not affect
the step-error constant KP.

11-9-2 Minor-Loop Feedback Control with Active Filter
Instead of using a tachometer, an active filter with RC elements and op-

amps can be used to reduce cost and save space in the minor feedback loop



for compensation. We illustrate this approach with the following example.

EXAMPLE 11-9-1 Consider that, for the second-order sun-seeker system in
Example 11-5-4, instead of using a series controller in
the forward path, we adopt the minor-loop feedback
control, as shown in Fig. 11-76a, with

and

To maintain the system as type 1, it is necessary that H(s) contain a zero at
s = 0. Equation (11-223) can be realized by the op-amp circuit shown in Fig.
11-76b. This circuit cannot be applied as a series controller in the forward
path because it acts as an open circuit in the steady state when the frequency
is zero. As a minor-loop controller, the zero-transmission property to dc
signals does not pose any problems.

The forward-path transfer function of the system in Fig. 11-76a is

The characteristic equation of the system is



Figure 11-76   (a) Sun-seeker control system with minor-loop control. (b)

Op-amp circuit realization of .

To show the effects of the parameters Kt and T, we construct the root
contours of Eq. (11-225) by first considering that Kt is fixed and T is variable.
Dividing both sides of Eq. (11-225) by the terms that do not contain T, we get

When the value of Kt is relatively large, the two poles of the last equation
are real with one very close to the origin. It is more effective to choose Kt so
that the poles of Eq. (11-226) are complex.

Figure 11-77 shows the root contours of Eq. (11-225) with Kt = 0.02, and T
varies from 0 to ∞.





Figure 11-77   Root contours of Ts3 + (25T + 1)s2 + (25 + 2500Kt +
2500T)s + 2500 = 0, Kt = 0.02.

When T = 0.006, the characteristic equation roots are at –56.72, –67.47 +
j52.85, and –67.47 – j52.85. The attributes of the unit-step response are as
follows:

Maximum overshoot = 0
tr = 0.04485 s
ts = 0.06061 s
tmax = 0.4 s

The ramp-error constant of the system is

Thus, just as with tachometer feedback, the minor-loop feedback controller
of Eq. (11-223) reduces the ramp-error constant Kv, although the system is
still type 1.

11-10  MATLAB TOOLS AND CASE STUDIES
In this section, we will go through the steps involved in finding some of

the results and displaying many of the graphics from the examples in this
chapter using the MATLAB SISO design tool. Through the graphical-user
interface (GUI) approach, SISO creates a user-friendly environment to reduce
the complexity of control systems design. The SISO design tool allows you to
design a single-input/single-output (SISO) compensator using root locus,
Bode diagram, and Nichols and Nyquist techniques.4 By default, the SISO
design tool assumes the feedback block diagram representation shown in Fig.
11-78 with feedback gain H, a compensator C placed in series with the plant
G, and the prefilter F.

We illustrate the usage of the SISO tool through the following examples.

EXAMPLE 11-10-1   Recall from Example 11-2-1 the forward-path transfer



function for the altitude-control system was

The design constraints for this problem were as follows:

Steady-state error due to unit-ramp input = 0.000443
Maximum overshoot ≤ 5%
Rise time tr ≤ s
Settling time ts ≤ s

Time-Domain Design
Proportional controller: Let us first design a proportional controller using

the SISO design tool. To satisfy the maximum value of the specified steady-
state error requirement, K should be set at 181.17. To examine the
performance of the proportional controller, we need to find the system root
locus. To implement the root-locus design approach we utilize MATLAB
Toolbox 11-10-1 to enter the plant G and controller C transfer functions in
Fig. 11-78. Note that by default the value of feedback gain H and prefilter F
are automatically set to unity.

Figure 11-78   Default control configuration used in MATLAB design
tool.

Toolbox 11-10-1
The root-locus design tool in SISO for Example 11-10-1 is activated

by the following sequence of MATLAB functions:



Figure 11-79 shows the root locus of the system where the closed-loop
system poles for K = 181.17 are located at s1, 2 = –181 ± J885 (MATLAB has
rounded this value off). To view the closed loop systems poles and zeros, go
to the View menu and select Closed-Loop Poles, as shown in Fig. 11-80.
Recall the poles of the closed-loop system are



Figure 11-79   Root locus of  for Example 11-10-1, using
the MATLAB SISO design tool, incorporating the percent overshoot and the
settling time as design constraints.

Incorporation of the design criteria: As a first step to design a controller,
we use the built-in design criteria option within the SISO design tool to
establish the desired pole regions on the root locus. Next, to select the Design



Requirements option, right click on the Root Locus plot each time you want
to add a new design requirement. To do this, select “New” to enter one of the
following:

• Settling time

• Percent overshoot

• Damping ratio

• Natural frequency

In this case, we have included settling time and percent overshoot as
design constrains. Enter the two constraints as they are listed at the beginning
of this example, one at a time. In order also to enter the rise time as a
constraint, the user must first establish a relation between the damping ratio
and the natural frequency using an equation for rise time. Recall that the
approximate equations for rise time for a second-order prototype system were
provided in Chap. 7. Because the settling time and the percent overshoot are
more important criteria in this example, we will use them as primary
constraints. After designing a controller based on these constraints, we will
determine whether the system complies with the rise-time constraint.

Figure 11-79 shows the closed-loop system pole for K = 181.17 are not in
the desired area. As shown, with this value of K, the damping ratio of the
system is 0.2, and the maximum overshoot is 52.7 percent, as shown by the
unit-step response in Fig. 11-81. In order to achieve the desired response, the
desired poles of the system must lie within the percent overshoot wedge and
to the left of the boundary imposed by the settling time close to the –800
markers in Fig. 11-79. Obviously, it is impossible to use the proportional
controller (for any value of K) to move the poles of the closed-loop system
farther to the left-half plane.



Figure 11-80   Closed loop poles of  with unity feedback,
for Example 11-10-1.



Figure 11-81   Unit-step response of the system from Example 11-10-1.



Figure 11-82   The Control and Estimation Tools Manager in the
MATLAB SISO design tool for selecting the closed-loop system time
response.

To see the closed-loop system time response to a unit-step input, select the
Response to Step Command option from the Analysis menu, which is located
at the top of the screen shown in Fig. 11-79. To get this plot, you must select
the “Closed Loop r to y” response in the Analysis Plot menu in the Control
and Estimation Tools Manager window as shown in Fig. 11-82.

PD controller: With the PD controller of Eq. (11-228) and K = 181.17, the
forward-path transfer function of the system becomes



The closed-loop transfer function is

The characteristic equation is written as

As discussed in Example 11-2-1, we can apply the root-contour method
to the characteristic equation in Eq. (11-232) to examine the effect of varying
KP and KD by finding the root locus of Geq (s) in the following equation:

where the root contours are plotted by fixing the KP value and varying KD.

Hence, using Toolbox 11-10-2 we get the root contours of Eq. (11-232), as
shown in Fig. 11-83 for KP = 1. As discussed in Example 11-2-1, when KD is
set to 0.00177, the roots are real and equal at –903, and the damping is
critical.



Figure 11-83   Root contours of PD-controlled system from Example 11-
10-1.

Toolbox 11-10-2
Root contours of Eq. (11-232) shown in Fig. 11-83 are obtained by

the following sequence of MATLAB functions:



Next we obtain the root locus of the PD controller by adding a zero to
controller C in the Compensator Editor menu within the Control and
Estimation Tools Manager window, as shown in Fig. 11-84a. To enter a zero
to the controller, right-click the mouse inside the “Dynamics” area; select add
Pole/Zero, followed by Real Zero option. Click the new “Real Zero” row
inside the “Dynamics” box to enter the new zero value of the PD controller.
Recall from Example 11-2-1 that for the root-contour approach the zero value
for KP = 1 and KD = 0.00177 corresponds to a zero at s = –KP/KD = –565.
Figure 11-84b shows the Compensator Editor window after the PD controller
has been added.



Figure 11-84   Addition of a zero to the controller C to create a PD
controller. (a) Addition process. (b) After addition of a zero at s = –KP/KD = –
565.

The new root-locus diagram along with the closed loop pole values for the
controller gain of 181.17 appear in Fig. 11-85—you can view the poles’
current locations from the View menu. Note there is a slight discrepancy
between the pole values in Figs. 11-83 and 11-85 because of MATLAB
rounding off process, which is not a concern. The step response of the
controlled system in Fig. 11-86 shows the system has now complied with all
design criteria. The 2% settling time is now 0.0451 s, while the overshoot is
4%. It is interesting that, although the closed-loop poles are both real, the
system has a non-oscillatory response with an overshoot because of the
dominant effect of the PD controller zero on the response. These results
perfectly match with Example 11-2-1.



Figure 11-85   The root-locus diagram for Example 11-10-1 after
incorporating a zero in the PD controller at s = 565 = –1/0.00177 and using a
gain of 181.17.



Figure 11-86   Step response of the system in Example 11-10-1 with
controller C(s) = 181.17(s + 1/0.00177).

In addition to these findings, recall in Example 11-2-1 that the motor
torque limit is the most important constraint in any design. In practice,
always verify that the actuator used has enough torque or load to create such
response. In fact, as a safety factor, it is best to operate the motor at 50
percent of its maximum torque value. To check this, you need to obtain the
torque transfer function of the system. From Fig. 7-52, by applying the SFG
gain formula, the closed loop torque transfer function of the system is written
as



Entering the parameter values from Sec. 7-9 and using Toolbox 11-10-3,
we obtain the motor torque response. The question here is if the motor is
capable of generating almost 14,000 oz·in of torque almost instantly. Or, do
we need to change our controller parameters?

If you require fine-tuning your existing design with minimal changes, you
can easily move the closed loop poles in Fig. 11-85 to locations just to the
left of the settling time constraint, as shown in Fig. 11-88a. In that case KP =
0.85 and KD = 0.0015, and the poles of the system are at s1,2 = –794 ± j250.
The step response of the system, shown in Fig. 11-88b, obviously meets the
requirements.

Toolbox 11-10-3
Unit-step response of Eq. (11-236) shown in Fig. 11-87 is obtained by

the following sequence of MATLAB functions:



Figure 11-87   Motor torque step response of the system in Example 11-
10-1 with a controller C(s) = 181.17(s + 1/0.00177).



Figure 11-88   (a) The root-locus diagram. (b) Step response of the system
in Example 11-10-1 with a PD controller, C(s) = 154.03(s + 1/0.00177).

Frequency-Domain Design Now let us carry out the design of the PD
controller in the frequency domain using the following performance criteria:

Steady-state error due to a unit–ramp input ≤ 0.00443
Phase margin ≥ 80°
Resonant peak Mr ≤ 1.05
BW ≤ 2000 rad/s

Use Toolbox 11-10-4 to activate the MATLAB Bode design tool SISO
design. Using this design tool we can arrive at the loop magnitude and phase
diagrams for Example 11-10-1 with controller C(s) = 181.17(s + 1/0.00177),
as shown in Fig. 11-89.



Figure 11-89   The loop magnitude and phase diagrams for Example 11-
10-1 with controller C(s) = 181.17(s + 1/0.00177).

Toolbox 11-10-4
The Bode design tool in SISO for Example 11-10-1 is activated by the

following sequence of MATLAB functions:



As in the root-locus design approach, a PD controller with a zero at s =
–KP/KD = –565 was used for this purpose. The gain margin in this case is
infinity, while the phase margin is 83°. As a result, the system has also fully
complied with all the design criteria in the frequency domain.

EXAMPLE 11-10-2  Example 11-2-2 Revisited Use the following toolbox
to get the uncompensated root locus and bode plots
corresponding to Eq. (11-30). Using the root locus and
Bode plots, as shown in Fig. 11-90, you can follow the
process discussed in Example 11-10-1 to design your
PD controller.

Toolbox 11-10-5
5The SISO design tool for Example 11-10-1 is activated by the

following sequence of MATLAB functions:





Figure 11-90   Root loci and Bode plots of the PD-controlled system from
Example 11-2-2.

EXAMPLE 11-10-3  Example 11-5-2 Revisited
Use the following toolbox to get the uncompensated root locus and bode

plots corresponding to Eq. (11-104). Using the root locus and Bode plots, as
shown in Fig. 11-91, you can follow the process discussed in Example 11-10-
1 to design your phase-lead controller.



Figure 11-91   Implementation of a lead controller  when a =
500 and T = 0.00001, in the SISO design tool for Example 11-10-3.

Toolbox 11-10-6
The SISO design tool for Example 11-10-1 is activated by the

following sequence of MATLAB functions:



Add the controller  when a = 500 and T = 0.00001, using the
Control and Estimation Tools Manager, as shown in Fig. 11-91. The final
system root locus, Bode plots and step response are shown in Fig. 11-92.
Also review Example 11-5-2 to confirm the results.



Figure 11-92   Root locus, Bode plots and unit-step response of sun-seeker

system in Example 11-5-2 with phase-lead controller.  when a =
500 and T = 0.00001.

In this example, we illustrate the application of a phase-lead controller to a
third-order system

11-11  THE CONTROL LAB



In App. D, we provide examples of LEGO MINDSTORMS labs including
a pick and place robot and an elevator positioning system. As a course
project, you can use the ideas discussed in this chapter to design different
controllers for these systems. You may use the MATLAB SISO design tool,
Simulink (App. E) or the toolboxes used in this chapter to develop your
control systems. Finally, refer to the end of the Problems section for LEGO
MINDSTORMS term projects.
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PROBLEMS



Most of the following problems can be solved using a computer program.
This is highly recommended if the reader has access to such a program.

11-1. The block diagram of a control system with a series controller is
shown in Fig. 11P-1. Find the transfer function of the controller Gc(s) so that
the following specifications are satisfied:

Figure 11P-1

The ramp-error constant Kv is 5.
The closed-loop transfer function is of the form

where K and a are real constants. Find the values of K and a.
The design strategy is to place the closed-loop poles at –10 + j10 and –10 –

j10, and then adjust the values of K and a to satisfy the steady-state
requirement. The value of a is large so that it will not affect the transient
response appreciably. Find the maximum overshoot of the designed system.

11-2.   Repeat Prob. 11-1 if the ramp-error constant is to be 9. What is the
maximum value of Kv that can be realized? Comment on the difficulties that
may arise in attempting to realize a very large Kv.

11-3.   The forward-path transfer function of a unity-feedback control
system is

Find the value of K and t so that the overshoot of the system is 25.4 percent
at the ζ = 0.4.



11-4.   The forward-path transfer function of a system is

Design a PD controller that satisfies the following factors:
(a) The steady-state error is less than p / 10 when the input is a ramp with a

slope of 2p rad/s.
(b) The phase margin is between 40° and 50°.
(c) Gain-crossover frequency is greater than 1 rad/s.

11-5.   A control system with a PD controller is shown in Fig. 11P-5.

Figure 11P-5

(a) Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 0.5.

(b) Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 0.707.

(c) Find the values of KP and KD so that the ramp-error constant Kv is 1000
and the damping ratio is 1.0.

11-6.   For the control system shown in Fig. 11P-5, set the value of KP so
that the ramp-error constant is 1000.

(a) Vary the value of KD from 0.2 to 1.0 in increments of 0.2 and determine
the values of phase margin, gain margin, Mr, and BW of the system. Find the
value of KD so that the phase margin is maximum.

(b) Vary the value of KD from 0.2 to 1.0 in increments of 0.2 and find the
value of KD so that the maximum overshoot is minimum.

11-7.   The forward-path transfer function of a system is



Design a PD controller such that the KP = 9 and the phase margin is greater
than 25°.

11-8.   The forward-path transfer function of a system is

(a) Design a PD controller to satisfy the following specifications:
(i) Kv = 10
(ii) The phase margin is 45°.

(b) Use MATLAB to plot the Bode diagram of the compensated system.

11-9.   Consider the second-order model of the aircraft attitude control
system shown in Fig. 7-51. The transfer function of the process is

(a) Design a series PD controller with the transfer function Gc(s) = KD + KPs
so that the following performance specifications are satisfied:

Steady – state error due to a unit – ramp input ≤ 0.001
Maximum overshoot ≤ 5%
Rise time tr ≤ 0.005 s
Setting time ts ≤ 0.005 s

(b) Repeat part (a) for all the specifications listed, and, in addition, the
bandwidth of the system must be less than 850 rad/s.

11-10.   Figure 11P-10 shows the block diagram of the liquid-level control
system described in Prob. 2-36. The number of inlets is denoted by N. Set N
= 20. Design the PD controller so that with a unit-step input the tank is filled
to within 5 percent of the reference level in less than 3 s without overshoot.



Figure 11P-10

11-11.   For the liquid-level control system described in Prob. 11-10.
(a) Set KP so that the ramp-error constant is 1. Vary KD from 0 to 0.5 and

find the value of KD that gives the maximum phase margin. Record the gain
margin, Mr, and BW.

(b) Plot the sensitivity functions  of the uncompensated system and
the compensated system with the values of KD and KP determined in part (a).
How does the PD controller affect the sensitivity?

11-12.   The block diagram of a servo system is shown in Fig. 11P-12.

Figure 11P-12

Design the PD controller so that the phase margin is greater than 50° and
the BW is greater than 20 rad/s. Use MATLAB to verify your answer.

11-13.   The forward-path transfer function of a unity-feedback system is

Design a compensator such that the steady-state error to the unit-step input
is less than 0.01 and the closed-loop damping ratio ζ > 0.4.

Use MATLAB to plot the Bode diagram of the compensated system.

11-14.   The open-loop transfer function of a dc motor is



Design a PD controller so that the steady-state error to the input ramp is
less than 0.005, the maximum overshoot is 20 percent for the unit-step input,
and the BW must be maintained at a value approximately the same as that of
the uncompensated system.

11-15.   The open-loop plant model of a plastic extrusion is given by

Design a series of lead compensator, which is described by

so that the phase margin is 45° and the BW must be maintained at a value
approximately the same as that of the uncompensated system.

11-16.   Repeat Prob. 11-15 assuming that the r < 0.1.

11-17.   The forward-path transfer function of a unity-feedback control
system is

(a) Design a compensator such that
(i) The steady-state error is less than 0.01 for a unit-ramp input.
(ii) The phase margin is greater than 45°.
(iii) The steady-state error is less than 0.004 for a sinusoidal input with
ω > 0.2.
(iv) The noise for the frequencies greater than 200 rad/s reduced to 100
at the output.

(b) Use MATLAB to plot the Bode diagram of the compensated system
and verify or refine your design in part (a).

11-18.   A control system with a type 0 process Gp(s) and a PI controller is
shown in Fig. 11P-18.



Figure 11P-18

(a) Find the value of KI so that the ramp-error constant Kv is 10.
(b) Find the value of KP so that the magnitude of the imaginary parts of the

complex roots of the characteristic equation of the system is 15 rad/s. Find
the roots of the characteristic equation.

(c) Sketch the root contours of the characteristic equation with the value of
KI as determined in part (a) and for 0 ≤ KP > ∞.

11-19.   For the control system described in Prob. 11-18,
(a) Set KI so that the ramp-error constant is 10. Find the value of KP so that

the phase margin is minimum. Record the values of the phase margin, gain
margin, Mr, and BW.

(b) Plot the sensitivity functions  of the uncompensated
and the compensated systems with the values of KI and KP selected in part (a).
Comment on the effect of the PI control on sensitivity.

11-20.   For the control system shown in Fig. 11P-18, perform the
following:

(a) Find the value of KI so that the ramp-error constant Kv is 100.
(b) With the value of KI found in part (a), find the critical value of KP so

that the system is stable. Sketch the root contours of the characteristic
equation for 0 ≤ KP > ∞.

(c) Show that the maximum overshoot is high for both large and small
values of KP. Use the value of KI found in part (a). Find the value of KP when
the maximum overshoot is a minimum. What is the value of this maximum
overshoot?

11-21.   Repeat Prob. 11-20 for Kv = 10.



11-22.   The forward-path transfer function of a system is

(a) Design a PI controller that satisfies the following factors:
(i) The ramp error constant Kv < 20.
(ii) The phase margin is between 40° and 50°.
(iii) Gain-crossover frequency is greater than 1 rad/s.

(b) Use MATLAB to plot the Bode diagram of the closed-loop system.

11-23.   The forward-path transfer function of a robot arm–positioning
system is represented by

(a) Design a PI controller such that
(i) The steady-state error is less than 5 percent of the slope for a ramp
input.
(ii) The phase margin is between 32.5° and 37.5°.
(iii) Gain-crossover frequency is 1 rad/s.

(b) Use MATLAB to plot the Bode diagram of the closed-loop system and
verify your design in part (a).

11-24.   The forward-path transfer function of a system is

Design a PI controller with a unity dc gain so that the phase margin of the
system is greater than 40°, and then find the BW of the system.

11-25.   The transfer function of the steering of a ship is given by

Design a PI controller such that



(a) The ramp error constant Kv = 2.
(b) The phase margin is greater than 50°.
(c) For all frequencies greater than crossover frequency, PM > 0. This

means the system is always stable without any condition.
(d) Show the closed-loop poles in the root locus with respect to values of

K.

11-26.   The transfer function of a unity-feedback system is

(a) A PD controller with the transfer function of 

 is designed with r = 0.2 and τ = 0.05. It is
desired to find the gain so that the crossover frequency is 31.6 rad/s.

(b) Find the ramp error constant Kv by applying the controller designed in
part (a).

(c) Consider the PD controller designed in part (a) is applied to the system.
Find the value of K for a PI controller so that the ramp error constant Kv =
100.

(d) If the PI controller pole is at 3.16 rad/s and the crossover frequency
maintains at 31.6 rad/s, what is the zero of the PI controller? [Consider the

transfer function of the PI controller is .]
(e) Use MATLAB to plot the Bode diagram of the compensated system

and find the phase margin.

11-27.   A control system with a type 0 process and a PID controller is
shown in Fig. 11P-27. Design the controller parameters so that the following
specifications are satisfied:

Ramp-error contant Kv = 100.



Rise time tv < 0.01 s
Maximum overshoot < 2%

Figure 11P-27

Plot the unit-step response of the designed system.

11-28.   A considerable amount of effort is being spent by automobile
manufacturers to meet the exhaust-emission-performance standards set by the
government. Modern automotive-power-plant systems consist of an internal
combustion engine that has an internal cleanup device called the catalytic
converter. Such a system requires control of the engine air-fuel ratio (A/F),
the ignition-spark timing, exhaust-gas recirculation, and injection air. The
control system problem considered in this exercise deals with the control of
the air-fuel ratio. In general, depending on fuel composition and other factors,
a typical stoichiometric A/F is 14.7:1, that is, 14.7 g of air to each gram of
fuel. An A/F greater or less than stoichiometry will cause high hydrocarbons,
carbon monoxide, and nitrous oxide in the tailpipe emission. The control
system whose block diagram is shown in Fig. 11P-28 is devised to control the
air-fuel ratio so that a desired output variable is maintained for a given
command signal. Figure 11P-28 shows that the sensor senses the composition
of the exhaust-gas mixture entering the catalytic converter. The electronic
controller detects the difference or the error between the command and the
sensor signals and computes the control signal necessary to achieve the
desired exhaust-gas composition. The output variable y(t) denotes the
effective air-fuel ratio. The transfer function of the engine is given by



Figure 11P-28

where Td is the time delay and is 0.2 s. The time constant τ is 0.25 s.
Approximate the time delay by a power series:

(a) Let the controller be a PI controller so that

Find the value of KI so that the ramp-error constant Kv is 2. Determine the
value of KP so that the maximum overshoot of the unit-step response is a
minimum and the settling time is a minimum. Give the values of the
maximum overshoot and the settling time. Plot the unit-step response of y(t).
Find the marginal value of KP for system stability.

(b) Can the system performance be further improved by using a PID
controller?

11-29.   One of the advantages of the frequency-domain analysis and
design methods is that systems with pure time delays can be treated without
approximation. Consider the automobile-engine control system treated in
Prob. 11-28.

The process has the transfer function



Let the controller be of the PI type so that Gc(s) = KP + KI/s. Set the value of
KI so that the ramp-error constant Kv is 2. Find the value of KP so that the
phase margin is a maximum. How does this “optimal” KP compare with the
value of KP found in Prob. 11-28a? Find the critical value of KP for system
stability. How does this value of KP compare with the critical value of KP

found in Prob. 11-28?

11-30.   Figure 11P-30 shows a simplified design of an airplane attitude
controller.

Figure 11P-30

where D is the disturbance torque. Design a PID controller with the
following satisfactions:

(a) Zero steady-state error
(b) PM = 65°
(c) High bandwidth (as high as possible)

11-31.   Consider the open-loop plant model of a plastic extrusion given in
Prob. 11-15.

Design a series of lead-lag compensator that is described by

and satisfies the following:



(a) The phase margin is 45°.
(b) The steady-state error of a closed-loop system to the unit-step input is

less than 1 percent.
(c) The gain-crossover frequency is 5 rad/s.

11-32.   A telescope for tracking stars and asteroids on a space shuttle may
be modeled as a pure mass M. It is suspended by magnetic bearings so that
there is no friction, and its attitude is controlled by magnetic actuators located
at the base of the payload. The dynamic model for the control of the z-axis
motion is shown in Fig. 11P-32a. Because there are electrical components on
the telescope, electric power must be brought to the telescope through a
cable. The spring shown is used to model the wire-cable attachment, which
exerts a spring force on the mass. The force produced by the magnetic
actuators is denoted by f (t). The force equation of motion in the z direction is

Figure 11P-32

where Ks = 1 lb/ft, and M = 150 lb (mass); f(t) is in pounds, and z(t) is
measured in feet.

(a) Show that the natural response of the system output z(t) is oscillatory
without damping. Find the natural undamped frequency of the open-loop
space-shuttle system.



(b) Design the PID controller

shown in Fig. 9P-32b so that the following performance specifications are
satisfied:

The complex characteristic equation roots correspond to a relative damping
ratio of 0.707 and a natural undamped frequency of 1 rad/s.

Compute and plot the unit-step response of the designed system. Find the
maximum overshoot. Comment on the design results.

(c) Design the PID controller so that the following specifications are
satisfied:

Ramp-error constant Kv = 100.
Maximum overshoot < 5%

Compute and plot the unit-step response of the designed system. Find the
roots of the characteristic equation of the designed system.

11-33.   Repeat Prob. 11-32b with the following specifications:

The complex characteristic equation roots correspond to a relative damping
ratio of 1.0 and a natural undamped frequency of 1 rad/s.

11-34.   Consider a cruise control system shown in Fig. 11P-34.

Figure 11P-34



where f is the engine force, v is the velocity, u is the friction force, and u =
μv.

Assuming M = 1000 kg, μ = 50 Nsec/m, and f = 500 N:
(a) Find the transfer function of the system.
(b) Design a PID controller that satisfies the following:

(i) Rise time is less than 5 s.
(ii) Maximum overshoot is less than 10 percent.
(iii) Steady-state error is less than 2 percent.

11-35.   An inventory control system is modeled by the following state
equations:

where x1(t) = level of inventry, x2(t) = rate of sales of product, and u(t) =
prodcution rate. The output equation is y(t) = x1(t). One unit of time is one
day. Fig. 11P-35 shows the block diagram of the closed-loop inventory
control system with a series controller. Let the controller be a PD controller,
Gc(s) = KP + KDs.

Figure 11P-35

(a) Find the parameters of the PD controller, KP and KD, so that the roots of
the characteristic equation correspond to a relative damping ratio of 0.707
and ωn = 1 rad/s. Plot the unit-step response of y(t) and find the maximum
overshoot.

(b) Find the values of KP and KD so that the overshoot is zero and the rise
time is less than 0.06 s.

(c) Design the PD controller so that Mr = 1 and BW ≤ 40 rad/s.



11-36.   The block diagram of a type 2 control system with a series
controller Gc(s) is shown in Fig. 11P-36.

Figure 11P-36

The objective is to design a PD controller so that the following
specifications are satisfied:

Maximum overshoot < 10%
Rise Time < 0.5 s

(a) Obtain the characteristic equation of the closed-loop system, and
determine the ranges of the values of KP and KD for stability. Show the region
of stability in the KD-versus-KP plane.

(b) Construct the root loci of the characteristic equation with KD = 0 and 0
≤ KP < ∞. Then construct the root contours for 0 ≤ KP < ∞ and several fixed
values of KP ranging from 0.001 to 0.01.

(c) Design the PD controller to satisfy the performance specifications
given. Use the information on the root contours to help your design. Plot the
unit-step response of y(t).

(d) Check the design results obtained in part (c) in the frequency domain.
Determine the phase margin, gain margin, Mr, and BW of the designed
system.

11-37.   Consider a dc motor shown in Fig. 11P-37 and described in Sec. 4-
7-3.



Figure 11P-37

Assuming the following:
The rotor inertia (J ) = 0.01 kg ⋅ m2/s2

Damping ratio of the mechanical system (ζ) = 0.1 Nms
Back-emf constant (Kb) = 0.01 Nm/amp
Torque constant (Kt) = 0.01 Nm/amp
Armature resistance (Ra) = 1 Ω
Armature inductance (La) = 0.5 H

Design a PID controller that satisfies the following:
(a) Settling time is less than 2 s.
(b) Maximum overshoot is less than 5 percent.
(c) Steady-state error is less than 1 percent.

11-38.   For the dc motor described in Prob. 11-37, assuming the
following:

The rotor inertia (J ) = 3.2284E-6 kg ⋅ m2/s2

Damping ratio of the mechanical system (ζ) = 3.5077E-6 Nms
Back-emf constant (Kb) = 0.0274 Nm/amp
Torque constant (Kt) = 0.0274 Nm/amp
Armature resistance (Ra) = 4 Ω
Armature inductance (La) = 2.75E-6 H

Design a PID controller that satisfies the following:



(a) Settling time is less than 40 ms.
(b) Maximum overshoot is less than 16 percent.
(c) Zero steady-state error is less than 1 percent.
(d) Zero steady-state error due to a disturbance.

11-39.   Consider the broom-balancing control system described in Probs.
3-43 and 8-51. The A* and B* matrices are given in Prob. 8-51 for the small-
signal linearized model.

Figure 11P-39 shows the block diagram of the system with a series PD
controller. Determine if the PD controller can stabilize the system; if so, find
the values of KP and KD. If the PD controller cannot stabilize the system,
explain why not.

Figure 11P-39

11-40.   The process of a unity-feedback control system has the transfer
function

Design a series controller (PD, PI, or PID) so that the following
performance specifications are satisfied:

Steady-state error due to a step input = 0
Maximum overshoot < 2%
Rise time < 0.02 s

Carry out the design in the frequency domain and check the design in the
time domain.



11-41.   The forward path of a unity-feedback control system that includes
a disturbance signal D(s) is given by

(a) Design a PID controller with the transfer function of 

 so that the response to any
step disturbance is damped in less than 3 s at the 2 percent settling time.

(b) Use MATLAB to plot the response of the closed-loop system to
various step disturbance inputs and verify your design in part (a).

11-42.   For the inventory control system shown in Fig. 11P-35, let the
controller be of the phase-lead type:

Determine the values of a and T so that the following performance
specifications are satisfied:

Steady-state error due to a step input = 0
Maximum overshoot < 5%

(a) Design the controller using the root contours with T and a as variable
parameters. Plot the unit-step response of the designed system. Plot the Bode
diagram of Gs(s) = Gc(s)GP(s), and find PM, GM, Mr, and BW of the designed
system.

(b) Design the phase-lead controller so that the following performance
specifications are satisfied:

Steady-state error due to a step input = 0
Phasemargin > 75°
Mr < 1.1

Construct the Bode diagram of G(s) and carry out the design in the
frequency domain. Find the attributes of the time response of the designed
system.



11-43.   Consider that the process of a unity-feedback control system is

Let the series controller be a single-stage phase-lead controller:

(a) Determine the values of a and T so that the zero of Gc(s) cancels the
pole of Gp(s) at s = –10.

The damping ratio of the designed system should be unity. Find the
attributes of the unit-step response of the designed system.

(b) Carry out the design in the frequency domain using the Bode plot. The
design specifications are as follows:

Phasemargin > 75°
Mr < 1.1

Find the attributes of the unit-step response of the designed system.

11-44.   Figure 11P-44 shows the quarter-car model realization with 2° of
freedom.



Figure 11P-44

Assuming:
Body mass (mc) = 2500 kg
Suspension mass (mw) = 320 kg
Spring constant of suspension system (kc) = 80,000 N/m
Spring constant of wheel and tire (kw) = 500,000 N/m
Damping constant of suspension system (Cs) = 350 Ns/m
Damping constant of wheel and tire (Xw) = 15,020 Ns/m

When the vehicle is experiencing any road disturbance, the vehicle body
should not have large oscillations, and the oscillations should be damped
quickly. If the deformation tire is negligible, and the road disturbance (D) is
considered a step input,

(a) Design a PID controller that satisfies the following requirements:
(i) Overshoot less than 5 percent
(ii) Settling time shorter than 5 s

(b) Use MATLAB to plot the response of the closed-loop system to
various step disturbance inputs and verify your design in part (a).



11-45.   Consider that the controller in the liquid-level control system
shown in Fig. 11P-10 is a phase-lead controller:

(a) For N = 20, select the values of a and T so that the maximum overshoot
is barely 0 percent. The value of a must not exceed 1000. Find the attributes
of the unit-step response of the designed system. Plot the unit-step response.

(b) For N = 20, design the phase-lead controller in the frequency domain.
Find the values of a and T so that the phase margin is maximized subject to
the condition that BW > 100. The value of a must not exceed 1000.

11-46.   The transfer function of the process of a unity-feedback control
system is

(a) Construct the Bode diagram of Gp(jω) and determine the PM, GM, Mr,
and BW of the system.

(b) Design a series single-stage series phase-lead controller with the
transfer function

so that the phase margin is maximum. The value of a must not be greater
than 1000. Determine PM and Mr of the designed system. Determine the
attributes of the unit-step response.

(c) Using the system designed in part (b) as a basis, design a two-stage
phase-lead controller so that the phase margin is at least 85°. The transfer
function of the two-stage phase-lead controller is

where a and T1 are determined in part (b). The value of T2 should not



exceed 1000. Find the values of PM and Mr of the designed system. Find the
attributes of the unit-step response.

(d) Plot the unit-step responses of the output in parts (a), (b), and (c).
Figure 11P-47 shows an inverted pendulum on a cart.

Figure 11P-47

Assuming:

(a) Design a PID controller so that the settling time is less than 5 s and the
pendulum angle is never more than 0.05 radians from the vertical position.

(b) If the step input is applied to the cart, design a PID controller so that
the settling time for x and q is less than 5 s, the rise time for x is less than 0.5
s, and the overshoot of theta is less than 20° (0.35 rad).



11-48.   A phase-lock-loop, dc-motor-speed-control system. The block
diagram of the system is shown in Fig. 11P-48. The system parameters and
transfer functions are given as follows:

Figure 11P-48

Reference speed command, ωr = 120 pulse/s
Phase-detector gain, Kp = 0.06 V/pulse/s
Amplifier gain, Ka = 20
Encoder gain, Ke = 5.73 pulse/rad
Counter gain, N = 1

Motor transfer function,

(a) Let the filter (controller) transfer function be of the form

where R1 = 2 × 106 Ω and C = 1 μF. Determine the value of R2 so that the
complex roots of the closed-loop characteristic equation have a maximum
relative damping ratio. Sketch the root loci of the characteristic equation for 0
≤ R2 < ∞. Compute and plot the unit-step responses of the motor speed fω(t)
(pulse/s) with the values of R2 found, when the input is 120 pulse/s. Convert
the speed in pulse/s to rpm.

(b) Let the filter transfer function be



where T = 0.01. Find a so that the complex roots of the characteristic
equation have a maximum relative damping ratio. Compute and plot the unit-
step response of the motor speed fω(t) (pulse/s) when the input is 120 pulse/s.

(c) Design the phase-lead controller in the frequency domain so that the
phase margin is at least 60°.

11-49.   Consider that the controller in the liquid-level control system
shown in Fig. 11P-10 is a single-stage phase-lag controller:

(a) For N = 20, select the values of a and T so that the two complex roots
of the characteristic equation correspond to a relative damping ratio of
approximately 0.707. Plot the unit-step response of the output y(t). Find the
attributes of the unit-step response. Plot the Bode plot of Gc(s)Gp(s) and
determine the phase margin of the designed system.

(b) For N = 20, design the phase-lag controller in the frequency domain so
that the phase margin is approximately 60°. Plot the unit-step response of the
output y(t), and find the attributes of the unit-step response.

11-50.   The controlled process of a unity-feedback control system is

The series controller has the transfer function

(a) Design a phase-lead controller (a > 1) so that the following
performance specifications are satisfied:

Ramp-error constant Kv = 10
Maximum overshoot is near minimum

The value of a must not exceed 1000. Plot the unit-step response and give its



attributes.
(b) Design a phase-lead controller in the frequency domain so that the

following performance specifications are satisfied:
Ramp—error constant kv = 10
Phase margin is near maximum.
The value of a must not exceed 1000.

(c) Design a phase-lag controller (a < 1) so that the following performance
specifications are satisfied:

Ramp-error constant Kv = 10
Maximum overshoot < 1%
Rise time ts < 2 s
Settling time tr < 2.5 s

Find the PM, GM, Mr, and BW of the designed system.
(d) Design the phase-lag controller in the frequency domain so that the

following performance specifications are satisfied:
Ramp-error constant Kv = 10
Phase margin > 70°

Check the unit-step response attributes of the designed system and
compare with those obtained in part (c).

11-51.   Figure 11P-51 shows the “beam and ball” system that is described
in Prob. 4-11.



Assuming:

Design a PID controller so that the settling time is less than 3 s and the
maximum overshoot is no more than 5 percent.

11-52.   The controlled process of a dc-motor control system with unity
feedback has the transfer function



Due to the compliance in the motor shaft, the process transfer function
contains two lightly damped poles, which will cause oscillations in the output
response. The following performance criteria are to be satisfied:

Maximum overshoot < 1%
Rise time tr < 0.15 s
Settling time ts < 0.15 s
Output response should not have oscillations
Ramp-error constant is not affected

(a) Design a series phase-lead controller,

so that all the step-response attributes (except for the oscillations) are
satisfied.

(b) To eliminate the oscillations due to the motor shaft compliance, add
another stage to the controller with the transfer function

so that the zeros of Gc1(s) will cancel the two complex poles of Gp(s). Set
the value of ζp so that the two poles of Gc1(s) will not have an appreciable
effect on the system response. Determine the attributes of the unit-step
response to see if all the requirements are satisfied. Plot the unit-step
responses of the uncompensated system the compensated system with the
phase-lead controller designed in part (b).

11-53.   A computer-tape-drive system utilizing a permanent-magnet dc-
motor is shown in Fig. 11P-53a. The closed-loop system is modeled by the
block diagram in Fig. 11P-53b. The constant KL represents the spring constant
of the elastic tape, and BL denotes the viscous-friction coefficient between the
tape and the capstans. The system parameters are as follows:

Kt = motor torque contant = 10 oz-in./A
Kb = motor back-emf constant 0.0706 V/rad/s
Bm = motor friction coefficient = 3 oz-in./rad/s



Ra = 0.25 Ω La ≅ 0 H
KL = 3000 oz-in./rad/BL 10 oz-in./rad/s
JL = 6 oz-in./rad/s2 Kf 1 V/rad/s
Jm = 0.05 oz-in./rad/s2

Figure 11P-53

(a) Write the state equations of the system between ea and θL using θL, ωL,
θm, and ωm as state variables and ea as input. Draw a state diagram using the
state equations. Derive the transfer functions:



(b) The objective of the system is to control the speed of the tape, ωL,
accurately. Consider that a PI controller with the transfer function Gc(s) = KP

+ KI/s is to be used. Find the values of KP and KI so that the following
specifications are satisfied:

Ramp-error constant Kv = 100
Rise time < 0.02 s
Settling time < 0.02 s
Maximum overshoot < 1% or at minimun

Plot the unit-step response of ωL(t) of the system.
(c) Design the PI controller in the frequency domain. The value of KI is to

be selected as in part (b). Vary the value of KP and compute the values of PM,
GM, Mr, and BW. Find the value of KP so that PM is maximum. How does
this value of KP compare with the result obtained in part (b)?

11-54.   Figure 11P-54 shows the block diagram of a motor-control system
that has a flexible shaft between the motor and the load. The transfer function
between the motor torque and motor displacement is

where JL = 0.01, BL = 0.1, KL = 10, Jm = 0.01, Bm = 0.1, and K = 100

Figure 11P-54

(a) Compute and plot the unit-step response of θm(t). Find the attributes of
the unit-step response.

(b) Design a second-order notch controller with the transfer function



so that its zeros cancel the complex poles of Gp(s). The two poles of Gc(s)
should be selected so that they do not affect the steady-state response of the
system, and the maximum overshoot is a minimum. Compute the attributes of
the unit-step response and plot the response.

(c) Carry out design of the second-order controller in the frequency
domain. Plot the Bode diagram of the uncompensated Gp(s), and find the
values of PM, GM, Mr, and BW. Set the two zeros of Gc(s) to cancel the two
complex poles of Gp(s). Determine the value of ζp by determining the amount
of attenuation required from the second-order notch controller and using Eq.
(11-155). Find the PM, GM, Mr, and BW of the compensated system. How do
the frequency-domain design results compare with the results in part (b)?

11-55.   The transfer function of the process of a unity-feedback control
system is

(a) Plot the Bode diagram of Gp(s) and determine the PM, GM, Mr, and BW
of the uncompensated system. Compute and plot the unit-step response of the
system.

(b) Design a series second-order notch controller with the transfer function

so that its zeros cancel the complex poles of Gp(s). Determine the value of
ζp using the method outlined in Sec. 11-8-2. Find the PM, GM, Mr, and BW of
the designed system. Compute and plot the unit-step response.

(c) Design the series second-order notch controller so that its zeros cancel
the complex poles of Gp(s). Determine the value of ζp so that the following
specifications are satisfied:

Maximum overshoot < 1%
Rise time < 0.4 s



Settling time < 0.5 s

11-56.   Design the controllers Gcf (s) and Gc(s) for the system shown in
Fig. 11P-56 so that the following specifications are satisfied:

Figure 11P-56

Ramp-error contant Kv = 50.
Dominant roots of the characteristic equation at –5 ± j5 approximately
Rise time < 0.01 s
System must be robust when K varies ±20% from the nominal value,

with the rise time and overshoot staying within specifications
Compute and plot the unit-step responses to check the design.

11-57.   Figure 11P-57 shows the block diagram of a motor-control system.
The transfer function of the controlled process is

Figure 11P-57

where K denotes the aggregate of the amplifier gain and motor torque
constant, and a is the inverse of the motor time constant. Design the
controllers Gcf (s) and Gc(s) so that the following performance specifications
are satisfied.

Ramp-error constant Kv = 100 when a = 10
Rise time < 0.3 s



Maximum overshoot < 8%
Dominant characteristic equation roots = –5 ± j5

System must be robust when a varies between 8 and 12.
Compute and plot the unit-step responses to verify the design.

11-58.   Figure 11P-58 shows the block diagram of a dc-motor control
system with tachometer feedback. Find the values of K and Kt so that the
following specifications are satisfied:

Figure 11P-58

Dominant characteristic equation roots correspond to a damping ratio of
approximately 0.707; if there are two solutions, select the larger value of K.

11-59.   Carry out the design with the specifications given in Prob. 11-58
for the system shown in Fig. 11P-59.

Figure 11P-59



11-60.   The block diagram of a control system with a type 2 process is
shown in Fig. 11P-60. The system is to be compensated by tachometer
feedback and a series controller. Find the values of a, T, K, and Kt so that the
following performance specifications are satisfied:

Figure 11P-60

R amp-error constant Kv = 100
Dominant characteristic equation roots correspond to a damping ratio

of 0.707

11-61.   The aircraft-attitude control system described in Sec. 5-8 is
modeled by the block diagram shown in Fig. 11P-61. The system parameters
are as follows:

Figure 11P-61



Find the values of K and Kt so that the following specifications are
satisfied:

Ramp-error constant Kv = 100
Relative damping ratio of the complex roots of the characteristic

equation is approximately 0.707

Plot the unit-step response of the designed system. Show that the system
performance is extremely insensitive to the value of K. Explain why this is
so.

11-62.   Figure 11P-62 shows the block diagram of a position-control
system with a series controller Gc(s).

Figure 11P-62

(a) Determine the minimum value of the amplifier gain K so that the
steady-state value of the output y(t) due to a unit-step torque disturbance is
≤0.01.

(b) Show that the uncompensated system is unstable with the minimum
value of K determined in part (a). Construct the Bode diagram for the open-
loop transfer function G(s) = Y(s)/E(s), and find the values of PM and GM.

(c) Design a single-stage phase-lead controller with the transfer function



so that the phase margin is 30°. Show that this is nearly the highest phase
margin that can be achieved with a single-stage phase-lead controller.
Find GM, Mr, and BW of the compensated system.
(d) Design a two-stage phase-lead controller using the system arrived at in

part (c) as a basis so that the phase margin is 55°. Show that this is the best
PM that can be obtained for this system with a two-stage phase-lead
controller. Find GM, Mr, and BW of the compensated system.

11-63.   The transfer function of the process of a unity-feedback control
system is

Show that, due to the relative high gain, the uncompensated system is
unstable.

(a) Design a two-stage phase-lead controller with

so that the phase margin is greater than 60°. Conduct the design by first
determining the values of a and T1 to realize a maximum phase margin that
can be achieved with a single-stage phase-lead controller. The second stage
of the controller is then designed to realize the balance of the 60° phase
margin. Determine GM, Mr, and BW of the compensated system. Compute
and plot the unit-step response of the compensated system.

(b) Design a single-stage phase-lag controller with

so that the phase margin of the compensated system is greater than 60°.
Determine GM, Mr, and BW of the compensated system. Compute and plot
the unit-step response of the compensated system.

(c) Design a lag-lead controller with Gc(s) as in the equation in part (a).
Design the phase-lag portion first by setting the phase margin at 40°. The
resulting system is then compensated by the phase-lead portion to achieve a



total of 60° of phase margin. Determine GM, Mr, and BW of the compensated
system. Compute and plot the unit-step response of the compensated system.

11-64.   The block diagram of the steel-rolling system described in Prob. 4-
18 is shown in Fig. 11P-64. The transfer function of the process is

Figure 11P-64

(a) Approximate the time delay by

Design a series controller of your choice so that the phase margin of the
compensated system is at least 60°. Determine GM, Mr, and BW of the
compensated system. Compute and plot the unit-step responses of the
compensated and the uncompensated systems.

(b) Repeat part (a) without using the approximation of the time delay.

11-65.   Human beings breathe in order to provide for gas exchange for the
entire body. A respiratory control system is needed to ensure that the body’s
needs for this gas exchange are adequately met. The criterion of control is
adequate ventilation, which ensures satisfactory levels of both oxygen and
carbon dioxide in the arterial blood. Respiration is controlled by neural
impulses that originate within the lower brain and are transmitted to the chest
cavity and diaphragm to govern the rate and tidal volume. One source of
signals consists of the chemoreceptors located near the respiratory center,
which are sensitive to carbon dioxide and oxygen concentrations. Figure 11P-
65 shows the block diagram of a simplified model of the human respiratory
control system. The objective is to control the effective ventilation of the
lungs so that a satisfactory balance of concentrations of carbon dioxide and



oxygen is maintained in the blood circulated at the chemoreceptor.

Figure 11P-65

(a) Plot the Bode diagram of the transfer function G(s) = Y(s)/E(s) when
G(s) = 1. Find the PM and GM. Determine the stability of the system.

(b) Design a PI controller, Gc(s) = KP + KI/s, so that the following
specifications are satisfied:

Ramp-error constant Kv = 1
Phase margin is maximized
Plot the unit-step response of the system. Find the attributes of the

unit-step response.
(c) Design a PI controller so that the following specifications are satisfied:

Ramp-error constant Kv = 1
Maximum overshoot is minimized
Plot the unit-step response of the system. Find the attributes of the

unit-step response. Compare the design results in parts (b) and (c).

11-66.   The block diagram of a control system with state feedback is
shown in Fig. 11P-66. Find the real feedback gains k1, k2, and k3 so that



Figure 11P-66

The steady-state error ess [e(t) is the error signal] due to a step input is zero.
The complex roots of the characteristic equation are at –1+j and –1–j.
Find the third root. Can all three roots be arbitrarily assigned while still

meeting the steady-state requirement?

11-67.   The block diagram of a control system with state feedback is
shown in Fig. 11P-67a. The feedback gains k1, k2, and k3 are real constants.



Figure 11P-67

(a) Find the values of the feedback gains so that
The steady-state error ess [e(t) is the error signal] due to a step input is

zero.
The characteristic equation roots are at –1 +j, –1–j, and −10.

(b) Instead of using state feedback, a series controller is implemented, as
shown in Fig. 11P-67b. Find the transfer function of the controller Gc(s) in
terms of k1, k2, and k3 found in part (a) and the other system parameters.

TERM PROJECT

11-68.   Develop a proportional, PD, PI, and PID controller for the simple
LEGO MINDSTORMS robotic arm discussed in Chap. 8.

PD performance specifications as follows:

Settling time ts ≤ 0.3 s

Maximum overshoot ≤ 5 percent

Steady-state error due to unit-ramp input ≤ 0.05

PI performance specifications as follows:

Settling time ts ≤ 1.5 s

Rise time tr ≤ 0.3 s

Maximum overshoot ≤ 10 percent

Steady-state error due to parabolic input ≤ 0.7

PID performance requirements are as follows:

Rise time tr ≤ 0.3 s

Settling time ts ≤ 1.5 s

Maximum overshoot ≤ 5 percent

Steady-state error due to parabolic input ≤ 0.7

Please see App. D and the solution manual. (Note: The controller design
process is not unique.)



1This example has also been solved using the MATLAB SISO design tool. See Example 11-10-1.
2For the MATLAB SISO design tool implementation, see Example 11-10-2.
3For the MATLAB SISO design tool implementation, see Example 11-10-3.
4A comprehensive description of the SISO design tool with examples appears in

http://www.mathworks.com/help/control/ug/overview-of-the-siso-design-tool.html.

http://www.mathworks.com/help/control/ug/overview-of-the-siso-design-tool.html
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291t, 492t

Asymptotes:
angles of, of root loci, 531, 545t, 546, 570



intersect of, 532f, 533, 534f, 535f, 545t, 546
Asymptotic plots. See Bode plots
Asymptotic stability, 230t, 231, 248
Attitude-control system, of aircraft. See also Second-order attitude control

system of aircraft; Third-order attitude-control system
block diagram of, 377f–378f, 815f
digital autopilot for, 14f
forward-path transfer function of, 674
frequency-domain design, PID controller, 710, 711f, 711t
PD controller, 683, 684f, 685t, 686, 688–690, 689f, 690t
PI controller, 699–702, 700f, 702t, 704f, 705–707, 705t, 707f
PID controller and, 800f
root loci of, 385f
second-order, 379–380, 407
steady-state response of, 386–387
third-order, 383–384, 385f–386f, 387
time-domain design:
PD controller, 674–683, 676f–678f, 678t, 685–686, 686t, 687f–688f
PI controller, 696–698, 697f, 698t, 699f, 702–703, 703f, 705t
PID controller, 708, 709t, 710f
root contours for, 679f–683f, 681t
time response of, 383–384
transient response of, 384–385
unit-step responses of, 382f, 386f, 676f, 678f, 678t

Attitude-control system, of guided missile, 73f, 74, 306f, 402f
Automatic Control Systems software. See ACSYS
Automobile engine, idle-speed control system for, 310, 311f
Automobiles. See also Quarter-car model

high-performance real-time control of, 4
idle-speed control system, 4, 5f
intelligent systems in, 3–4
steering control of, 4

Autopilot, 406



Auxiliary equation, 236
Axis:

fixed, 31
of rotation, 32

B
Back emf, 273–274

electric damping and, 276
shaft velocity and, 270

Back emf constant, 273
of LEGO MINDSTORMS NXT motor, 18, 19t, 294f–295f, 492t
torque constant relationship to, 276–277

Backlash, 12
in gear trains, 41
input–output characteristic of, 41f
physical model of, 41f

Ball and beam system, 69, 70f, 156f, 659f, 809f
Ball-suspension control system. See Magnetic-ball suspension control system
Ball-suspension system. See also Magnetic-ball-suspension system

free-body diagram of, 315, 316f
linearized state equations for, 518

Bandwidth (BW):
feedback and, 11
PI controller and, 798
prototype second-order system and, 592, 594f–595f
specifications of, 590

Belt and pulley, 36f, 38
of printwheels, 72f, 156, 304f

BIBO (bounded-input, bounded-output) stability, 228, 231
Block diagrams, 2, 163

antenna control system, of solar collector field, 215f
of armature-controlled dc motor, 17f, 278, 279f, 340f
of attitude-control system of aircraft, 377f–378f, 815f
cascade system, 166f–167f



closed-loop idle-speed control system, 7f
closed-loop transfer function and, 212
of control system with conditional feedback, 222, 223f
of dc motor, 275f, 305, 306f, 324f, 349f
of dc-motor control system, 216f, 653f
of dc-motor control systems, 814f
digital autopilot for aircraft attitude control, 14f
of electric train control, 216f
elements of, 164, 165f, 166
of feedback control systems, 167–169, 168f, 214, 215f, 224f, 254f,

505f, 653f
gain formula and, 191f, 192
of general control system, 165f
heating system, 163, 164f
idle-speed control system, 5f
of idle-speed control system, 507, 508f
of linear control systems, 168f, 399f–400f
of mass-spring-damper system, 201, 202f
mass-spring-friction system, 198f–199f
mathematical equations and, 169–172
MATLAB tools and, 209–211
of motor-control system, 812f–813f
of motor-control system with tachometer feedback, 250f
of multi-input systems with disturbance, 175f–176f
of multivariable systems, 176–178, 177f, 413f–414f, 415
open-loop control system, 7f
of PD controllers, 369f
of PI controllers, 372f
of position-control systems, 17f, 214f, 815f
potentiometer, 262f
reduction of, 172f–174f, 212f–213f
of RLC network, 204f, 205
sampled-data control system, 14f



of servomotors, 654f
SFGs and, 178, 179f, 185, 191f, 192
of spacecraft control systems, 509f
speed-control system, 758f
of state feedback, 468f
for steel-rolling process, 316f, 816f
sums and differences of signals in, 256, 257f
sun-seeker control system, 285f, 716f
of system undergoing disturbance, 352f
of transfer functions:
MATLAB and, 209–211
in parallel, 167f, 168
in series, 166, 167f
of unity feedback systems, 354f
of velocity-control system with tachometer feedback, 265f

Blocks, 166
Bode diagrams, 232

of aircraft position-control system, 643, 644f
of phase-lag controller, 742f
of PI controller, 694f
problems for, 656, 657f, 658–662, 806, 812, 817f
properties of, 586, 587f

Bode plots:
advantages of, 632
disadvantages of, 632
gain margin on, 632f, 633
of L(s), 633f, 634
L(s) plot and, 637f
PD controllers and, 673f
of phase-lag system, 748f
of phase-lead controller, 714f, 730f
phase margin on, 632f, 633
pure time delays and, 634, 635f



with SISO tool, 791f
slope of the magnitude curve of, 635–636, 637f–638f
stability analysis with, 631–635, 632f–633f, 635f
of sun-seeker system, 730f, 735f, 736
time delays and, 634, 635f

Bounded-input, bounded-output stability. See BIBO stability
Branch point, 167

relocation of, 172f, 173
Branches, 178

on root loci, 529, 546
Breakaway points (saddle points), on root loci, 538–540, 539f, 545t, 549

angles of arrival and departure at, 540f–543f
for forward-path transfer function, 573
pole-zero configuration, 572
root sensitivity at, 549

British units, 277
Broom-balancing system, 74f, 157, 160f, 161, 314f, 514, 518, 804f
Brushless PM dc motors, 270, 272, 273f
Bulk modulus, 52
BW. See Bandwidth

C
Cantilever beam, force applied to, 27f
Capacitance:

of incompressible fluid, 50–53
in RC network, 44f–45f
in RLC network, 43f–44f
in thermal systems, 47
units and notation for, 46t, 49t, 58t

Capacitors, 42f
in electric network, 140f
in RC networks, 44f–45f
in RLC networks, 43f–44f, 138

Cascade compensation, 665, 666f



Cascade decomposition, 134, 451f–452f, 507
Cascade system, 166f–167f
Catalytic converter, 509f, 510
Causal system, 86
Cause-and-effect relationships, 8. See also Feedback
CCF. See Controllability canonical form
Centroid, 532f, 533, 534f, 535f, 545t. See also Asymptotes
Characteristic equations:

from differential equations, 433–434
eigenvalues, 435
eigenvectors, 435–436
of magnetic-ball-suspension system, 466–467
of motor-load system, 157f
property of, 133
root sensitivity of, 549
roots of, 133, 228, 230, 234
of second-order prototype systems, 104
critically damped, 105f, 106
overdamped, 106
underdamped, 109, 110f
in similarity transformations, 439
stability and, 228, 230
from state equations, 133–134, 434
tfrouth stability tool for, 241–242
from transfer functions, 89, 434

Charge, units for, 46t
Chemical solution concentration controller, 655f
Circles, constant-M, 641f
Circular cross section, 55t
Closed-loop control systems, 7f, 167, 168f

controllability of, 463
frequency response of, 587, 588f–589f
gain-phase characteristics of, 589f



observability of, 463
open-loop control systems compared with, 7, 8f
poles of, 362f, 362t, 363f, 365t, 396f
roots of, 365, 366t, 370t, 371f
Routh-Hurwitz criterion for, 247–249
of second-order prototype system, 326
for steel-rolling process, 316f
tfrouth stability tool for, 241–242
zeros of, 396f

Closed-loop feedback function, 211
Closed-loop frequency response, of aircraft position-control system, 644,

646f
Closed-loop idle-speed control system, 7f–8f
Closed-loop position control, in quarter-car model, 287, 288f
Closed-loop response, 280f–281f, 282
Closed-loop stability, 604
Closed-loop transfer functions, 168, 177–178, 181, 190

block diagram and, 212
for feedback control systems, 504, 505f
gain formula and, 186
for intelligent vehicle obstacle avoidance, 18
MATLAB for, 214
Nyquist stability criterion and, 232
with PD controllers, 369
poles added to, 364, 365f, 365t
stability and, 231
steady-state error and, 346–349
of turboprop engine, 213, 214f
zeros added to, 365, 366f–367f, 366t

Coefficient:
motor viscous-friction, 34
thermal expansion, 52
viscous damping, 28



viscous friction. See Viscous friction coefficient
Comparators, 163–167, 165f

relocation of, 172, 173f
Compensated phase-lag system:

Bode plot of, 748f
root loci of, 741f

Compensated sun-seeker system:
Bode plots of, 735f, 736
unit-step responses of, 745f

Compensation:
cascade, 665, 666f
feedback, 665, 666f
feedforward, 665, 666f, 667
series, 665, 666f
series-feedback, 665, 666f
state-feedback, 665, 666f

Compensator, 797
Complementary root loci (CRL), 571f
Completely controllable process, 455
Completely state controllable, 456
Complex conjugate poles, 91, 92f, 99–100, 110, 394
Complex conjugate zeros, 91, 92f
Complex convolution, 88t
Complex shifting, 88t
Complex variable, analytic function of, 89
Compliance, in gear trains, 40
Compressible fluid, 52, 53f
Computer-tape-drive system, 810, 811f
Conditional feedback, control system with, 222, 223f
Conditionally stable system, 636, 637f–638f, 732
Conduction, 47, 48f
Conservation of mass:

for dynamic system modeling, 25



for incompressible fluids, 50f, 51–52
Conservation of volume, 51
Constant-conditional-frequency loci, 330, 331f
Constant-damping-factor loci, 330, 331f
Constant-damping ratio loci, 330, 331f
Constant-M circles, 641f
Constant-M loci, 639–644, 641f–644f
Constant-natural frequency loci, 330, 331f
Constants:

back emf. See Back emf constant
damping, 328
electrical time, amplifier-motor system and, 379
error, 354
low-time, 269
mechanical time, motor-load system and, 379
motor electric-time, 279
motor mechanical time, 279
spring, 27f, 34, 35t
for steady-state errors, 354–359
tachometer, 266
time. See Time constant
torque. See Torque constants
torsional spring, 32

Continuous-data control systems, 12–14, 13f
time response of, 318–319

Control Lab:
LEGO MINDSTORMS NXT motor. See also LEGO MINDSTORMS

NXT motor
modeling and characterization, 289–300
position control, 387–392
LEGOLab, 318
SIMLab, 318

Control system design. See also Frequency-domain design



controller configurations, 665–667, 666f
design specifications, 663–665
feedforward controllers and, 765, 766f
forward controllers and, 765, 766f
fundamental principles of, 667–668
intelligent vehicle obstacle avoidance, 15f–22f, 19t
lead-lag controller and, 751–753, 752f, 752t
minor-loop feedback control, 777–781, 778f–780f
PD controller and, 668–690
phase-lag controller and, 712, 738–751
phase-lead controller and, 711–738
PI controller and, 691–707
PID controller and, 707–711
pole-zero-cancellation design in, 753–764
problems for, 794–818
robust, 767–777
three steps for, 663

Control systems:
ac, 13, 14f, 262, 264f
applications of, 2f–6f
attitude-control. See Attitude-control system
block diagram of, 165f, 191f, 192
closed-loop, 167, 168f
components of, 2f
with conditional feedback, 222, 223f
continuous-data, 12–14, 13f
controllability of, 454–458, 455f–456f
dc, 12, 13f, 216f, 262, 263f
definition of, 1
design of, 253
digital, 14f
discrete-data, 14f
feedback. See Feedback control systems



flight, 306f
inverse Laplace transform in, 93–94
linear. See Linear control systems
linear modeling of, 25, 253
motor coupled to tachometer and inertial load, 305f
nonlinear. See Nonlinear control systems
objectives of, 1–2
open-loop, 6f, 7, 169
printwheel, 72f, 304f
robust, 767–777
rotary-to-linear motion. See Rotary-to-linear motion control systems
sampled-data, 14f
sensitivity and, 10
SFG of, 191f, 192
with state feedback, 454, 455f, 468f–469f, 517f, 520, 817f–818f
sun-seeker. See Sun-seeker control system
sun-tracking, 5f–6f
time-domain analysis of, 317–318

Controllability:
of closed-loop control systems, 463
control system with state feedback, 454
definition of, 456–457
of double-inverted pendulum, 514, 515f
general concept of, 455f–456f
input-output function and, 460
invariant theorems on, 462–464
of LEGO MINDSTORMS NXT motor, 493, 495
of liquid-level system, 512–514, 513f
of magnetic-ball-suspension system, 467
observability and, 454–455, 461–463, 462f
problems for, 502, 511, 512f, 516f
similarity transformations and, 463
state, 455–456, 511f



state equations and, 512
State-Space Analysis Tool for, 483, 487f
testing methods for, 457–458
transfer functions relationship to, 461–463, 462f

Controllability canonical form (CCF), 429, 439–441
direct decomposition to, 447, 448f
of LEGO MINDSTORMS NXT motor, 493, 495
transformation to, 501

Controllability matrix, 440–441
Controllable process, completely, 455
Controlled process, 7
Controlled variables, 2
Controllers, 7, 166

in feedback control systems, 253, 254f
feedforward, 765, 766f
forward, 765, 766f
lead-lag, 751–753, 752f, 752t
minor-loop feedback, 777–781, 778f–780f
notch. See Notch controllers
PD. See PD controllers
phase-lag, 712, 738–751
phase-lead, 711–738
PI. See PI controllers
PID. See PID controllers
robust, 767–777

Convection, 48f
Conversion between translational and rotational motions, 34, 36–38
Convolution, 88t
Coulomb friction, 28

steady-state errors and, 360, 361f
Critical point, 608, 609f, 611
Critically damped, second-order prototype systems, 105f, 106
CRL. See Complementary root loci



Cross-section view:
brushless PM dc motor, 273f
iron core PM dc motor, 271f
moving-coil PM dc motor, 272f
surface-wound PM dc motor, 271f

Cruise control system, 802f
Current:

capacitor and, 42
inductors and, 42
resistors and, 42
as state variable, 138–139
units for, 46t

Current law, 42
Cutoff rate, 590

D
Damper. See Dashpot, for viscous friction
Damping:

of dc motor, 324
electric, 276
in vibration absorber, 158f
viscous. See Viscous damping

Damping constant, 328
Damping factor, constant loci, 330, 331f
Damping ratio:

constant loci of, 330, 331f
of electrical networks, 43
normalized frequency versus, of prototype second-order system, 594f
of quarter car model, 37
relative, 376
resonant peak Mr versus, 593f
of rotational system, 33
of second-order prototype system, 104, 327f–331f, 328t



critically damped, 105f, 106
negative, 113, 114f–115f, 116t
overdamped, 106–109, 107f
roots of, 113, 114f–115f
underdamped, 109–112, 110f, 112f
of translational system, 28

Damping term, 675
Dashpot, for viscous friction, 27f–28f
dB (decibels), 628
dc-motor control systems, 12, 13f

block diagram of, 216f, 653f, 814f
gearbox system, 254, 255f
with integral controller, 478–479, 480f–481f
permanent-magnet. See Permanent-magnet dc-motor-control system
phase-lock-loop, 807f, 808
with potentiometers, 262, 263f
for printwheel, 307f, 401–402
root loci for, 574–576

dc (direct-current) motors, 13f, 269–277
in active control of suspension system, 37, 38f
armature-controlled, 277–283
block diagrams of, 275f, 305, 306f, 324f, 349f
feedback control systems with, 504f
of LEGO MINDSTORMS NXT motor, 289f
motion equation of, 405–406
operational principles of, 270
permanent-magnet. See Permanent-magnet dc motors
in phase-locked loops, 312f
PID controller for, 803f
position control of, 340f–341f, 342t
position-control systems, 262, 263f, 308, 309f
robotic arm, 312, 313f
SFG of, with nonzero initial conditions, 276f



speed control of, 349f, 350, 351f, 351t
with disturbance, 352, 353f
speed response of, 324f–325f, 325t, 326
sun-seeker control system and, 283, 284f, 286
torque production in, 270f
voltage equation of, 305

dc signals, 262, 263f
DCF. See Diagonal canonical form
Dead zone. See also Backlash

amplifier with, 359f
in gear trains, 41f

Decibels (dB), 628
Decompositions, of transfer functions, 193, 445, 446f

cascade, 134, 451f–452f
of differential equations, 120–121
direct. See Direct decomposition
parallel, 134, 452, 453f–454f

Delay time, 321, 322f, 334, 335f–336f, 664
Demodulator, 265
Density:

of incompressible fluid, 50–52
inertia and, 32
temperature and pressure and, 52
units and symbols for, 50–51

Derivative control, 259, 672. See also PID controllers
Design aspects of root loci:

addition of poles to G(s)H(s), root-locus, 553–555, 554f, 557, 558f–
561f

addition of zeros to G(s)H(s), root-locus, 555, 556f
Design problem, 319
Desired speed, 349
Diagonal canonical form (DCF), 443–444

controllability and, 457, 461f, 462



observability and, 461f, 462
transformation to, 501

Diagrams. See also Modeling
block. See Block diagrams
Bode, 232
free-body. See Free-body diagrams
op-amps, 256f
state. See State diagrams
state-flow, 217
sun-seeker control system, 284f

Differences and sums of signals, 256, 257f
Differential equations:

characteristic equations from, 433–434
decomposition of, 120–121
dynamic system modeling with, 25
first-order, 120–121, 155, 415–416
high-order, state equations and, 429–430
introduction to, 84
inverse Laplace transform. See Inverse Laplace transform
Laplace transform. See Laplace transform
linear ordinary, 85
for magnetic-ball suspension system, 147
MATLAB, 153
nonlinear, 85
partial conversion to, 85
for pendulum, 85
RC networks, 44–45
RLC networks, 43–44, 84f
second-order, 125–126, 417–418
for second-order prototype systems, 84
for spring-mass-damper system, 84f
state diagrams from, 193, 194f
steady-state response of, 109



for three-reactor tank, 153f
transfer functions of, 87, 89
transient response of, 109
in vector-matrix form, 159, 497
for vehicle with trailer, 68f, 155, 156f

Differentiation, 88t
Digital autopilot, for aircraft attitude control, 14f
Digital control systems, 14f
Dimensionless particles, mechanical systems and, 26
Dirac delta function, 117
Direct-current motors. See dc motors
Direct decomposition, 134–137, 446–447

accelerometer and, 136–137
to CCF, 447, 448f
of input-output transfer function, 136
to OCF, 448, 449f–451f
state diagrams and, 507

Discrete-data control systems, 14f
Disk memory-storage system, voice-coil motor in, 307, 308f
Displacement. See also Translational motion

angular. See Angular displacement
gear trains and, 38, 40
load, 34
motor, 34
relative. See Relative displacement
of spring, 27
in spring-mass-damper system, 29f
symbol for, 26
in three-spring system, 30f–31f
units for, 35t

Disturbance, 164
heat loss, 163
in multi-input systems, 175f–176f



noise and, 10, 11f
open loop response to, 278–280, 279f
speed control of dc motor with, 352, 353f
steady-state errors in systems with, 351, 352f–353f

Disturbance rejection, 663
Disturbance vector, 419
Divider, voltage, 46f
Dominant poles and zeros of transfer functions, 374, 375f–376f
Dominant roots, 384
Double-inverted pendulum, 514, 515f
Double-tank liquid-level system. See Two-tank liquid-level system
Drive-by-wire technology, 3
Driver assist systems, 3
Dual-channel incremental encoder:

one cycle of output signals of, 269f
signals, in quadrature, 267, 268f

Dynamic equations, 76f–77f, 418
Dynamic systems. See also Electrical systems; Fluid systems; Mechanical

systems; Modeling; Pneumatic systems; Thermal systems
design of, 253
modeling of, 25
state variables for, 123–124

E
Earthquake, three-story building and, 30, 31f
Eigenvalues, 133, 159, 162, 230, 435, 500

of magnetic-ball-suspension system, 466
in similarity transformations, 439

Eigenvectors:
characteristic equations and, 435–436
generalized, 436–437
in similarity transformations, 439

Electric circuit representation, of potentiometer, 261f
Electric damping, 276



Electric friction. See Back emf
Electric furnace, 518, 519f
Electric train, in traction system, 313–314
Electric train control, block diagram of, 216f
Electrical elements:

active, 254–259
passive, 42f

Electrical networks:
electrical schematics for, 207f
fluid system analogies to, 63t, 81f
mechanical system analogies to, 61, 62f, 63t, 81f
modeling of, 42–46
SFGs for, 207f, 219f
state equations for, 140f, 141, 142f, 206, 207f–208f, 521f
thermal system analogies to, 63t
unit-step response for, 206, 208f

Electrical schematics:
for electrical network, 207f
of RC network, 44f–45f
of RLC network, 43f–44f, 204f

Electrical systems:
differential equation modeling of, 25
dynamic equations of, 76f
Laplace transform of, 101, 102f–104f
modeling of, 42–46
op-amps, 254–259
properties and units for, 46t

Electrical time constant, amplifier-motor system and, 379
Electrochemical system, unit-step response of, 154
Electromechanical systems, 277. See also Potentiometers
Electromechanical transducer, 259
Electromotive force. See Back emf
Elementary heat transfer properties. See Heat transfer



Encirclements, 604, 605f–606f
Enclosures, 604, 605f–606f
Encoders. See also Sensors

in dc motor-gearbox system, 254, 255f
incremental, 266f–269f
sensors and, 259

Energy, units for:
in electrical systems, 46t
heat stored, 47, 49t
in mechanical systems, 35t

Engine, automobile, idle-speed control system for, 310, 311f
Engine, turboprop:

closed-loop transfer function of, 213, 214f
signals of, coupling between, 222f

Equations. See also Differential equations
for acceleration, 26
for capacitance, 47
characteristic, 89
fluid continuity, 50f, 51
for fluid systems, 50f, 51
for force. See Force equations
for inertia, 32
for motor-load system, 34
output. See Output equation
for RC network, 44–45
for RLC network, 43
state. See State equations
state space. See State space equations
for torque. See Torque equations
for translational and rotational motion conversion, 34, 36
for velocity, 28
voltage. See Voltage equation
for voltage divider, 46



Equations of motion:
of ball and beam system, 156f
of quarter car model, 37, 580
of rotation, 31–33
of spring-mass-damper system, 28–29
of three-spring system, 30, 31f
of train controller, 68f
of vehicle suspension system, 67f
of vibration absorber, 75f

Error, quantization, 360f
Error constants, 354
Error discriminator, 284, 285f
Error signal, 163–164, 167
Error transfer function, 212
Estimator, 665
Euler’s formula, 92, 111
Evans, W. R., 523
Exhaust-emission-performance standards, 509f, 510, 799f, 800
External disturbance, 10, 11f

F
FBDs. See Free-body diagrams
Feedback, 8f, 164

bandwidth and, 11
frequency responses and, 11
impedance and, 11
negative, 9, 168f
noise and, 10, 11f
overall gain and, 8f, 9
positive, 168
stability and, 9f, 10
state. See State feedback
transient responses and, 11

Feedback compensation, 665, 666f



Feedback control systems. See also Closed-loop control systems
asymptotic stability and, 248
block diagram of, 167–169, 168f, 214, 215f, 224f, 254f, 505f, 653f
conditions for, 167
configuration of, 8f
with dc motor, 504f
elements of, 253, 254f
linear versus nonlinear, 11–12
multivariable, 176, 177f
nonunity. See Nonunity feedback control systems
with PD controller, 669f
SFG of, 179f, 180
state, 454, 455f, 468f–469f, 517f, 520
state diagrams of, 507
steady-state errors of, 397f
time-invariant versus time-varying, 12
torque-angle curve of, 360, 361f
with two feedback loops, 9f
types of, 11
unity. See Unity feedback systems

Feedback controller, minor-loop, 777–781, 778f–780f
Feedback loops:

negative, 168f
positive, 168
unity, 169

Feedback-path transfer function matrix, of multivariable feedback control
system, 414–415

Feedback transfer function, 168, 212
Feedforward compensation, 665, 666f, 667
Feedforward compensators, sun-seeker system and, 765, 766f
Feedforward controllers, 765, 766f
Feedforward transfer function, 404

root loci for, 575



Final-value theorem, 88t, 93
for modified second-order prototype systems, 109

First-order differential equations, 415–416
higher-order decomposition to, 120–121
state equations and, 155
in vector-matrix form, 155

First-order linear ordinary differential equation, 85
Laplace transform of, 101, 102f–104f

First-order op-amp configurations, 256–257, 258t
First-order prototype systems:

Laplace transform of, 101, 102f–104f
poles of, 323f
of RC networks, 45
time constant of, 101, 322–323
time response of, 103, 322, 323f
unit-step response of, 103, 104f, 323f

Fixed axis, 31
Fixed-configuration design, 665. See also Compensation
Flight-control system, 306f
Flow rate:

of fluid, 50f, 51
fluid inertance and, 53
fluid volume, 55t
heat, 47–49
mass, 50f, 51, 55–56, 58t
volumetric fluid, 51, 54, 58t

Fluid, heat transfer between insulated solid object and, 49f, 50
Fluid-boundary heat convection, 48f
Fluid capacitance, 50–53
Fluid continuity equation, 50f, 51
Fluid density:

of compressible fluid, 52
of incompressible fluid, 50–52



Fluid forced through frictionless pipe, 53f
Fluid inductance, 53f, 54
Fluid inertance, 53f, 54
Fluid power control, 50
Fluid resistance, 54f, 55t

one-tank liquid-level system, 54–57, 55f–56f
two-tank liquid-level system, 57f, 58

Fluid systems:
compressible, 52, 53f
differential equation modeling of, 25
electrical system analogies to, 63t, 81f
equations for, 50f, 51
incompressible. See Incompressible fluid systems
Laplace transform of, 101, 102f–104f
spring-loaded piston system, 52, 53f
vibration in, 78f, 79

Fluid viscosity, 55t
Fluid volume flow rate, 55t
Fly-by-wire control system, 377f–378f
Force:

cantilever beam application of, 27f
of fluid resistance, 54f
frictional, 28
gear trains and, 38
symbol for, 26
in viscous damping, 28
voltage analogy to, 62

Force-current analogy, 62
Force equations, 26

for broom-balancing system, 314f
for translational motion, 67f, 300, 301f

Force-mass system, 26f
Force-spring system, 27f



Force-voltage analogy, 62
Forward compensators, sun-seeker system and, 765, 766f
Forward controllers, 765, 766f
Forward path, 184
Forward-path gain, 185
Forward-path transfer function, 168, 178, 212, 316, 346

Bode plots of, in third-order sun-seeker control system, 730f
breakaway points for, 573
for feedback control systems, 504, 505f
gain-phase plot of, 659, 660f
integral control and, 651
of liquid-level system, 653
with PD controllers, 369
with PI controllers, 373
poles added to, 362f–363f, 362t, 364, 601f–602f
root loci for, 573–576
of second-order aircraft attitude control system, 674
third-order system with, 601f
unit-step responses of second-order system with, 600f
unity feedback systems and, 394–395, 398, 403, 650–651, 653, 656,

658
zeros added to, 367, 368f, 596–601, 597f–600f

Forward-path transfer function matrix, of multivariable feedback control
system, 414–415

Four-post shaker, 580, 581f
Free-body diagrams (FBDs):

of accelerometer, 128f
of active control of suspension system, 38f
of ball-suspension system, 315, 316f
broom-balancing system, 74f, 160f, 314f
of force-mass system, 26f
grain scale, 80f
inverted pendulum on cart, 69f



mass-spring-damper system, 201f
mass-spring-friction system, 197f
for modeling, 26f
motor-load system, 202f
of motor-load system, 33f, 34
Newton’s law of motion and, 26–27
of simple pendulum, 59f–61f, 228f
with spring and damper elements, 29f
with three springs, 30f–31f
of torque-spring system, 32f
of train controller, 68f, 155f

Frequency:
gain-crossover, 629
phase-crossover, 626

Frequency-domain analysis:
Bode diagrams for, 586, 587f
frequency response of closed-loop systems, 587, 588f–589f
polar plots in, 585, 586f–587f
sensitivity studies and, 646, 647f–648f
time-domain analysis compared with, 579
transfer function and, 580–587, 581f–584f, 582t, 586f–587f

Frequency-domain design:
frequency-domain characteristics in, 668
notch controller and, 762, 763f–764f, 764t
PD controllers and, 672, 673f, 683, 684f, 685t
performance specifications, 663–664
phase-lag controllers and, 742–743, 742f, 746–749, 748f, 749t
phase-lead controllers and, 714f, 715, 721–724, 724f, 725f, 725t, 729–

731, 730f, 731t
PI controllers and, 693–695, 694f
pole-zero-cancellation and, 757f, 758
second-order aircraft attitude control system, 683, 684f, 685t, 699–

702, 700f, 702t



with SISO tool, 788, 790f
third-order aircraft attitude control system:
PD controller, 686, 688–690, 689f, 690t
PI controller, 704f, 705–707, 705t, 707f
PID controller, 710, 711f, 711t
third-order sun-seeker control system and, 729–731, 730f, 731t
time-domain design compared with, 664, 668

Frequency-domain specifications:
bandwidth, 590, 592, 594f–595f
cutoff rate, 590
resonant frequency ωr, 590–592, 593f–594f
resonant peak Mr, 589–592, 593f–594f

Frequency of rotation, 74, 75f
Frequency response function, polar representation of, 582f–583f
Frequency responses, 663

of closed-loop systems, 587, 588f–589f
feedback and, 11
step responses and Nyquist plots, correlation among, 625–626, 627f
of vehicle suspension system, 580–585, 581f–584f, 582t

Friction:
Coulomb, 28, 360, 361f
of gear trains, 38f, 40
motion and, 28
static, 28
for transnational motion, 28f
viscous. See Viscous friction

Functions:
analytic, 89
Dirac delta, 117
error transfer, 212
G(s). See G(s) function
jerk, 321
poles of, 90f, 150



ramp. See Ramp function
sensitivity. See Sensitivity function
transfer. See Transfer functions
zeros of, 90f, 91, 150

Furnace, electric, 518, 519f
Furnace-control system, 661, 662f

G
G2(s)H2(s), pole-zero configuration of, 562, 564f, 567f
Gain crossover, 629
Gain-crossover frequency, 629, 662
Gain formula, 184

block diagrams and, 191f, 192
closed-loop transfer function and, 186
for mass-spring-friction system, 200
between output nodes and noninput nodes, 189–190
for RLC network, 205
for SFGs, 185–189, 188f
simplified, 190–192, 191f

Gain margin (GM), 663–664
on Bode plot, 632f, 633
definition of, 626, 628f
of nonminimum-phase systems, 628–629
physical significance of, 628
problems for, 658, 661–662

Gain-phase characteristics:
of feedback control system, 589f
of ideal low-pass filter, 588f

Gain-phase plots:
of aircraft position-control system, 644, 645f
of forward-path transfer function, 659, 660f
of L(s), 639f
problems for, 661



Gains, 169
Gas exchange, 816, 817f
Gear ratio:

of gear trains, 39
of LEGO MINDSTORMS NXT motor, 290t

Gear trains, 38–41
of LEGO MINDSTORMS NXT motor, 289f, 290
motor-load system and, 71, 72f, 303f
torque and, 71f
torque equations for, 302, 303f

Gearbox system, 254, 255f
Generalized eigenvectors, 436–437
GM. See Gain margin
Grain scale, 80f
Ground, virtual, 254
G(s) function:

analytic function of, 89
complex conjugate poles and zeros of, 91, 92f
with multiple-order poles, 96–99
partial-fraction expansion of, 94
poles of, 90f
root loci of, 638f
with simple complex-conjugate poles, 99–100
with simple poles, 94–96
zeros of, 90f, 91

G(s)H(s):
addition of poles to, 553–555, 554f, 557, 558f–561f
addition of zeros to, 555, 556f
angles of arrival of, 534–538, 536f–537f
at breakaway point, 541f–542f
angles of departure of, 534–538, 536f–537f
at breakaway point, 541f–542f
K = 0 points on root loci of, 528–529, 546



K = ±∞ points on root loci of, 528–529, 546
Nyquist criterion and, 610f, 611
pole-zero configuration of, 529–531, 533, 534f, 577f
real axis of, 534–535
symmetry of root loci at, 529, 530f–531f
variation of zero of, 566, 567f–568f

Guided missile, 157
attitude control of, 73f, 74, 306f, 402f

H
Heat convection, 48f
Heat exchanger system, 78f
Heat flow rate, 47–49
Heat loss, 163
Heat radiation system, with directly opposite ideal radiators, 49f
Heat stored, 47
Heat transfer:

capacitance, 47
conduction, 47, 48f
convection, 48f
between fluid and insulated solid object, 49f, 50
Laplace transform of, 102f–104f
radiation, 48, 49f

Heating system, 163, 164f
High-order differential equations, state equations relationship with, 429–430
High-pass filter characteristics, of PD controllers, 672, 673f
Homogeneous solution, of modified second-order prototype systems, 109
Horsepower (hp), 277
Hot oil forging, 77f
hp. See Horsepower
Hurwitz determinants, 233
Hybrid powertrains, 3–4
Hydraulic generator system, 79f



I
Ideal low-pass filter, 588f
Ideal op-amp, 254–255, 256f
Ideal radiators, heat radiation system and, 49f
Idealized models, linear feedback control systems as, 11–12
Idle-speed control system, 310, 311f, 507, 508f

automobile, 4, 5f
block diagram, 5f
closed-loop, 7f–8f
open-loop, 7f–8f

Imaginary axis, intersection of root loci with, 537f, 538, 545t, 548–549
Imbalance, rotating, 74, 75f
Impedance:

feedback and, 11
in ideal op-amp, 254, 256

Impulse response, 116f
MATLAB, 118
of second-order prototype system, 117, 118f
of single-input, single-output system, 119
time response with, 118–119

Inaccuracy, backlash and, 41
Incompressible fluid systems:

capacitance of, 50–53
conservation of mass for, 50f, 51
conservation of volume for, 51
electrical system analogies to, 63t
inductance of, 53f, 54
modeling of, 50
one-tank liquid-level system, 51f, 52, 54–57, 55f–56f
resistance of, 54f
two-tank liquid-level system, 57f, 58

Incremental encoders. See also Encoders
dual-channel, 266, 267f–268f



linear, 266, 267f
rotary, 266f, 267
single-channel, 267, 268f

Inductance:
of incompressible fluid, 53f, 54
of LEGO MINDSTORMS NXT motor, 17, 19t, 290–291, 292f, 492t
mass analogy to, 62
open loop response to, 278–280, 279f
in RC network, 44f–45f
in RLC network, 43f–44f
units and notation for, 46t

Inductors, 42f
in electric network, 140f
in RLC networks, 43f–44f, 138

Inertia:
backlash and, 41f
equation for, 32
of gear trains, 38f–39f, 40
load. See Load inertia
moment of, 19t, 298f, 299
motor, 34
in rotational motion, 31, 32f
symbol for, 31, 35t
in translational and rotational motion conversion, 34, 36
units for, 35t

Inertia-to-friction ratio, 41
Initial states, 416
Initial-value theorem, 88t
Input node, 182–183
Input-output transfer function, 136, 460, 506f
Input vector, 419
Inputs, 2

of accelerometer, 127



backlash and, 41f
in block diagram, 163–164
of electrical networks, 43
of impulse response, 118–119
of linear time-invariant system, 116f, 117
in multivariable system, 130
of rotational system, 33
of single-input, single-output system, 119
transfer function of, 87, 89
of translational system, 28

Insignificant poles, steady-state response, 377
Instability:

backlash and, 41
in guided missile, 306f

Insulated solid object, heat transfer between fluid and, 49f, 50
Integral controllers, 259. See also PID controllers

dc-motor control system with, 478–479, 480f–481f
forward-path transfer function and, 651
state feedback with, 475–481, 475f
sun-seeker system and, 476–478, 477f

Integration, 88t
Integration operation, state diagrams and, 192
Integrator, 230
Intelligent systems:

in automobiles, 3–4
LEGO MINDSTORMS NXT motor, 15f–22f, 19t

Internal friction, 28
Intersect of asymptotes, 532f, 533, 534f, 535f, 545t, 546
Intersection, of root loci with imaginary axis, 537f, 538, 545t, 548–549
Invariance properties, of similarity transformations, 439
Invariant theorems, on controllability/observability, 462–464
Inventory-control system, 251, 802f, 804–805
Inverse Laplace transform:



in direct decomposition, 134
of first-order prototype systems, 103
integral, 93
MATLAB, 96, 98–100, 106, 108, 152
of multiple-order poles, 96–99
by partial-fraction expansion, 94–100
problems for, 152
of second-order prototype systems:
critically damped, 106
modified, 109
overdamped, 108, 129–130
underdamped, 111–112
of simple complex-conjugate poles, 99–100
of simple poles, 94–96
of state equation, 129
of unit impulse, 117

Inverted pendulum, on cart, 69f, 410, 519, 520f, 807f
Inverting op-amp configuration, 257, 258f
Inverting op-amp transfer functions, 257, 258t
Iron-core PM dc motors, 270, 271f

J
JCF. See Jordan canonical form
Jerk function, 321
Jordan blocks, 445
Jordan canonical form (JCF), 444–445

controllability and, 457
transformation to, 501

Junction points. See Nodes

K
K = 0 points, on root loci, 528–529, 545t, 546
K = ±∞ points, on root loci, 528–529, 545t, 546
K values on root loci, calculation of, 544



Kalman, E., 454
Kirchoff’s laws:

for dynamic system modeling, 25
for electrical network modeling, 42

L
Laminar resistance, 54, 55t
Laplace operator, 86
Laplace transform:

in block diagrams, 164
definition of, 86
for direct decomposition, 136–137
final-value theorem, 88t, 93
inverse. See Inverse Laplace transform
of linear ordinary differential equations, 86, 100–101
first-order, 101, 102f–104f
second-order, 104, 105f–115f, 116t
of linear time-invariant system, 128–129
MATLAB, 87, 153
of modified second-order prototype systems, 109
of multivariable systems, 130, 132
one-sided, 86–87
poles of function, 90f
problems for, 150f–151f, 153
of state-transition equation, 423–424
steady-state response and, 109
theorems of, 87, 88t
transfer function of, 87, 89. See also Transfer function
transient response and, 109
of unit impulse, 117
zeros of function, 90f, 91

Laplace transform table, 94
Large space telescope (LST), 515, 516f
Laser printers, 277



Law of conservation of mass. See Conservation of mass
Lead-lag controller, 751–753, 752f, 752t, 800
Lead screw, 36f
LEGO MINDSTORMS NXT motor, 64, 65f

armature inductance of, 17, 19t, 290–291, 292f, 492t
armature resistance of, 17, 19t, 290, 291t, 492t
back-emf constant of, 18, 19t, 294f–295f, 492t
controllability of, 493, 495
electrical characteristics of, 290
gear train of, 289f, 290t
intelligent vehicle obstacle avoidance, 15f–22f, 19t
internals of, 289f
mechanical characteristics of, 291
mechanical time constant of, 298, 492t
model verification of, 299f, 299t, 300
moment of inertia of, 19t, 298f, 299, 492t
motor torque constant of, 18, 19t, 291–292, 293f–294f, 293t, 492t
no-load position response of, 387, 388f, 388t
observability of, 493, 495–496
PD controller for, 818
PI controller for, 818
PID controller for, 818
proportional control of, 489–494, 492t, 494f
robotic arm position control of, 489–496, 492t, 494f
robotic arm position response of, 387, 389f–391f, 389t, 392t
sensor gain of, 492t
speed response of, 299f, 299t, 300
unit-step responses of, 494f
viscous-friction coefficient of, 18, 19t, 295–296, 297f, 492t

LEGO MINDSTORMS robotic arm, PD controller for, 494–496
LEGOLab, 318
Lever, gear train and, 38
Lever arm (ball and beam system), 69, 70f



Light sensor, 15, 16f
Light source, in rotary incremental encoders, 267
Linear control systems:

block diagram of, 168f, 399f–400f
characteristic equation of, 89, 228
as idealized models, 11–12
Laplace transform for, 86
nonlinear control systems versus, 11–12
Nyquist stability criterion for, 652–653
observability of, 454–455, 458–460
root loci for, 572
rotary-to-linear motion control systems, 34, 36f
stability of, 227
steady-state value of, 397f
transfer function of, 512

Linear homogeneous state equation:
solution of, 128–129
transfer function, 130–131

Linear incremental encoder, 266, 267f
Linear models:

of control systems, 25, 253
of friction, 28
of springs, 27

Linear motion potentiometer, 259, 261f
Linear ordinary differential equations:

first-order, 85
Laplace transform of, 101, 102f–104f
Laplace transform and, 86, 100–101
second-order, 85
impulse response, 117
Laplace transform of, 104, 105f–115f, 116t

Linear spring, 27f
Linear time-invariant system, 116f, 117



Laplace transform of, 128–129
multivariable, 217
stability of, 230
state equations for, 160, 498–499
state space representation of, 146–147
transfer functions for, 151
vector-matrix form for, 159, 497

Linear velocity, 26
Linearization of nonlinear control systems:

for ball-suspension system, 518
for magnetic-ball suspension control system, 161, 162f, 315f
for magnetic-ball-suspension system, 465
simple pendulum, 59f–61f
state space approach to, 144–148
Taylor series for, 58–59

Liquid-level system:
controllability of, 512–514, 513f
forward-path transfer function of, 653
one-tank. See One-tank liquid-level system
PD controller for, 407f, 408, 796f
phase-lag controller for, 808
root loci for, 575
two-tank. See Two-tank liquid-level system
unit-step response of, 402, 403f

Load displacement, 34
Load inertia, 34

armature-controlled dc motor and, 278f, 281f
variable, position-control system and, 775, 776f, 777t

Load torque, 4, 5f
Load velocity, 34
Loop gain, 185f
Loop method, 42
Loop transfer function, 168, 212



angles of arrival of root loci for, 571
angles of departure of root loci for, 571
asymptotic stability and, 248
for chemical solution concentration controller, 655f
Nyquist plots and, 651–652
root contours of, 564f–565f

Loops, 184, 185f
feedback. See Feedback loops
nontouching, 185
phase-locked, 312f

Low-pass filter, ideal, 588f
Low-time-constant properties, 269
L(s) plot:

Bode plot and, 633f, 634, 637f
gain-phase plot and, 639f
Nyquist criterion and, 610f, 611
Nyquist plot and, 621f, 637f
poles added to, 621, 622f–624f
zeros added to, 624, 625f

LST. See Large space telescope
Lubricated surface, modeling of, 29f

M
Magnetic-ball suspension control system:

linearized state equations for, 161, 162f, 315f
state space representation of, 147f, 148

Magnetic-ball-suspension system, 464
characteristic equations of, 466–467
linearization of, 465
state feedback and, 471, 472f–473f

Magnetic brake, 324f–325f
Magnification versus normalized frequency, of prototype second-order

system, 593f
Magnitude-phase plane, constant-M loci in, 639–644, 641f–644f



Magnitude-phase plots:
of aircraft position-control system, 644, 645f
stability analysis with, 638, 639f
for vehicle suspension, 584f

Manipulation rules and algebra, for SFGs, 180f–182f
Marginally stable or unstable, 230t, 231
Mason, S. J., 178
Mass:

inductance analogy to, 62
law of conservation of, 50f, 51
units and symbols for, 26, 35t

Mass flow rate, 50f, 51, 55–56, 58t
Mass-spring-damper system. See Spring-mass-damper system
Mass-spring-friction system:

block diagrams, 198f–199f
FBD of, 197f
SFG of, 199f
state variables for, 505
unit-step response of, 200f

Mass-spring system. See Spring-mass system
Mathematical equations, block diagrams and, 169–172
MATLAB:

block diagrams and, 209–211
Bode plots, 587
for closed-loop feedback function, 211
for closed-loop transfer function, 214
development and availability of, 664
differential equations, 153
impulse response, 118
intelligent vehicle obstacle avoidance, 15f–22f, 19t
inverse Laplace transform, 96, 98–100, 103, 106, 108, 152
Laplace transform, 87, 153
partial-fraction expansion, 95–96, 98, 100, 152



polar plots, 587
poles and, 150
position response, 342–343
rise time and, 341
root-contour method, 785, 786f
root contours, 720
root-locus design tool, 782
settling time and, 341
SISO tool, 781–793
speed response, 326, 345
stability tools, 239–246
State-Space Analysis Tool, 482f, 483, 484f–485f
step response, 154, 156, 158, 205–206, 208, 363–364, 368, 371, 374,

719
symbolic tool, 87, 95–96, 98–100, 103, 108, 481, 485
tfcal, 481
tfrouth stability tool, 239–246
tfsym tool, 485, 489f, 490f, 491f, 497
time response, 103, 112, 139, 141, 143, 200
vector-matrix form, 159
zero-pole-gain models, 91
zeros and, 150

Matrices. See also Vector-matrix form
controllability, 440–441
feedback-path transfer function matrix, 414–415
forward-path transfer function matrix, 414–415
observability, 459
state-transition matrix. See State-transition matrix
transfer-function matrix. See Transfer-function matrix
vector-matrix representation of state equations, 418–420

Maximum overshoot, 321, 322f, 332, 333f–334f, 364–365, 663–664
Mechanical systems:

conversion between translational and rotational motions in, 34, 36–38



differential equation modeling of, 25
electrical system analogies to, 61, 62f, 81f
gear trains, 38–41
Laplace transform of, 101, 102f–104f
LEGO MINDSTORMS NXT motor and, 64, 65f
modeling of, 26–41
Newton’s second law of motion and, 26
particle dynamics and, 26
rotational motion in, 31–34
translational motion in, 26–31

Mechanical time constant:
of LEGO MINDSTORMS NXT motor, 298, 492t
motor-load system and, 379

Microradians, 343
Minimal set, of variables, 416
Minimum-phase transfer functions, Nyquist criterion for, 612–613, 616f–621f
Minor-loop feedback controller:

with active filter, 778–781, 779f–780f
rate feedback and, 777, 778f
sun-seeker system and, 779f–780f, 781
tachometer-feedback control and, 777, 778f

Modeling. See also Block diagrams
of actuators, 277
of dynamic systems, 25
of electrical elements, 254–259
of electrical systems, 42–46
of fluid systems, 50–58
linear, 25, 253
of mechanical systems, 26–41
of PM dc motors, 273f–276f
of tachometers, 266
of thermal systems, 47–50
of typical elements of block diagrams, 164–165, 165f



Modified second-order prototype systems, 108–109
Modulated signal, 262
Modulator, 265
Moment of inertia, of LEGO MINDSTORMS NXT motor, 19t, 298f, 299,

492t
Morning sickness, 10
Motion. See also Newton’s second law of motion

friction and, 28
rotational, 31–34
translational, 26–31

Motion equations. See also Equations of motion
for acceleration, 28
of aircraft, 70f
of dc motor, 405–406
for force, 26
of vehicle suspension system, 154f

Motor-control system:
block diagram of, 812f–813f
dynamics of, 503
open-loop, 302f
with tachometer feedback, 250f
torque-angle curve of, 360, 361f

Motor displacement, 34
Motor electric-time constant, 279
Motor inertia, 34
Motor-load system, 33f, 34, 39, 157f, 202f–203f

gear train and, 71, 72f, 303f
mechanical time constant and, 379
schematic diagram of, 304, 305f
torque equations for, 73f

Motor mechanical time constant, 279, 324
Motor-speed control, phase-locked loops for, 312f
Motor speed-torque curve, of LEGO MINDSTORMS NXT motor, 297f



Motor torque, 34, 38
Motor torque constant, of LEGO MINDSTORMS NXT motor, 18, 19t, 291–

292, 293f–294f, 293t, 492t
Motor velocity, 34
Motor viscous-friction coefficient, 34
Motors:

ac, 14, 262, 264f, 269
dc. See dc motors
servomotors. See Servomotors
tachometer and inertial load coupled to, 305f

Moving-coil PM dc motors, 271, 272f
Mr. See Resonant peak
Multi-input systems with disturbance, block diagram of, 175f–176f
Multiple-order poles, partial-fraction expansion of, 96–99
Multiplication by a constant, 88t
Multistage phase-lead controller, 733
Multivariable feedback control system:

block diagram of, 413f–414f
feedback-path transfer function matrix of, 414–415
forward-path transfer function matrix of, 414–415

Multivariable systems, 4
block diagrams of, 176–178, 177f, 413f–414f, 415
Laplace transform for, 130, 132
linear time-invariant, 217
transfer-function matrix for, 131–132
transfer functions of, 130–131, 176–178, 177f, 412–413

N
Natural frequency:

constant loci of, 330, 331f
of electrical networks, 43
of mass-spring system, 66f
of quarter car model, 37
of rotational system, 33



of second-order prototype system, 104, 113, 327f–331f, 328t
of translational system, 28
of vehicle suspension system, 67f, 154f

NC machines. See Numerical control machines
Negative damping, 331

of second-order prototype systems, 113, 114f–115f, 116t
Negative feedback, 9
Negative feedback loop, 168f
Newton’s second law of motion:

for dynamic system modeling, 25
fluid inertance and, 53
linear spring and, 27f
mechanical motion and, 26
for rotational motion, 31
in three-spring system, 30
for two-degree of freedom system, 29

Nichols chart, 639–643, 641f–643f
of aircraft position-control system, 644, 645f
nonunity feedback control systems and, 644–646
problems for, 656, 660

Node method, 42–43
Nodes, 178

input, 182–183
output, 183, 184f, 189–190

Noise, feedback and, 10, 11f
Nonfeedback systems. See Open-loop control systems
Noninput nodes and output nodes, gain formula between, 189–190
Nonlinear control systems, 85

block diagrams for, 164
linear control systems versus, 11–12. See also Linear control systems
simple pendulum, 59f–61f
Taylor series for linearization of, 58–59
vector-matrix form for, 144–145



Nonlinear differential equations, 85
Nonlinear system elements, steady-state error and, 359f–361f
Nonminimum-phase systems, GM of, 628–629
Nontouching loops, 185
Nonunity feedback control systems:

Nichols chart applied to, 644–646
steady-state errors and, 344f, 346–349
unity feedback system equivalent of, 345f

Normalized frequency:
damping ratio versus, of prototype second-order system, 594f
magnification versus, of prototype second-order system, 593f

Notation. See Units and symbols
Notch controllers. See also Speed-control system

frequency-domain design and, 762, 763f–764f, 764t
pole-zero-cancellation design with, 759–760
problems for, 812

Notch filters, 753–764
Number of branches, on root loci, 529, 546
Numerical control (NC) machines, 277
NXT motor. See LEGO MINDSTORMS NXT motor
Nyquist path, 610f, 611

problems for, 658
Nyquist plots:

advantages of, 631
disadvantage of, 631
gain crossover on, 629
loop transfer function and, 651–652
L(s) plot and, 621f–625f, 637f
phase crossover on, 628
problems for, 655f
root loci and, 613–616, 614f–615f
step responses and frequency responses, correlation among, 625–626,

627f



Nyquist stability criterion:
closed-loop transfer function and, 232
critical point and, 608, 609f, 611
fundamentals of, 603
generalized, 613
G(s)H(s) plot and, 610f, 611
for linear control system, 652–653
L(s) plot and, 610f, 611
minimum-phase transfer functions and, 612–613, 616f–621f
origination of, 605
principles of argument, 605–610, 606f, 608f–609f, 610t
problems for, 655f
root-locus technique compared with, 603, 613–616, 614f–615f
stability problem and, 603–604

O
Objectives, 1–2
Observability:

of broom-balancing system, 514
of closed-loop control systems, 463
controllability and, 454, 455f, 461–463, 462f
definition of, 458, 459f
input-output function and, 460
invariant theorems on, 462–464
of LEGO MINDSTORMS NXT motor, 493, 495–496
of magnetic-ball-suspension system, 467
outputs and, 458, 459f
problems for, 502–503, 511, 512f, 516f
similarity transformations and, 463
State-Space Analysis Tool for, 483, 488f
testing methods for, 459–460
transfer functions relationship to, 461–463, 462f

Observability canonical form (OCF):
direct decomposition to, 448, 449f–451f



of LEGO MINDSTORMS NXT motor, 493–494, 496
of similarity transformations, 441–442, 459
transformation to, 501

Observability matrix, 459
Observer, 665
Obstacle avoidance, intelligent vehicle, LEGO MINDSTORMS NXT motor,

15f–22f, 19t
OCF. See Observability canonical form
Ohm’s law, 42
Oil well system, 79f
One degree of freedom (1-DOF) system:

mechanical arm, 64, 65f
quarter-car model, 36, 37f–38f, 72, 73f, 287f, 580, 581f

One-sided Laplace transform, 86–87
One-tank liquid-level system:

fluid capacitance and, 51f, 52
fluid resistance and, 54–57, 55f–56f
Laplace transform of, 101, 102f–104f

op-amps. See Operational amplifiers
Open-loop base excitation, in quarter-car model, 287
Open-loop control systems, 6f, 7, 8f, 169
Open-loop idle-speed control system, 7f–8f
Open-loop motor control system, 302f
Open-loop response, disturbance and inductance, 278, 279f, 280
Open-loop stability, 604
Open-loop transfer function:

angles of arrival of root loci for, 571
angles of departure of root loci for, 571
stability of, 654–655

Open-top cylindrical container, fluid flow into, 51f
Operational amplifiers (op-amps):

configuration, inverting, 257, 258f
first-order, 256–257, 258t



ideal, 254–255, 256f
input-output relationship for, 256
issues with, 254
PD controller and, 670f
phase-lead controller and, 721
PI controller and, 691, 692f



realization, of transfer function, 257, 259
schematic diagram of, 256f
sums and differences of signals and, 256, 257f
transfer functions, inverting, 257, 258t
uses for, 254

Optical encoder, LEGO MINDSTORMS NXT motor and, 64, 65f
Oscillations, backlash and, 41
Output equations, 124–125, 417–418

for accelerometer, 126–127, 128f
for second-order differential equations, 125–126
state diagrams from, 195, 196f–197f
of train controller, 155f
in vector-matrix form, 126–128

Output nodes, 183, 184f
gain formula between noninput nodes and, 189–190

Output sensor, 167
Output vector, 419, 424
Outputs, 2

of accelerometer, 126–127
backlash and, 41f
in block diagram, 163–164
of electrical networks, 43
of impulse response, 118–119
of linear time-invariant system, 116f, 117
in multivariable system, 130
observability and, 458, 459f
of rotational system, 33
of single-input, single-output system, 119
state variables compared with, 417
transfer function of, 87, 89
of translational system, 28

Overall gain, feedback and, 8f, 9
Overdamped, second-order prototype systems, 106–109, 107f



inverse Laplace transform of, 129–130
Overshoot, 406, 794. See also Maximum overshoot

P
Pade approximation, 661, 662f
Parabolic-function input, 320f

steady-state error with, 356, 357f, 358t, 395, 396f
Parallel decomposition, 134, 452, 453f–454f, 507
Parameter variations, sensitivity to, 663
Partial differential equations, conversion of, 85
Partial-fraction expansion:

of first-order prototype systems, 103
inverse Laplace transform by, 94–100
MATLAB, 95–96, 98, 100, 152
of multiple-order poles, 96–99
problems for, 152
of second-order prototype systems:
critically damped, 105f, 106
overdamped, 107–108
underdamped, 111
of simple complex-conjugate poles, 99–100
of simple poles, 94–96

Particle dynamics, mechanical systems and, 26
Particular solution, of modified second-order prototype systems, 109
Passive electrical elements, modeling of, 42f
Path gain, 184
Paths, 184f
Payload, of space-shuttle-pointing control system, 250, 251f
PD (proportional-derivative) controllers:

as anticipatory control, 672
block diagram of, 369f
Bode plot and, 673f
design principle of, 673
design with, 668, 669f–670f, 795f



disadvantage of, 673
feedback control system with, 669f
frequency-domain interpretation of, 672, 673f, 683, 684f, 685t
high-pass filter characteristics of, 672, 673f
for LEGO MINDSTORMS NXT motor, 818
for LEGO MINDSTORMS robotic arm, 494–496
for liquid-level system, 407f, 408, 796f
op-amp circuit realization of, 670f
phase margin and, 796
problems for, 802f, 803–804
ramp-error constant in, 407f
second-order aircraft attitude control system and, 674–683, 676f–

678f, 678t, 795
with SISO tool, 785, 786f–787f
for spring-mass system, 409f
summary effects of, 674
third-order aircraft attitude control system and, 685–690, 685t, 687f–

689f, 688t, 690t
time-domain interpretation of, 670, 671f, 672, 674–683, 676f–678f,

678t
root contours for, 679f–683f, 681t
for vehicle suspension system, 409
zero addition with, 369f, 370t, 371f

Pendulum:
differential equations for, 85
double-inverted, 514, 515f
inverted, on cart, 69f, 410, 519, 520f, 807f
simple. See Simple pendulum
with spring, 68f
state space representation of, 145–146

Performance, 318–319, 330
Performance criteria, 319

transient responses, 339f, 340



Permanent-magnet dc-motor-control system, with viscous-inertia damper,
510f, 511

Permanent-magnet (PM) dc motors:
brushless, 272, 273f
classifications of, 270
iron-core, 270, 271f
modeling of, 273f–276f
moving-coil, 271, 272f
surface-wound, 271f

Permanent-magnet technology, 269
Phase crossover, 626
Phase-crossover frequency, 626, 662
Phase-lag controller, 712

Bode diagram of, 742f
compensated system, 741f, 748f
design strategies for, 739, 740f
frequency-domain design of, 742–743, 742f, 746–749, 748f, 749t
for liquid-level system, 808
pole-zero configuration of, 738f
problems for, 809, 816
speed-control system and, 760–761
sun-seeker system and, 744–749
third-order sun-seeker system and, 749, 750f–751f
time-domain design of, 738f–741f, 744f–745f, 746t, 747f
uncompensated system, 741f, 748f

Phase-lead controller, 711–738
Bode plot of, 714f
effects of, 732
frequency-domain design of, 714f, 715, 721–724, 724f, 725f, 725t,

729–731, 730f, 731t
limitations of, 732
multistage, 733
op-amp-circuit realization of, 721



pole-zero configuration of, 713f
problems for, 804–806, 808–810, 815–816
single-stage, 732
with SISO tool, 792f–793f
sun-seeker control system and, 716–724
third-order sun-seeker control system and, 726–731
time-domain design of, 713f, 716–721, 717f–719f, 721t, 726–728,

727f–728f, 728t
two-stage, 733–736, 733f, 735f, 736t, 737f

Phase-locked loops, 312f
Phase margin (PM), 629f–631f, 663–664

on Bode plot, 632f, 633
definition of, 629
PD controller and, 796
problems for, 658, 661–662

Phase-variable canonical form (PVCF), 429
Physically realizable system, 86
PI (proportional-integral) controllers:

advantages and disadvantages of, 695
bandwidth and, 798
block diagram of, 372f
Bode diagram of, 694f
design with, 691f–692f
for electric furnace, 518, 519f
frequency-domain design of, 693–695, 694f, 699–702, 700f, 702t
for LEGO MINDSTORMS NXT motor, 818
op-amp circuit realization of, 691, 692f
pole addition with, 372f–374f
pole-zero configuration of, 693f
problems for, 799–800, 804, 811f, 817f
prototype second-order system with, 691f–692f
ramp-error constant in, 408f, 797
for robotic arm, 798



second-order attitude control system and, 696–698, 697f, 698t, 699f
speed-control system and, 761–762
for spring-mass system, 409f
third-order attitude-control system and, 702–707, 703f–704f, 705t–

706t
time-domain design of, 693f, 696–698, 697f, 698t, 699f, 702–703,

703f, 705t
for vehicle suspension system, 409
zero addition with, 372f–374f

PID (proportional, integral, derivative) controllers, 257, 669
attitude-control system of aircraft and, 800f
for dc motor, 803f
design with, 707–708
function of, 361
implementation of, 259, 260f
for LEGO MINDSTORMS NXT motor, 818
problems for, 798, 799f, 800, 801f–802f, 803–804, 806, 807f, 809f
for spring-mass system, 409f
state feedback of, 468f–469f
third-order attitude-control system and, 708, 709t, 710f–711f, 711t
unit-step response of, 408f
for vehicle suspension system, 409

Pinion, rack and, 36f
Pipe:

fluid resistor and, 54f
frictionless, fluid forced through, 53f

Piston system, spring-loaded, 52, 53f
Pitch controller system, for aircraft, 662f
Plant, 166
PM. See Phase margin
Pneumatic systems. See also Fluid systems

differential equation modeling of, 25
Polar form, of poles, 92



Polar representation:
of frequency response function, 582f–583f
properties of, 585, 586f–587f

pole, 91, 210
Pole placement, 469
Pole-placement design, 455

through state feedback, 469–471, 472f–474f
Pole-zero cancellation, 460
Pole-zero-cancellation design:

exact cancellation, 753
frequency-domain design and, 757f, 758
inexact cancellations, 754f–755f
with notch controller, 759–760
second-order active filter, 756f, 757
speed-control system and, 759–760

Pole-zero configuration:
breakaway points, 572
of G2(s)H2(s), 562, 564f, 567f
of G(s)H(s), 529–531, 533, 534f, 577f
of phase-lag controller, 738f
of phase-lead controller, 713f
of PI controller, 693f
root loci for, 571f

Poles:
added to L(s) plot, 621, 622f–624f
angles of arrival of, 534–538, 536f–537f
at breakaway point, 541f–542f
angles of departure of, 534–538, 536f–537f
at breakaway point, 541f–542f
of closed-loop control system, 362f, 362t, 363f, 365t, 396f
closed-loop transfer function and addition of, 364, 365f, 365t, 405f
complex conjugate, 91, 92f, 99–100, 110, 394
dominant, of transfer functions, 374, 375f–376f



final-value theorem and, 93
of first-order prototype systems, 103f, 323f
forward path transfer function and addition of, 362f–363f, 362t, 364,

601f–602f
of function, 90f
G(s)H(s) addition of, 553–555, 554f, 557, 558f–561f
insignificant, steady-state response, 377
K = 0 points on root loci at, 528–529
MATLAB and, 91, 150
multiple-order, 96–99
PI controllers and addition of, 372f–374f
of polynomial, 234
problems for, 150
of second-order prototype systems, 104, 113, 114f–115f
critically damped, 105f, 106
overdamped, 107f
underdamped, 110f
simple, 90, 94–96
simple complex-conjugate, 91–92, 99–100
of simple pendulum, 229–230

Position control:
of armature-controlled dc motor, 282f, 283
closed-loop, 287, 288f
of dc motors, 340f–341f, 342t
of LEGO MINDSTORMS robotic arm, 489–496, 492t, 494f

Position-control system, of aircraft. See also Attitude-control system
Bode diagrams of, 643, 644f
closed-loop frequency response of, 644, 646f
gain-phase plots of, 644, 645f
Nichols chart of, 644, 645f
steady-state response and, 383
time domain analysis of, 377–380
unit-step response and, 380, 381f–382f, 383t



Position-control systems:
block diagram of, 17f, 214f, 815f
dc-motor, 262, 263f, 308, 309f
of electronic word processor, 214f
robust controllers for, 775, 776f, 777t
with tachometer feedback, 265f, 266

Position indicator, potentiometer as, 261f, 262
Position response:

of dc motor, 341f, 342t
of LEGO MINDSTORMS NXT motor:
no-load, 387, 388f, 388t
robotic arm, 387, 389f–391f, 389t, 392t
MATLAB, 342–343

Positive damping, 331
Positive feedback, 168
Potentiometers, 254. See also Sensors

ac control system with, 262, 264f
block diagram representation of, 262f
dc-motor position-control system with, 262, 263f
electric circuit representation of, 261f
linear motion, 259, 261f
as position indicator, 261f, 262
rotary, 259, 260f

Power, units for:
in electrical systems, 46t
in mechanical systems, 35t

Power supply, within enclosure, 78f
Power transfer, gear trains for, 38
Powertrains, hybrid, 3–4
Preload tension, on spring, 27
Pressure:

fluid density and, 52
fluid resistance and, 54f



of incompressible fluid, 50–51
turbulent resistance and, 54
units and symbols for, 58t

Pressure drop, 55t
Principles of argument:

determination of, 607, 608f
equation form of, 607
Nyquist criterion and, 605–610, 606f, 609f
statement of, 607
summary of outcomes of, 610t

Printers, laser, 277
Printwheels:

belt and pulley system, 72f, 156, 304f
control system, 72f, 304f
dc-motor control system for, 307f, 401–402
incremental encoder and, 268, 269f
robust controllers for, 775, 776f, 777t

Proportional control, 361, 668
of LEGO MINDSTORMS robotic arm, 489–494, 492t, 494f
with SISO tool, 781, 782f–783f

Proportional-derivative controllers. See PD controllers
Proportional-derivative-integral controllers. See PID controllers
Proportional gain, 259
Proportional-integral controllers. See PI controllers
Prototype first-order systems. See First-order prototype systems
Prototype second-order systems. See Second-order prototype systems
Pulley:

belt and, 36f. See also Belt and pulley
timing belt and, 38

Pure time delays, Bode plots and, 634, 635f
PVCF. See Phase-variable canonical form

Q
Quadrature, dual-channel encoder signals in, 267, 268f



Quantization error, 360f
Quantizer, 360f
Quarter-car model, 286

active feedback control in, 288, 289f
closed-loop position control, 287, 288f
controller design for, 409
frequency response of, 580–585, 581f–584f, 582t
one degree of freedom model, 36, 37f–38f, 72, 73f, 287f, 580, 581f
open-loop base excitation, 287
two degrees of freedom model, 36, 37f, 72, 73f, 287f, 805f

Quenching vat, hot oil forging in, 77f

R
Rack, in active control of suspension system, 37, 38f
Rack and pinion, 36f
Radiation, 48, 49f
Ramp error, 406, 407f–408f, 794, 797, 814f
Ramp function, 320
Ramp-function input:

steady-state error with, 355, 356f, 358t, 395, 396f
in time-domain analysis, 320f

Rate feedback, 777, 778f
Ratio:

damping. See Damping ratio
gear, 39
inertia-to-friction, 41

RC. See Root contours
RC (resistance-capacitance) network:

dynamic equations of, 77f
equation for, 44–45
Laplace transform of, 101, 102f–104f
modeling of, 44f–45f

Real axis, root loci on, 533–534, 536f, 545t, 546, 547f



Real convolution, 88t
Rectangular cross section, 55t
Rectangular form, of poles, 92
Rectangular output waveform, of single-channel encoder device, 267, 268f
Reference input signal, 318
Reference signal:

in speed control of dc motor, 349
in steady-state error, 343–345

Regulator system, 8
Regulators, 469
Relative damping ratio, 376
Relative displacement, in quarter-car model, 37
Relative stability, 228, 625, 663

gain margin and, 626, 628f–631f
phase margin and, 629f–631f
slope of the magnitude curve of Bode plot and, 635–636, 637f–638f

Relocation:
of branch point, 172f, 173
of comparator, 172, 173f

Resistance:
of incompressible fluid, 54f, 55t
laminar, 54, 55t
of LEGO MINDSTORMS NXT motor, 17, 19t, 290, 291t, 492t
in RC network, 44f–45f
in RLC network, 43f–44f
spring constant analogy to, 62
in strain gauge circuit, 76f, 77
thermal, 47, 48f
turbulent, 54
units and notation for, 46t, 49t, 58t

Resistance-capacitance network. See RC network
Resistance-inductance-capacitance network. See RLC network
Resistance-inductance network. See RL network



Resistors, 42f
in RC networks, 44f–45f
in RLC networks, 43f–44f
in voltage divider, 46f

Resonances, torsional, 33f, 34
Resonant frequency ωr:

prototype second-order system, 590–592, 593f–594f
specifications of, 590

Resonant peak Mr, 663–664
damping ratio versus, 593f
prototype second-order system, 590–592, 593f–594f
specifications of, 589–590

Respiration, 816, 817f
Results. See Outputs
Right-hand rule, rotation direction and, 33
Rigid body dynamics models, 26
Rigid object, incompressible fluid in, 52
Rise time, 321, 322f, 334, 335f–336f, 341, 663–664
RL. See Root loci
RL (resistance-inductance) network, state-transition method for, 427f, 428–

429
RLC (resistance-inductance-capacitance) network:

block diagram of, 204f, 205
differential equations of, 84f
dynamic equations of, 77f
equation for, 43–44
gain formula for, 205
modeling of, 43f–44f
SFG of, 204f, 205
spring-mass-damper system analogies to, 61, 62f
state equations for, 138–139, 205–206
state space equations for, 137–140, 138f, 140f
unit-step responses for, 139, 140f, 205–206, 207f



Robotic arm:
linearized model of, 312, 313f
one degree of freedom model, 64, 65f
PI controller for, 798

Robotics, 2
Robots, 277
Robust controllers, 767f

position-control system and, 775, 776f, 777t
second-order sun-seeker system and, 768f, 769t, 770f–773f, 772t
third-order sun-seeker system and, 773, 774f, 774t

Robust system, 549
Robustness, 663, 767
Rod:

under torsional load, 32f
viscous damping of, 32f, 33

Root-contour method, 679f–683f, 681t, 785, 786f
Root contours (RC), 524, 561–562, 563f

of loop transfer function, 564f–565f
MATLAB, 720
of sun-seeker control system, 718f–719f, 720, 747f
variation of zero of G(s)H(s), 566, 567f–568f

Root loci (RL), 523–524
angles of arrival of, 534–538, 536f–537f, 540f–543f
angles of asymptotes of, 531, 545t, 546, 570
angles of departure of, 534–538, 536f–537f, 540f–543f, 545t, 546,

548f
basic properties of, 524–528, 527f
breakaway points (saddle points) on, 538, 539f–543f, 545t, 549
calculation of values of K on, 544
of compensated phase-lag system, 741f
for dc-motor control systems, 574–576
design aspects of, 553–561
for feedforward transfer function, 575



for forward-path transfer function, 573–576
graphical construction of, 526–528, 527f
of G(s), 638f
intersect of asymptotes and, 532f, 533, 534f, 535f, 545t, 546
intersection of, with imaginary axis, 537f, 538, 545t, 548–549
K = 0 points on, 528–529, 545t, 546
K = ±∞ points on, 528–529, 545t, 546
for linear control systems, 572
for liquid-level system, 575
number of branches on, 529, 546
Nyquist plot and, 613–616, 614f–615f
for pole-zero configuration, 571f
primary calculation of, 547f
properties of, 528
on real axis, 533–534, 536f, 545t, 546, 547f
with SISO tool, 791f
summarization of properties, 544–549, 545t, 547f–548f
of sun-seeker system, 744f
symmetry of, 529, 530f–531f, 545t, 546
of third-order attitude-control system, 385f
for transfer functions, 575
of uncompensated phase-lag system, 741f

Root-locus design tool, 782
Root-locus diagrams:

addition of poles to G(s)H(s), 553–555, 554f, 557, 558f–561f
addition of zeros to G(s)H(s), 555, 556f

Root-locus technique, 523–524
Nyquist stability criterion compared with, 603, 613–616, 614f–615f
Routh-Hurwitz criterion and, 603

Root sensitivity, 549–553, 551f, 553t
Roots:

of characteristic equation, 133, 228, 230, 234
of closed-loop control systems, 365, 366t, 370t, 371f



of second-order prototype system damping ratio of, 113, 114f–115f
ROOTS command, 247
Rotary disk, 267f
Rotary incremental encoders:

optomechanics of, 267f
parts of, 267
typical, 266f

Rotary potentiometer, 259, 260f
Rotary-to-linear motion control systems, 34, 36

belt and pulley, 36f
lead screw, 36f
rack and pinion, 36f

Rotating imbalance, 74, 75f
Rotational motion, 31–34

backlash in, 41
electrical system analogies to, 63t
inertia for, 31, 32f
Newton’s second law of motion for, 31
right-hand rule and, 33
symbols for, 35t
torque and, 70f
torque equations for, 302f
torsional spring for, 32f
translational motion, conversion between, 34, 36–38
units for, 35t
viscous damping for, 32f, 33

Routh-Hurwitz criterion, 231–238
for imaginary axis intersection of root loci, 538, 548–549
problems for, 247–251
root-locus technique and, 603

Routh-Hurwitz stability test, of PI controllers, 373
Routh’s tabulation, 233–234

premature termination of, 235–238



S
s-plane:

analytic function at, 89
complex conjugate poles and zeros of, 91, 92f
final-value theorem and, 93
poles of, 90f, 150
stable and unstable regions in, 230, 231f
zeros of, 90f, 150

Saddle points, on root loci, 538–540, 539f, 545t, 549
angles of arrival and departure at, 540f–543f
for forward-path transfer function, 573
pole-zero configuration, 572
root sensitivity at, 549

Sampled-data control systems, 14f
Sampler, 14
Saturation, 12, 359f
Schematic diagrams. See Diagrams
Screw, lead, 36f
Second-order active filter, 756f, 757
Second-order attitude control system of aircraft, 379–380, 407

forward-path transfer function of, 674
frequency-domain design, 699–702, 700f, 702t
PD controller, 683, 684f, 685t
PD controller and, 795
time-domain design:
PD controller, 674–683, 676f–678f, 678t
PI controller, 696–698, 697f, 698t, 699f
root contours for, 679f–683f, 681t

Second-order differential equations, output equation for, 125–126, 417–418
Second-order linear ordinary differential equation, 85

Laplace transform of, 104, 105f–115f, 116t
Second-order prototype systems:

BW and, 592, 594f–595f



characteristic equation of, 104
damping ratio of, 104, 327f–331f, 328t
critically damped, 105f, 106
negative, 113, 114f–115f, 116t
overdamped, 106–109, 107f
roots of, 113, 114f–115f
underdamped, 109, 110f, 111, 112f
delay time and, 334, 335f–336f
differential equations for, 84
of electrical networks, 43
with forward-path transfer function, unit-step responses of, 600f
impulse response of, 117, 118f
inverse Laplace transform of:
critically damped, 106
modified, 109
overdamped, 108, 129–130
underdamped, 111–112
Laplace transform of, 104
critically damped, 105f, 106
overdamped, 106–109, 107f
underdamped, 109–112, 110f, 112f
magnification versus normalized frequency of, 593f
maximum overshoot and, 332, 333f–334f
modified, 108–109
natural frequency of, 327f–331f, 328t
with PI controller, 691f–692f
resonant frequency of, 590–592, 593f–594f
resonant peak of, 590–592, 593f–594f
rise time and, 334, 335f–336f
of rotational motion, 33
settling time and, 336–339, 337f, 338t
of simple complex-conjugate poles, 99–100
time constant of, 328



time response of, 112
transfer function of, 104–109, 398f
transient response of, 326–340
of translational motion, 28
unit-step response of, 113, 114f–115f, 116t
unit-step responses of, 328t, 329f–330f
unity feedback system, 400

Sensitivity:
control systems and, 10
to parameter variations, 663
speed-control system and, 762
studies, in frequency domain, 646, 647f–648f
third-order sun-seeker system and, 737, 738f

Sensitivity function, 10, 647–649, 737
of phase-lag controller, 749, 751f

Sensor gain, of LEGO MINDSTORMS NXT motor, 492t
Sensors, 166

encoders and, 259
in feedback control systems, 253, 254f
output, 163–164, 167
potentiometers, 259, 260f–264f, 265
in rotary incremental encoder, 267f
tachometers, 264f, 265

Series compensation, 665, 666f
Series-feedback compensation, 665, 666f
Servo-amplifier, 283–285, 284f
Servomechanisms, 277
Servomotors, 269, 400f

block diagram of, 654f
with tachometer feedback, 404f

Settling time, 321, 322f, 336–339, 337f, 338t, 341, 663–664
SFGs. See Signal-flow graphs
Shift in time, 88t



Short, virtual, 254
SI units, 277. See also Units and symbols
Signal-flow graphs (SFGs):

algebra and manipulation rules for, 180f–182f
block diagrams and, 178, 179f, 185
construction of, 179–180, 183f
of control system, 191f, 192
of dc-motor system with nonzero initial conditions, 276f
for electrical network, 207f, 219f
elements of, 178–179
of feedback control system, 179f, 180
gain formula for, 185–189, 188f
of mass-spring-damper system, 201, 202f
mass-spring-friction system, 199f
motor-load system, 203f
problems for, 217f–223f
representation of, 179f
of RLC network, 204f, 205
state diagrams and, 411
sums and differences of signals in, 256, 257f
terminology for, 182, 183f–185f

Signals:
ac, 262, 264f
dc, 262, 263f
dual-channel encoder, in quadrature, 267, 268f
sums and differences, op-amps and, 256, 257f
suppressed-carrier-modulated, 263, 264f
test, for time-response performance, 319–321, 320f

Similarity transformations, 438–439
CCF and, 439–441
characteristic equations in, 439
controllability and, 463
DCF and, 443–444



eigenvalues in, 439
eigenvectors in, 439
invariance properties of, 439
invariant theorem on, 462–463
JCF and, 444–445
observability and, 463
OCF and, 441–442, 459
transfer-function matrix for, 439

SIMLab, 318
Simple complex-conjugate poles, 91–92

partial-fraction expansion of, 99–100
Simple pendulum, 59f–61f

FBD of, 228f
stability of, 229–231

Simple poles, 90
partial-fraction expansion of, 94–96

Simplified gain formula, 190–192, 191f
Simply stable, 228
Simulink:

intelligent vehicle obstacle avoidance, 15f–22f, 19t
LEGO MINDSTORMS NXT motor and, 64, 65f

Single-channel incremental encoder:
rectangular output waveform of, 267, 268f
sinusoidal output waveform of, 267, 268f

Single-input, single-output (SISO) system:
controllability of, 457
integral control in, 475f
observability of, 459
similarity transformation of, 438–439
stability of, 227, 230
transfer function of, 119

Single-stage phase-lead controller, 732
Single-tank liquid-level system. See One-tank liquid-level system



Sink. See Output node
Sinusoidal output waveform, of single-channel encoder device, 267, 268f
SISO system. See Single-input, single-output system
SISO tool:

Bode plots with, 791f
design criteria incorporation with, 782, 783f–784f
frequency-domain design with, 788, 790f
PD controller with, 785, 786f–787f
phase-lead controller with, 792f–793f
proportional controller with, 781, 782f–783f
root loci with, 791f
time-domain design with, 781–788, 782f–783f, 786f–787f, 789f

Slope of the magnitude curve, of Bode plots, 635–636, 637f–638f
Solar collector field, 5f–6f

antenna control system of, 215f
Solar power, water extraction and, 5, 6f
Space-shuttle pointing control system, 250, 251f
Space state form. See State space form
Spacecraft control systems, block diagram of, 509f
Speed, desired, 349
Speed control:

of armature-controlled dc motor:
closed-loop response, 280–282
open-loop response, 278–280
of dc motor, 349f, 350, 351f, 351t
with disturbance, 352, 353f

Speed-control system:
block diagram of, 758f
notch controller and, 758–764
phase-lag controller for, 760–761
PI controller for, 761–762
pole-zero-cancellation design with notch controller, 759–760
sensitivity and, 762



time-domain performance attributes, 760, 761t
unit-step responses of, 761f

Speed response:
of dc motor, 324f–325f, 325t
of LEGO MINDSTORMS NXT motor, 299f, 299t, 300
MATLAB, 326, 345

Spring. See also Three-spring system
displacement of, 27
force-spring system and, 27f
linear, 27f
pendulums with, 68f
torsional. See Torsional spring

Spring constant, 27f, 34, 35t, 40
resistance analogy to, 62

Spring-damper system:
Laplace transform of, 101, 102f–104f
state equations for, 303f

Spring-loaded piston system, 52, 53f
Spring-mass-damper system, 169

block diagram of, 201, 202f
cantilever beam and, 27f
differential equations for, 84f
FBD of, 201f
RLC network analogies to, 61, 62f
SFG of, 201, 202f
two-degree of freedom with, 29f

Spring-mass-friction system. See Mass-spring-friction system
Spring-mass system:

natural frequency of, 66f
three-degree of freedom, 30, 31f
transfer function for, 409f
two-degree of freedom, 30f
two mass, 29f



Square cross section, 55t
Stability:

absolute, 228
asymptotic, 230t, 231, 248
BIBO, 228, 231
Bode plots and, 631–635, 632f–633f, 635f
closed-loop, 604
closed-loop transfer functions and, 231
feedback and, 9f, 10
of linear control systems, 227, 230
of linear time-invariant system, 230
magnitude-phase plot and, 638, 639f
marginal, 230t, 231
MATLAB tools for, 239–246
methods for determining, 231–232
Nyquist criterion and, 603–604. See also Nyquist stability criterion
open-loop, 604
of open-loop transfer function, 654–655
positive damping and, 331
relative. See Relative stability
roots of characteristic equation and, 228, 230
in s-plane, 230, 231f
of simple pendulum, 229–231
zero-input, 230

Stable system, conditionally, 636, 637f–638f, 732
Stall current, of LEGO MINDSTORMS NXT motor, 290, 291t
Stall torque, of LEGO MINDSTORMS NXT motor, 292
State controllability, 455–456, 511f, 516
State controllable, completely, 456
State diagrams, 192f–193f, 506

cascade decomposition and, 507
differential equations to, 193, 194f
direct decomposition and, 507



of feedback control system, 507
integration operation and, 192
of large space telescope, 515, 516f
of linear system, 508f
output equations from, 195, 196f–197f
parallel decomposition and, 507
problems for, 223, 224f
SFGs and, 411
state equations from, 195, 196f–197f
state-transition equation from, 426f–427f, 428–429
transfer functions to, 194f, 195

State equations, 52, 120–121, 415–416
of accelerometer, 126–127, 142, 143f
for broom-balancing system, 161
characteristic equations from, 133–134, 434
controllability and, 512
definition of, 123
for electrical network, 140f, 141, 142f, 206, 207f–208f, 521f
first-order differential equations and, 155
high-order differential equations relationship with, 429–430
inverse Laplace transform of, 129–130
for linear time-invariant system, 160, 498–499
for magnetic-ball suspension system, 148
for RL network, 427–428
for RLC network, 138–139, 205–206
for spring-damper system, 303f
state diagrams from, 195, 196f–197f
for three-reactor tank, 153
transfer functions and, 134–137, 430–433
for translational motion, 301f
for two degree of freedom mechanical system with three springs, 121,

122f
in vector-matrix form, 126–128



vector-matrix representation of, 418–420
for vehicle with trailer, 155, 156f

State feedback, 665
for broom-balancing system, 518
control system, 454, 455f, 468f–469f, 517f, 520, 817f–818f
with integral controller, 475–481, 475f
magnetic-ball suspension system and, 471, 472f–473f
pole-placement design through, 469–471, 472f–474f
sun-seeker system and, 473, 474f

State feedback compensation, 665, 666f
State-flow diagrams, 217
State-Space Analysis Tool:

command window, 485f
for controllability, 483, 487f
description and use of, 482f, 483, 484f–485f
for observability, 483, 488f
value input for, 484f
window, 482f

State space equations:
for aircraft, 156
of ball and beam system, 156f
for damping in vibration absorber, 158f
for linear time-invariant system, 146–147
for linearization of nonlinear control systems, 144–145
for magnetic-ball suspension system, 147f, 148
for pendulum, 145–146
for RLC network, 137–140, 138f, 140f
state variables in, 123, 127
of train controller, 155f
transfer function and, 130–131, 134–137
for vibration absorber, 157f, 158

State space form, 198, 416
tfrouth stability tool for, 243–246



of transfer function, 519
State space systems, 481
State-transition equation, 424–425

definition, 423
for RL network, 428
from state diagram, 426f–427f, 428–429

State-transition matrix, 420–421, 499, 503
of magnetic-ball-suspension system, 466
properties of, 422, 423f
significance of, 422

State variable analysis, 411
transfer functions and, 412–413

State variables, 121, 415–416
of accelerometer, 127, 142
for broom-balancing system, 157
conditions for, 416
of dc motor, 276
definition of, 123–124
in electric network, 140f, 141, 158f
for linearization of nonlinear control systems, 144–145
for magnetic-ball suspension control system, 148, 161, 162f
for multivariable systems, 131–132
output equation for, 124–125
outputs compared with, 417
for RLC network, 138–139
selection of, 122
of train controller, 155f
for vehicle with trailer, 155, 156f

State vector, 129, 419
Static equilibrium, of simple pendulum, 229
Static friction, 28
Stationary mask, in rotary incremental encoder, 267f
Steady-state accuracy, 663



Steady-state errors, 318, 321, 663
closed-loop transfer function and, 346–349
constants for, 354–359
Coulomb friction and, 360, 361f
defined, 343–344
of feedback control system, 397f
intelligent vehicle obstacle avoidance and, 18
nonlinear system elements and, 359f–361f
nonunity feedback and, 344f, 346–349
parabolic-function input and, 356, 357f, 358t, 395, 396f
PD controller and, 796
problems for, 517f
ramp-function input and, 355, 356f, 358t, 395, 396f
step-function input and, 354, 355f, 358t, 395, 396f
in systems with disturbance, 351, 352f–353f
unity feedback systems and, 343f, 346, 349f, 350, 395

Steady-state responses:
in continuous-data system, 317–318
insignificant poles and, 377
Laplace transform method and, 109
of motor-load system, 157f
position-control system and, 383
of simple pendulum, 229
stable control systems and, 227
of third-order attitude-control system, 386–387

Steady-state solution, of modified second-order prototype systems, 109
Steel-rolling process:

block diagram for, 316f, 816f
time delay for, 654

Steering control, of automobile, 4
Step-function input, 319, 320f

steady-state error with, 354, 355f, 358t, 395, 396f
Step response. See Unit-step response



Stephan-Boltzmann law, 48
Stiffness. See Spring constant
Strain gauge circuit, 76f, 77
Sums and differences:

of Laplace transforms, 88t
of signals, 256, 257f

Sun-seeker control system:
block diagram of, 285f, 716f
Bode plots of, 730f
compensated, 735f, 736, 745f
coordinate system of, 283, 284f
dc motor in, 283, 284f, 286
error discriminator of, 284, 285f
feedforward compensators and, 765, 766f
forward compensators and, 765, 766f
frequency-domain design, 729–731, 730f, 731t
integral controller and, 476–478, 477f
lead-lag controller and, 752f, 752t, 753
minor-loop feedback controller and, 779f–780f, 781
phase-lag controller and, 744–749
phase-lead controller and, 716–724
robust controllers and:
second-order, 768f, 769t, 770f–773f, 772t
third-order, 773, 774f, 774t
root contours of, 718f–719f, 720, 747f
root loci of, 744f
schematic diagram of, 284f
sensitivity considerations, 737, 738f
servo-amplifier of, 283–285, 284f
state feedback and, 473, 474f
tachometer of, 284f, 286
third-order, 726–731
time-domain design, 726–728, 727f–728f, 728t



two-stage phase-lead controller and, 733–736, 733f, 735f, 736t, 737f
uncompensated, 735f, 736, 745f
unit-step responses of, 717f, 721t, 728f, 737f, 745f

Sun-tracking control systems, 5f–6f
Superposition principle, 12, 131, 175, 256, 259, 279–280, 351, 412
Suppressed-carrier-modulated signal, 263, 264f
Surface-wound PM dc motors, 271f
Suspension system, 36, 37f–38f, 409f, 410. See also Quarter-car model

frequency response of, 580–585, 581f–584f, 582t
Sustained oscillation response, 331
sym, 103
Symbolic tool:

MATLAB, 87, 95–96, 98–100, 103, 108, 481, 485
Transfer Function, 485, 489f, 490f, 491f, 497

Symbols. See Units and symbols
Symmetry of root loci, 529, 530f–531f, 545t, 546
System error, 351
System with disturbance input, 351, 352f–353f

T
Tachometer constant, 266
Tachometer feedback, 468, 814f
Tachometer-feedback control, 777, 778f
Tachometers, 254. See also Sensors

control system and motor coupled to, 305f
modeling of, 266
position-control system with, 265f, 266
servomotor with, 404f
state feedback of, 468f–469f
sun-seeker control system and, 284f, 286
transfer function of, 266
velocity-control system with, 265f

Taylor series:
of complex conjugate poles, 92



fluid density and, 52
for linearization of nonlinear control systems, 58–59
for pendulum, 145–146

Teeth numbers, of gear trains, 39
Telescope, 800, 801f
Temperature:

fluid density and, 51–52
heat transfer and, 47, 49t

Temperature control, of air-flow system, 309, 310f
Ten-turn rotary potentiometer, 260f
Testing methods:

for controllability, 457–458
for observability, 459–460

tfcal, 481
tfrouth stability tool:

for characteristic equations, 241–242
for polynomial, 239–240
setup of, 239
for state space form, 243–246

tfsym (Transfer Function Symbolic Tool), 485, 489f, 490f, 491f, 497
Theorems:

on controllability/observability, 462–464
invariant, 462–464

Thermal conductivity, 47, 48f
Thermal convection, 48f
Thermal expansion coefficient, 52
Thermal resistance, 47, 48f
Thermal storage, 47
Thermal systems:

capacitance, 47
conduction, 47, 48f
convection, 48f
differential equation modeling of, 25



electrical system analogies to, 63t
elementary heat transfer properties of, 47–50
Laplace transform of, 101, 102f–104f
radiation, 48, 49f
units and symbols for, 49t

Third-order attitude-control system, 379
frequency-domain design:
PD controller, 686, 688–690, 689f, 690t
PI controller, 699–702, 700f, 702t, 704f, 705–707, 705t, 707f
PID controller, 710, 711f, 711t
root loci of, 385f
steady-state response of, 386–387
time-domain design:
PD controller, 685–686, 686t, 687f–688f
PI controller, 702–703, 703f, 705t
PID controller, 708, 709t, 710f
time response of, 383–384
transient response of, 384–385
unit-step responses of, 386f

Third-order system, with forward-path transfer function:
magnification of, 601f
unit-step responses of, 602f

Three degrees of freedom (3-DOF) system, with three springs, 30, 31f
Three-reactor tank, differential equations for, 153f
Three-spring system:

state equations for, 121, 122f
with three-degree freedom, 30, 31f
with two-degree freedom, 30f

Three-story building, earthquake and, 30, 31f
Throttle angle, 5f
Time constant:

electrical, amplifier-motor system and, 379
of first-order prototype systems, 101, 322–323



fluid resistance and, 56
low-time-constant properties and, 269
mechanical, 298, 492t
motor-load system and, 379
motor electric, 279
motor mechanical, 279, 324
of prototype second-order system, 328
of RC network, 45
units and symbols for, 58t

Time delays. See also Delay time
Bode plots and, 634, 635f
for steel-rolling process, 654

Time-domain analysis, 317–318
of aircraft position-control system, 377–387. See also Attitude-control

system, of aircraft
continuous-data systems, 318–319
frequency-domain analysis compared with, 579
parabolic-function input and, 320f
ramp-function input and, 320f
step-function input and, 319, 320f
test signals and, 319–321, 320f
unit-step response and, 321, 322f

Time-domain design:
frequency-domain design compared with, 664, 668
PD controllers and, 670, 671f, 672
performance specifications, 663–664
phase-lag controller and, 738f–741f, 744f–745f, 746t, 747f
phase-lead controller and, 713f, 716–721, 717f–719f, 721t, 726–728,

727f–728f, 728t
PI controllers and, 693f
second-order aircraft attitude control system:
PD controller, 674–683, 676f–678f, 678t
PI controllers, 696–698, 697f, 698t, 699f



root contours for, 679f–683f, 681t
with SISO tool, 781–788, 782f–783f, 786f–787f, 789f
speed-control system and, 760, 761t
third-order aircraft attitude control system:
PD controllers, 685–686, 686t, 687f–688f
PI controller, 702–703, 703f, 705t
PID controllers, 708, 709t, 710f
third-order sun-seeker control system, 726–728, 727f–728f, 728t
time-domain characteristics in, 668

Time-invariant feedback control systems, 12
Time responses, 317, 499

of accelerometer, 142, 143f
continuous data systems, 318–319
control of, 368
of electric network, 140f, 141, 142f
of first-order prototype systems, 103
with impulse response, 118–119
of mass-spring-friction system, 200
MATLAB, 103, 112, 139, 141, 143, 200
problems for, 159
of prototype first-order system, 322, 323f
of RLC network, 137, 138f, 139, 140f
of second-order prototype systems, 112
impulse response, 117, 118f
test signals for, 319, 320f, 321
of third-order attitude-control system, 383–384

Time-varying feedback control systems, 12
Timing belt, over pulley, 38
Torque:

for broom-balancing system, 160f, 161
conversion factors for, 35t
dc motor production of, 270f
gear trains and, 38–40, 71f



load, 4, 5f
motor, 34, 38
of motor-load system, 73f, 157f
rotational motion and, 31, 70f
symbol for, 39–40

Torque-angle curve of motor/closed-loop system, 360, 361f
Torque constants, 273–274

back emf constant relationship to, 276–277
of LEGO MINDSTORMS NXT motor, 18, 19t, 291–292, 293f–294f,

293t, 492t
motor, 18, 19t, 291–292, 293f–294f, 293t, 492t

Torque equations, 32
for gear trains, 302, 303f
for motor-load system, 73f
for rotational motion, 302f

Torque-inertia system, 32f
Torque-spring system, 32f
Torsional resonances, 33f, 34
Torsional spring, 32f

in gear trains, 40
in motor-load system, 33f, 34

Torsional spring constant, 32, 302
Traction system, electric train in, 313–314
Trailer, vehicle and, 68f, 155, 156f, 303f
Train, in traction system, 313–314
Train controller:

block diagram of, 216f
problems for, 68f, 155f, 410

Trains, gear. See Gear trains
Transfer-function matrix, 130–131

for characteristic equation, 133
for multivariable systems, 131–132
for similarity transformations, 439



Transfer Function Symbolic Tool (tfsym), 485, 489f, 490f, 491f, 497
Transfer functions. See also G(s) function

for accelerometer, 142
for aircraft, 156
analytic function of, 89
of ball and beam system, 156f
block diagram and, 166, 179f
from block diagrams, MATLAB and, 209–211
characteristic equations and, 89, 434
closed-loop. See Closed-loop transfer functions
complex conjugate poles and zeros of, 91, 92f
controllability relationship to, 461–463, 462f
for damping in vibration absorber, 158f
decompositions of, 134, 193
cascade, 451f–452f
direct, 446, 447f–451f
parallel, 452, 453f–454f
dominant poles and zeros of, 374, 375f–376f
in electric network, 158f
error, 212
feedback, 168, 212
feedforward, 404
forward-path. See Forward-path transfer function
frequency-domain analysis and, 580–587, 581f–584f, 582t, 586f–587f
of guided missile, 157
impulse response and, 116f, 117, 118f
input-output, 136
inverting op-amp, 257, 258t
of Laplace transform, 87, 89
of linear control systems, 512
for linear time-invariant system, 151
loop. See Loop transfer function
of magnetic-ball-suspension system, 467



minimum-phase, 612–613
of motor-load system, 157f
of multivariable systems, 130–131, 176–178, 177f, 412–413
observability relationship to, 461–463, 462f
op-amp realization of, 257, 259
open-loop. See Open-loop transfer function
in parallel, block diagram of, 167f, 168
poles of, 90f
of printwheels, 156
problems for, 159
root loci for, 575
of second-order prototype system, 104, 398f
critically damped, 105
overdamped, 106–107
underdamped, 109
in series, block diagram of, 166, 167f
SFGs and, 179f
of simple pendulum, 230
of single-input, single-output system, 119
for spring-mass system, 409f
state diagrams from, 194f, 195
state equations and, 134–137, 430–433
state space form of, 519
state variable analysis and, 412–413
of tachometers, 266
of train controller, 155f
in vector-matrix form, 159
of vehicle suspension system, 154f
for vibration absorber, 157f, 158
zeros of, 90f, 91

Transient responses, 663
in continuous-data system, 317–318
feedback and, 11



Laplace transform method and, 109
PD controllers and, 369
performance criteria, 339f, 340
of second-order prototype system, 326–340
of simple pendulum, 229
in stable control systems, 227, 318
of third-order attitude-control system, 384–385

Transient solution, of modified second-order prototype systems, 109
Translational motion, 26–31

acceleration and, 26
backlash in, 41
displacement and, 26
electrical system analogies to, 63t
force equations for, 67f, 300, 301f
force-mass system, 26f
friction for, 28f
linear spring for, 27f
rotational motion, conversion between, 34, 36–38
symbols for, 35t
units for, 35t
velocity and, 26

Turboprop engine:
closed-loop transfer function of, 213, 214f
signals of, coupling between, 222f

Turbulent resistance, 54
Two degrees of freedom (2-DOF) system:

quarter-car model, 36, 37f, 72, 73f, 287f, 805f
with spring and damper elements, 29f
system responses of, 154f
with three springs, 30f
state equations for, 121, 122f

Two mass spring system, 29f
Two-stage phase-lead controller, 733–736, 733f, 735f, 736t, 737f



Two-tank liquid-level system:
fluid resistance and, 57f, 58
state-space model of, 80f

U
U-tube manometer, 78f, 79
Ultrasonic sensor, 15, 16f
Uncompensated phase-lag system:

Bode plot of, 748f
root loci of, 741f

Uncompensated sun-seeker system:
Bode plots of, 735f, 736
unit-step responses of, 745f

Uncontrollable, 511f
Undamped, second-order prototype systems, 114f–115f, 116t
Underdamped, second-order prototype systems, 109–112, 110f, 112f
Unit impulse, 117
Unit-step responses:

of attitude-control system, 382f, 676f, 678f, 678t
of ball and beam system, 156f
of dc motor, 341f, 342t
delay time and, 321, 322f
in electric network, 141, 142f, 158f
for electrical network, 206, 208f
of electrochemical system, 154
of first-order prototype systems, 103, 104f
frequency responses and Nyquist plots, correlation among, 625–626,

627f
of LEGO MINDSTORMS NXT motor, 494f
of liquid-level system, 402, 403f
of mass-spring-friction system, 200f
MATLAB, 154, 156, 158, 205–206, 208, 363–364, 368, 371, 374,

719
maximum overshoot and, 321, 322f, 332, 333f–334f



of PID controllers, 408f
position-control system and, 380, 381f–382f, 383t
of prototype first-order system, 323f
rise time and, 321, 322f
of RLC network, 139, 140f, 205–206, 207f
of second-order prototype systems, 113, 114f–115f, 116t, 328t, 329f–

330f
critically damped, 105f
overdamped, 107f
underdamped, 112f
of second-order system with forward-path transfer function, 600f
settling time and, 321, 322f
of speed-control system, 761f
of sun-seeker system, 717f, 721t, 745f
of third-order attitude-control system, 386f
of third-order sun-seeker control system, 728f, 737f
of third-order system, with forward-path transfer function, 602f
time-domain specifications and, 321, 322f
of vehicle suspension system, 154f

Units and symbols:
for acceleration, 26, 35t
for angular acceleration, 31
for angular displacement, 31
for angular velocity, 31
British, 277
for capacitance (electrical systems), 46t
for capacitance (thermal systems), 49t
for current, 46t
for density, 50–51
for displacement, 26, 35t
for electrical systems, 46t
for force, 26, 35t
for heat stored, 47, 49t



for inductance, 46t
for inertia, 31, 35t
for mass, 26, 35t
for pressure, 58t
for resistance (electrical systems), 46t
for resistance (thermal systems), 49t
for rotational motion, 35t
SI, 277
for spring constant, 35t
for temperature, 47, 49t
for thermal systems, 49t
for time constant, 58t
for torque, 39–40
for translational motion, 35t
for velocity, 26, 35t
for viscous friction, 39–40
for viscous friction coefficient, 35t
for voltage, 46t

Unity feedback loop, 169
Unity feedback systems, 353, 354f

forward-path transfer functions and, 394–395, 398, 403, 650–651,
653, 656, 658

nonunity feedback system equivalent of, 345f
poles added to, 362f–363f, 362t, 364, 405f
second-order, 400
steady-state error and, 343f, 346, 349f, 350, 395
zeros added to, 367, 368f

Unmodulated signal, 262
Unstable, 228

marginal, 230t, 231
negative damping and, 331
in s-plane, 230, 231f
simple pendulum and, 229



tfrouth stability tool and, 243, 244f

V
VCM. See Voice-coil motor
Vector-matrix form:

differential equations in, 159, 497
first-order differential equations in, 155
for Laplace transform, 132
for linear time-invariant system, 159, 497
for multivariable systems, 131–132
for nonlinear system, 144–145
of output equation, 126–128
for pendulum, 146

Vector-matrix representation, of state equations, 418–420
Vehicle, with trailer, 68f, 155, 156f, 303f
Vehicle bounce, 38
Vehicle suspension system, 36, 37f–38f, 67f, 154f, 409f, 410

frequency response of, 580–585, 581f–584f, 582t. See also Quarter-
car model

Velocity:
angular. See Angular velocity
equation for, 28
gear trains and, 38, 40
load, 34
motor, 34
symbol for, 26
translational motion and, 26
in viscous damping, 28

Velocity-control system, 230
with tachometer feedback, 265f

Vibration absorber, 75f, 157f, 158
damping in, 158f

Virtual ground, 254
Virtual short, 254



Viscosity, fluid, 55t
Viscous damping:

coefficient of, 28
modeling of, 29f
in motor-load system, 33f, 34
in permanent-magnet dc-motor-control system, 510f, 511
of rod, 32f, 33
for rotational motion, 32f, 33
stability and, 229

Viscous friction, 28
dashpot for, 27f–28f
in gear trains, 39f, 40
symbol for, 39–40

Viscous friction coefficient:
in gear trains, 40
of LEGO MINDSTORMS NXT motor, 18, 19t, 295–296, 297f, 492t
in translational and rotational motion, 35t

Voice-coil motor (VCM), in disk memory-storage system, 307, 308f
Voltage:

capacitor and, 42
force analogy to, 62
inductors and, 42
resistors and, 42
as state variable, 138–139
units for, 46t

Voltage divider, 46f, 76f, 77
Voltage equation, of dc motor, 305
Voltage law, 42–43, 137–138
Volume, conservation of, 51
Volumetric fluid flow rate, 51, 54, 58t

W
Washing machine, 6–7
Water extraction, solar power and, 5, 6f



Word processor:
position-control system of, 214f
printwheel of, 268, 269f

Z
Zero, 91, 210
Zero damping, 331
Zero initial conditions, 89, 198
Zero-input stability, 230
Zero-pole-gain models, 91
Zeros:

added to L(s) plot, 624, 625f
angles of arrival of, 534–538, 536f–537f
at breakaway point, 541f
angles of departure of, 534–538, 536f–537f
at breakaway point, 541f
of closed-loop control system, 396f
closed-loop transfer function and addition of, 365, 366f–367f, 366t
complex conjugate, 91, 92f
dominant, of transfer functions, 374, 375f–376f
forward path transfer function and addition of, 367, 368f, 596–601,

597f–600f
of function, 90f, 91
G(s)H(s) and:
addition of, 555, 556f
variation of, 566, 567f–568f
K = ±∞ points at, 528–529
MATLAB and, 91, 150
PD controllers and addition of, 369f, 370t, 371f
PI controllers and addition of, 372f–374f
problems for, 150

zpk, 91, 210, 634
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